DNA Markers for Food Products Authentication
Abstract
:1. Introduction
2. DNA Markers
3. Food Frauds and Genetic Traceability
Food Product | Marker | References | |
---|---|---|---|
Plant | Apple | SSR | [69] |
Olive oil | AFLP | [70] | |
AFLP | [71] | ||
RAPD, ISSR, SSR | [72] | ||
SNP, LDR | [73] | ||
SSR | [74] | ||
SSR | [68] | ||
SSR | [32] | ||
Pasta | AFLP | [75] | |
Poisonus plants | DNA-barcoding | [64] | |
Rice | SSR | [76] | |
Spicies | DNA-barcoding | [65] | |
Tomato | SSR | [30] | |
SSR | [66] | ||
SSR | [31] | ||
SSR | [29] | ||
Wheat | SSR | [67] | |
Wine | cpSSR | [77] | |
SSR, ISSR | [33] | ||
Meat | Cow | DNA-barcoding | [46] |
Beef | SSR | [28] | |
Meat | SSR | [78] | |
RAPD | [79] | ||
DNA-barcoding | [47] | ||
Pig | SNP | [80] | |
Fish | Anchovy | DNA-barcoding | [81] |
Cod | DNA-barcoding | [82] | |
Fish | DNA-barcoding | [48] | |
Mackerel | RFLP | [13] | |
Salmon | RAPD | [83] | |
SNP | [84] | ||
Shark | DNA-barcoding | [49] | |
Trout | RAPD | [85] | |
Tuna | RFLP | [86] |
3.1. Meat
3.2. Fish
3.3. Plant
4. Advantages and Limits of DNA Markers in a Traceability System
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Asensio, L.; González, I.; García, T.; Martin, R. Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA). Food Control 2008, 19, 1–8. [Google Scholar] [CrossRef]
- Berrini, A.; Tepedino, V.; Borromeo, V.; Secchi, C. Identification of freshwater fish commercially labelled “perch” by isoelectric focusing and two-dimensional electrophoresis. Food Chem. 2006, 96, 163–168. [Google Scholar] [CrossRef]
- Cavaliere, B.; De Nino, A.; Hayet, F.; Lazez, A.; Macchione, B.; Moncef, C.; Perri, E.; Sindona, G.; Tagarelli, A. A metabolomic approach to the evaluation of the origin of extra virgin olive oil: A convenient statistical treatment of mass spectrometric analytical data. J. Agric. Food Chem. 2007, 55, 1454–1462. [Google Scholar]
- Moco, S.; Forshed, J.; De Vos, R.C.; Bino, R.J.; Vervoort, J. Intra-and inter-metabolite correlation spectroscopy of tomato metabolomics data obtained by liquid chromatography-mass spectrometry and nuclear magnetic resonance. Metabolomics 2006, 4, 202–215. [Google Scholar]
- Le Gall, G.; Puaud, M.; Colquhoun, I.J. Discrimination between orange juice and pulp wash by 1H nuclear magnetic resonance spectroscopy: Identification of marker compounds. J. Agric. Food Chem. 2001, 49, 580–588. [Google Scholar] [CrossRef]
- Cuny, M.; Vigneau, E.; Le Gall, G.; Colquhoun, I.; Lees, M.; Rutledge, D.N. Fruit juice authentication by 1H NMR spectroscopy in combination with different chemometrics tools. Anal. Bioanal. Chem. 2008, 390, 419–427. [Google Scholar]
- Castro-Puyana, M.; Herrero, M. Metabolomics approaches based on mass spectrometry for food safety, quality and traceability. Trends Anal. Chem. 2013, 52, 74–87. [Google Scholar]
- Ogrinc, N.K.I.J.; Košir, I.J.; Spangenberg, J.E.; Kidrič, J. The application of NMR and MS methods for detection of adulteration of wine, fruit juices, and olive oil. A review. Anal. Bioanal. Chem. 2003, 376, 424–430. [Google Scholar] [CrossRef]
- Martinez, I.; Aursand, M.; Erikson, U.; Singstad, T.E.; Veliyulin, E.; van der Zwaag, C. Destructive and non destructive analytical techniques for authentication and composition analyses of foodstuffs. Trends Food Sci. Technol. 2003, 14, 489–498. [Google Scholar]
- Woolfe, M.; Primrose, S. Food forensics: Using DNA technology to combat misdescription and fraud. Trends Biotechnol. 2004, 22, 222–226. [Google Scholar]
- Tanksley, S.D.; Bernatzky, R.; Lapitan, N.L.; Prince, J.P. Conservation of gene repertoire but not gene order in pepper and tomato. Proc. Natl. Acad. Sci. USA 1988, 85, 6419–6423. [Google Scholar] [CrossRef]
- Helentjaris, T. A genetic linkage map for maize based on RFLPs. Trends Genet. 1987, 3, 217–221. [Google Scholar]
- Arahishi, F. PCR-RFLP analysis of nuclear nontranscribed spacer for mackerel species identification. J. Agric. Food Chem. 2005, 53, 508–511. [Google Scholar] [CrossRef]
- Bartish, I.V.; Garkava, L.P.; Rumpunen, K.; Nybom, H. Phylogenetic relationship and differentiation among and within population at Chaenomeles Lindl. (Rosaceae) estimated with RAPDs and isozymes. Theor. Appl. Genet. 2000, 101, 554–563. [Google Scholar] [CrossRef]
- Mokkamul, P.; Chaveerach, A.; Sudmoon, R.; Tavee, T. Species identification and sex determination of the genus Nepenthes (Nepenthaceae). Pak. J. Biol. Sci. 2007, 10, 561–567. [Google Scholar] [CrossRef]
- Verma, S.; Karihaloo, J.L.; Tiwari, S.K.; Magotra, R.; Koul, A.K. Genetic diversity in Eremostachys superba Royle ex Benth (Lamiaceae), an endangered Himalayan species, as assessed by RAPD. Genet. Resour. Crop Evol. 2007, 54, 221–229. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Yuan, Q.H.; Meng, Y.Q.; Li, X.L.; Nan, Z.B.; Wang, Y.R.; Zhang, W.S. A genetic diversity analysis of wild Lespedeza papulalois based on morphological characters, allozymes and RAPD methods. Plant Breed. 2007, 126, 89–94. [Google Scholar] [CrossRef]
- Chaveerach, A.; Tanomtang, A.; Sudmood, R.; Tanee, T. Genetic diversity among geographically distributed population of Nepenthes mirabilis. Biologia (Bratislava) 2006, 61, 295–298. [Google Scholar] [CrossRef]
- Wu, S.H.; Hwang, C.Y.; Lin, T.P.; Chung, J.D.; Cheng, Y.P.; Hwang, S.Y. Contrasting phylogeographical patterns of two closely related species, Machilus thunbergii and Machilus kusanoi (Lauraceae), in Taiwan. J. Biogeogr. 2006, 33, 936–947. [Google Scholar]
- Jones, C.J.; Edwards, K.J.; Castaglione, S.; Winfield, M.O.; Sala, F.; Van de Wiel, C.; Bredemeijer, G.; Vosman, B.; Matthes, M.; Daly, A.; et al. Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol. Breed. 1997, 3, 381–390. [Google Scholar]
- Rao, R.; La Mura, M.; Corrado, G.; Ambrosino, O.; Foroni, I.; Perri, E.; Pugliano, G. Molecular diversity and genetic relationships of southern Italian olive cultivars as depicted by AFLP and morphological traits. J. Hortic. Sci. Biotechnol. 2009, 84, 261–266. [Google Scholar]
- Angiolillo, A.; Mencuccini, M.; Baldoni, L. Olive genetic diversity assessed using amplified fragment length polymorphisms. Theor. Appl. Genet. 1999, 98, 411–421. [Google Scholar]
- Rotondi, A.; Magli, M.; Ricciolini, C.; Baldoni, L. Morphological and molecular analyses for the characterization of a group of Italian olive cultivars. Euphytica 2003, 132, 129–137. [Google Scholar]
- Ajmone‐Marsan, P.; Vecchiotti‐Antaldi, G.; Bertoni, G.; Valentini, A.; Cassandro, M.; Kuiper, M. AFLP™ markers for DNA fingerprinting in cattle. Anim. Genet. 1997, 28, 418–426. [Google Scholar]
- Zane, L.; Bargelloni, L.; Patarnello, T. Strategies for microsatellite isolation: A review. Mol. Ecol. 2002, 11, 1–16. [Google Scholar] [CrossRef]
- Powell, W.; Machray, G.C.; Provan, J. Polymorphism revealed by simple sequence repeats. Trends Plant Sci. 1996, 1, 215–222. [Google Scholar] [CrossRef]
- Orrù, L.; Napolitano, F.; Catillo, G.; Moioli, B. Meat molecular traceability: How to choose the best set of microsatellites? Meat Sci. 2006, 72, 312–317. [Google Scholar]
- Arana, A.; Soret, B.; Lasa, I.; Alfonso, L. Meat traceability using DNA markers: Application to the beef industry. Meat Sci. 2002, 61, 367–373. [Google Scholar] [CrossRef]
- Sardaro, S.M.L.; Marmiroli, M.; Maestri, E.; Marmiroli, N. Genetic characterization of Italian tomato varieties and their traceability in tomato food products. J. Nutr. Food Sci. 2013, 1, 54–62. [Google Scholar]
- Caramante, M.; Corrado, G.; Monti, L.M.; Rao, R. Simple Sequence Repeats are able to trace tomato cultivars in tomato food chains. Food Control 2010, 22, 549–554. [Google Scholar] [CrossRef]
- Turci, M.; Sardaro, M.L.S.; Visioli, G.; Maestri, G. Evaluation of DNA extraction procedures for traceability of various tomato products. Food Control 2010, 21, 143–149. [Google Scholar]
- Corrado, G.; Imperato, A.; la Mura, M.; Perri, E.; Rao, R. Genetic diversity among olive varieties of southern Italy and the traceability of olive oil using SSR markers. J. Hortic. Sci. Biotechnol. 2011, 86, 461–466. [Google Scholar]
- Pereira, L.; Martins-Lopes, P.; Batista, C.; Zanol, G.C.; Clímaco, P.; Brazão, J.; Eiras-Dias, J.E.; Guedes-Pinto, H. Molecular Markers for Assessing Must Varietal Origin. Food Anal. Methods 2012, 5, 1252–1259. [Google Scholar]
- Parida, S.K.; Kalia, S.K.; Sunita, K.; Dalal, V.; Hemaprabha, G.; Selvi, A.; Pandit, A.; Singh, A.; Gaikwad, K.; Sharma, T.R.; et al. Informative genomic microsatellite markers for efficient genotyping applications in sugarcane. Theor. Appl. Genet. 2009, 118, 327–338. [Google Scholar] [CrossRef]
- Varshney, K.R.; Terauchi, R.; McCouch, S.R. Harvesting the Promising Fruits of Genomics: Applying Genome Sequencing Technologies to Crop Breeding. PLoS Biol. 2014, 12, e1001883. [Google Scholar]
- Sim, S.C.; van Deynze, A.; Stoffel, K.; Douches, D.S.; Zarka, D.; Ganal, M.W.; Chetelat, R.T.; Hutton, S.F.; Scott, J.W.; Gardner, R.G.; et al. High-density SNP genotyping of tomato (Solanum lycopersicum L.) reveals patterns of genetic variation due to breeding. PLoS One 2012, 7, e45520. [Google Scholar] [CrossRef] [Green Version]
- Corrado, G.; Piffanelli, P.; Caramante, M.; Coppola, M.; Rao, R. SNP genotyping reveals genetic diversity between cultivated landraces and contemporary varieties of tomato. BMC Genomics 2013, 14, 835–849. [Google Scholar] [CrossRef]
- Corrado, G.; Caramante, M.; Piffanelli, P.; Rao, R. Genetic diversity in Italian tomato landraces: Implications for the development of a core collection. Sci. Hortic. 2014, 168, 138–144. [Google Scholar] [CrossRef]
- Fang, W.; Meinhardt, L.W.; Mischke, S.; Bellato, C.M.; Motilal, L.; Zhang, D. Accurate determination of genetic identity for a single cacao bean, using molecular markers with a nanofluidic system, ensures cocoa authentication. J. Agric. Food Chem. 2013, 62, 481–487. [Google Scholar]
- Chase, M.W.; Cowan, R.S.; Hollingsworth, P.M.; van den Berg, C.; Madrinan, S.; Petersen, G.; Seberg, O.; Jørgsensen, T.; Cameron, K.M.; Carine, M.; et al. A proposal for a standardised protocol to barcode all land plants. Taxon 2007, 56, 295–299. [Google Scholar]
- Fazekas, A.J.; Kesanakurti, P.R.; Burgess, K.S.; Percy, D.M.; Graham, S.W.; Barrett, S.C.H.; Newmaster, S.G.; Hajibabaei, M.; Husband, B.C. Are plant species inherently harder to discriminate than animal species using DNA barcoding markers? Mol. Ecol. Resour. 2009, 9, 130–139. [Google Scholar]
- Kress, W.J.; Erickson, D.L.; Jones, F.A.; Swenson, N.G.; Perez, R.; Sanjur, O.; Bermingham, E. Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proc. Natl. Acad. Sci. USA 2009, 106, 18621–18626. [Google Scholar]
- Burgess, K.S.; Fazekas, A.J.; Kesanakurti, P.R.; Graham, S.W.; Husband, B.C.; Newmaster, S.G.; Percy, D.M.; Hajibabaei, M.; Barrett, S.C.H. Discriminating plant species in a local temperate flora using the rbcL+matK DNA barcode. Methods Ecol. Evol. 2011, 2, 333–340. [Google Scholar]
- Small, R.L.; Cronn, R.C.; Wendel, J.F. Use of nuclear genes for phylogeny reconstruction in plants. Aust. Syst. Bot. 2004, 17, 145–170. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; de Waard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270, 313–322. [Google Scholar] [CrossRef]
- Cai, Y.S.; Zhang, L.A.; Shen, F.J.; Zhang, W.P.; Hou, R.; Yue, B.S.; Li, J.; Zhang, Z.H. DNA barcoding of 18 species of Bovidae. Chin. Sci. Bull. 2011, 56, 164–168. [Google Scholar] [CrossRef]
- Teletchea, F.; Bernillon, J.; Duffraisse, M.; Laudet, V.; Hänni, C. Molecular identfication of vertebrate species by oligonucleotide microarray in food and forensic samples. J. Appl. Ecol. 2008, 45, 967–975. [Google Scholar] [CrossRef]
- Filonzi, L.; Chiesa, S.; Vaghi, M.; Nonnis Marzano, F. Molecular barcoding reveals mislabelling of commercial fish products in Italy. Food Res. Int. 2010, 43, 1383–1388. [Google Scholar]
- Barbuto, M.; Galimberti, A.; Ferri, E.; Labra, M.; Malandra, R.; Galli, P.; Casiraghi, M. DNA barcoding reveals fraudulent substitutions in shark seafood products: The Italian case of “palombo” (Mustelus spp.). Food Res. Int. 2010, 43, 376–381. [Google Scholar]
- Galtier, N. The intriguing evolutionary dynamics of plant mitochondrial DNA. BMC Biol. 2011, 9, 61. [Google Scholar] [CrossRef]
- Kress, W.J.; Erickson, D.L. A two-locus global DNA barcode for land plants: The coding rbcL gene complements the non-coding trnH-psbA apacer region. PLoS One 2007, 2, e508. [Google Scholar]
- Lahaye, R.; van der Bank, M.; Bogarin, D.; Warner, J.; Pupulin, F.; Gigot, G.; Maurin, O.; Duthoit, S.; Barraclough, T.G.; Savolainen, V. DNA barcoding the floras of biodiversity hotspots. Proc. Natl. Acad. Sci. USA 2008, 106, 12794–12797. [Google Scholar]
- CBOL Plant Working Group. A DNA barcode for land plants. Proc. Natl. Acad. Sci. USA 2009, 106, 12794–12797. [Google Scholar] [CrossRef]
- BOLD Systems. Available online: www.barcodinglife.org (accessed on 2 September 2014).
- Ratnasingham, S.; Hebert, P.D. BOLD: The Barcode of Life Data System (http://www. barcodinglife. org). Mol. Ecol. Notes 2007, 7, 355–364. [Google Scholar]
- Hebert, P.D.; Stoeckle, M.Y.; Zemlak, T.S.; Francis, C.M. Identification of birds through DNA barcodes. PLoS Biol. 2004, 2, e312. [Google Scholar]
- Meier, R.; Shiyang, K.; Vaidya, G.; Ng, P.K. DNA barcoding and taxonomy in Diptera: A tale of high intraspecific variability and low identification success. Syst. Biol. 2006, 55, 715–728. [Google Scholar] [CrossRef]
- Victor, B.C. Redescription of Coryphopterus tortugae (Jordan) and a new allied species Coryphopterus bol (Perciformes: Gobiidae: Gobiinae) from the tropical western Atlantic Ocean. J. Ocean Sci. Found. 2008, 1, 1–19. [Google Scholar]
- Smith, P.J.; Steinke, D.; McVeagh, M.S.; Stewart, A.L.; Struthers, C.D.; Roberts, C. Molecular analysis of Southern Ocean skates (Bathyraja) reveals a new species of Antarctic skate. J. Fish Biol. 2008, 73, 1170–1182. [Google Scholar]
- Last, P.R.; Gledhill, D.C.; Holmes, B.H. A new handfish, Brachionichthys australis sp. nov. (Lophiiformes: Brachionichthyidae), with a redescription of the critically endangered spotted handfish, B. hirsutus (Lacepede). Zootaxa 2007, 1666, 53–68. [Google Scholar]
- Pyle, R.L.; Earle, J.L.; Greene, B.D. Five new species of the damselfish genus Chromis (Perciformes: Labroidei: Pomacentridae) from deep coral reefs in the tropical western Pacific. Zootaxa 2008, 1671, 3–31. [Google Scholar]
- Regattieri, A.; Gamberi, M.; Manzini, R. Traceability of food products: General framework and experimental evidence. J. Food Eng. 2007, 81, 347–356. [Google Scholar]
- Mafra, I.; Ferreira, I.M.; Oliveira, M.B.P.P. Food authentication by PCR-based methods. Eur. Food Res. Technol. 2008, 227, 649–665. [Google Scholar]
- Bruni, I.; de Mattia, F.; Galimberti, A.; Galasso, G.; Banfi, E.; Casiraghi, M.; Labra, M. Identification of poisonous plants by DNA barcoding approach. Int. J. Leg. Med. 2010, 124, 595–603. [Google Scholar]
- De Mattia, F.; Bruni, I.; Galimberti, A.; Cattaneo, F.; Casiraghi, M.; Labra, M. A comparative study of different DNA barcoding markers for the identifcation of some members of Lamiacaea. Food Res. Int. 2011, 44, 693–702. [Google Scholar] [CrossRef]
- Scarano, D.; Corrado, G.; Caramante, M.; Rao, R. SSR fingerprinting reveals mislabelling of commercial “San Marzano” tomato products. Minerva Biotecnol. 2011, 23, 42–44. [Google Scholar]
- Sonnante, G.; Montemurro, C.; Morgese, A.; Sabetta, W.; Blanco, A.; Pasqualone, A. DNA microsatellite region for a reliable quantification of soft wheat adulteration in durum wheat-based food- stuffs by Real-Time PCR. J. Agric. Food Chem. 2009, 57, 10199–10204. [Google Scholar]
- Pasqualone, A.; Montemurro, C.; Summo, C.; Sabetta, W.; Caponio, F.; Blanco, A. Effectiveness of microsatellite DNA markers in checking the identity of protected designation of origin extra virgin olive oil. J. Agric. Food Chem. 2007, 55, 3857–3862. [Google Scholar]
- Melchiade, D.; Foroni, I.; Corrado, G.; Santangelo, I.; Rao, R. Authentication of the “Annurca” apple in agro-food chain by ampli- fication of microsatellites loci. Food Biotechnol. 2007, 21, 33–43. [Google Scholar]
- Montemurro, C.; Pasqualone, A.; Simeone, R.; Sabetta, W.; Blanco, A. AFLP molecular markers to identify virgin olive oils from single Italian cultivars. Eur. Food Res. Technol. 2008, 226, 1439–1444. [Google Scholar] [CrossRef]
- Pafundo, S.; Agrimonti, C.; Marmiroli, N. Traceability of plant contribution in olive oil by amplified fragment length polymorphisms. J. Agric. Food Chem. 2005, 53, 6995–7002. [Google Scholar]
- Martins-Lopes, P.; Gomes, S.; Santos, E.; Guedes-Pinto, H. DNA Markers for Portuguese olive oil fingerprinting. J. Agric. Food Chem. 2008, 56, 11786–11791. [Google Scholar]
- Consolandi, C.; Palmieri, L.; Severgnini, M.; Maestri, E.; Marmiroli, N.; Agrimonti, C.; Baldoni, L.; Donini, P.; de Bellis, G.; Castiglioni, B. A procedure for olive oil traceability and authenticity: DNA extraction, multiplex PCR and LDR-universal array analysis. Eur. Food Res. Technol. 2008, 227, 1429–1438. [Google Scholar]
- Alba, V.; Sabetta, W.; Blanco, A.; Pasqualone, A.; Montemurro, C. Microsatellite marker to identify specific alleles in DNA extracted from monovarietal virgin olive oils. Eur. Food Res. Technol. 2009, 229, 375–382. [Google Scholar] [CrossRef]
- Terzi, V.; Morcia, C.; Giovanardi, D.; D’Egidio, M.G.; Stanca, A.M.; Faccioli, P. DNA-based analysis for authenticity assessment of monova-rietal pasta. Eur. Food Res. Technol. 2004, 219, 428–431. [Google Scholar]
- Chuang, H.; Lur, H.; Hwu, K.; Chang, M. Authentication of domestic Taiwan rice varieties based on fingerprinting analysis of microsatellite DNA markers. Bot. Stud. 2011, 52, 393–405. [Google Scholar]
- Cunha, J.; Santos, M.T.; Carneiro, L.C.; Fevereiro, P.; Eiras-Dias, J.E. Portuguese traditional grapevine cultivars and wild vines (Vitis vinifera L.) share morphological and genetic traits. Genet. Resour. Crop Evol. 2009, 56, 975–989. [Google Scholar] [CrossRef]
- Shackell, G.H.; Tate, M.L.; Anderson, R.M. Installing a DNA-based traceability system in the meat industry. Proc. Assoc. Adv. Anim. Breed. Genet. 2001, 14, 533–536. [Google Scholar]
- Mane, B.G.; Tanwar, V.K.; Girish, P.S.; Dixit, V.P. Identification of species origin of meat by RAPD–PCR technique. J. Vet. Public Health 2006, 4, 87–90. [Google Scholar]
- Goffaux, F.; China, B.; Dams, L.; Clinquart, A.; Daube, G. Development of a genetic traceability test in pig based on single nucleotide polymorphism detection. Forensic Sci. Int. 2005, 151, 239–247. [Google Scholar]
- Jérôme, M.; Martinsohn, J.T.; Ortega, D.; Carreau, P.; Verrez-Bagnis, V.; Mouchel, O. Toward fish and seafood traceability: Anchovy species determination in fish products by molecular markers and support through a public domain database. J. Agric. Food Chem. 2008, 56, 3460–3469. [Google Scholar]
- Di Pinto, A.; Di Pinto, P.; Terio, V.; Bozzo, G.; Bonerba, E.; Ceci, E.; Tantillo, G. DNA barcoding for detecting market substitution in salted cod fillets and battered cod chunks. Food Chem. 2013, 141, 1757–1762. [Google Scholar]
- Yamazaki, Y.; Fukutomi, N.; Oda, N.; Shibukawa, K.; Niimura, Y.; Iwata, A. Occurrence of larval Pacific lamprey Entosphenus tridentatus from Japan, detected by random amplified polymorphic DNA (RAPD) analysis. Ichthyol. Res. 2005, 52, 297–301. [Google Scholar]
- Johnston, S.E.; Lindqvist, M.; Niemelä, E.; Orell, P.; Erkinaro, J.; Kent, M.P.; Sigbjørn, L.; Vähä, J.; Vasemägi, A.; Primmer, C.R. Fish scales and SNP chips: SNP genotyping and allele frequency estimation in individual and pooled DNA from historical samples of Atlantic salmon (Salmo salar). BMC Genomics 2013, 14, 439–452. [Google Scholar]
- Jin, L.G.; Cho, J.G.; Seong, K.B.; Park, J.Y.; Kong, I.S.; Hong, Y.K. 18 rRNA gene sequences and random amplified polymorphic DNA used in discriminating Manchurian trout from other freshwater salmonids. Fish. Sci. 2006, 72, 903–905. [Google Scholar]
- Pardo, M.A.; Perez-Villareal, B. Identification of commercial canned tuna species by restriction site analysis of mitochondrial DNA products obtained by nested primer PCR. Food Chem. 2004, 86, 143–150. [Google Scholar] [CrossRef]
- Sakaridis, I.; Ganopoulos, I.; Argiriou, A.; Tsaftaris, A. A fast and accurate method for controlling the correct labeling of products containing buffalo meat using High Resolution Melting (HRM) analysis. Meat Sci. 2013, 94, 84–88. [Google Scholar] [CrossRef]
- Casellas, J.; Jimenez, N.; Fina, M.; Tarres, J.; Sanchez, A.; Piedrafita, J. Genetic diversity measures of the bovine Alberes breed using microsatellites, variability among herds and types of coat colour. J. Anim. Breed. Genet. 2004, 121, 101–110. [Google Scholar]
- Dalvit, C.; De Marchi, M.; Targhetta, C.; Gervaso, M.; Cassandro, M. Genetic traceability of meat using microsatellite markers. Food Res. Int. 2008, 41, 301–307. [Google Scholar] [CrossRef]
- Felmer, R.; Sagredo, B.; Chávez, R.; Iraira, S.; Folch, C.; Parra, L.; Catrileo, A.; Ortiz, M. Implementation of a molecular system for traceability of beef based on microsatellite markers. Chil. J. Agric. Res. 2008, 68, 342–351. [Google Scholar]
- Conyers, C.M.; Allnutt, T.R.; Hird, H.J.; Kaye, J.; Chisholm, J. Development of a microsatellite-based method for the differentiation of European wild boar (Sus scrofa scrofa) from domestic pig breeds (Sus scrofa domestica) in food. J. Agric. Food Chem. 2012, 60, 3341–3347. [Google Scholar] [CrossRef]
- Fernández, M.E.; Goszczynski, D.E.; Lirón, J.P.; Villegas-Castagnasso, E.E.; Carino, M.H.; Ripoli, M.V.; Rogberg-Muñoz, A.; Posik, D.M.; Peral-García, P.; Giovambattista, G. Comparison of the effectiveness of microsatellites and SNP panels for genetic identification, traceability and assessment of parentage in an inbred Angus herd. Genet. Mol. Biol. 2013, 36, 185–191. [Google Scholar] [Green Version]
- Capoferri, R.; Galli, A.; Bongioni, G. Molecular traceability in meat producing animals by SnPs. In Proceedings of the 4th World Italian Beef Cattle Congress; Gubbio, Italy: 29 April–1 May 2005.
- Rohrer, G.A.; Freking, B.A.; Nonneman, D. Single nucleotide polymorphisms for pig identification and parentage exclusion. Anim. Genet. 2007, 38, 253–258. [Google Scholar]
- Ramos, A.M.; Crooijmans, R.P.; Affara, N.A.; Amaral, A.J.; Archibald, A.L.; Beever, J.E.; Bendixen, C.; Churcher, C.; Clark, R.; Dehais, P.; et al. Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One 2009, 4, e6524. [Google Scholar]
- Wilkinson, S.; Archibald, A.L.; Haley, C.S.; Megens, H.J.; Crooijmans, R.P.; Groenen, M.A.; Wiener, P.; Ogden, R. Development of a genetic tool for product regulation in the diverse British pig breed market. BMC Genomics 2012, 13, 580. [Google Scholar]
- Francis, C.M.; Borisenko, A.V.; Ivanova, N.V.; Eger, J.L.; Lim, B.K.; Guillén-Servent, A.; Kruskop, S.V.; Mackie, I.; Hebert, P.D.N. The role of DNA barcodes in understanding and conservation of mammal diversity in Southeast Asia. PLoS One 2010, 5, e12575. [Google Scholar]
- Luo, A.R.; Zhang, A.B.; Ho, S.Y.W.; Xu, W.J.; Zhang, Y.Z.; Shi, W.F.; Cameron, S.L.; Zhu, C. Potential efficacy of mitochondrial genes for animal DNA barcoding: A case study using eutherian mammals. BMC Genomics 2011, 12, 84–97. [Google Scholar] [CrossRef]
- Casiraghi, M.; Labra, M.; Ferri, E.; Galimberti, A.; de Mattia, F. DNA barcoding: A six-question tour to improve users’ awareness about the method. Brief. Bioinform. 2010, 11, 440–453. [Google Scholar] [CrossRef]
- Galimberti, A.; de Mattia, F.; Losa, A.; Bruni, I.; Federici, S.; Casiraghi, M.; Martellos, S.; Labra, M. DNA barcoding as a new tool for food traceability. Food Res. Int. 2013, 50, 55–63. [Google Scholar] [CrossRef]
- FishBase. Available online: www.fishbase.org (accessed on 2 September 2014).
- Pescabase. Available online: www.pescabase.org (accessed on 2 September 2014). (In Spanish)
- Colombo, F.; Cerioli, M.; Colombo, M.M.; Marchisio, E.; Malandra, R.; Renon, P. A simple polymerase chain reactionerestriction fragment length polymorphism (PCR-RFLP) method for the differentiation of cephalopod mollusc families Loliginidae from Ommastrephidae, to avoid substitutions in fishery field. Food Control 2002, 13, 185–190. [Google Scholar] [CrossRef]
- Lin, W.F.; Hwang, D.F. Application of PCR-RFLP analysis on species identification of canned tuna. Food Control 2007, 18, 1050–1057. [Google Scholar]
- Renshaw, M.A.; Saillant, E.; Broughton, R.E.; Gold, J.R. Application of hypervariable genetic markers to forensic identification of “wild” from hatchery-raised red drum, Sciaenops ocellatus. Forensic Sci. Int. 2006, 156, 9–15. [Google Scholar]
- Wilson, I.G. Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 1997, 63, 3741–3751. [Google Scholar]
- Smith, P.J.; McVeagh, S.M.; Steinke, D. DNA barcoding for the identification of smoked fish products. J. Fish Biol. 2008, 72, 464–471. [Google Scholar] [CrossRef]
- Ward, R.D.; Hanner, R.; Hebert, P.D.N. The campaign to DNA barcode all fishes, FISH-BOL. J. Fish Biol. 2009, 74, 329–356. [Google Scholar] [CrossRef]
- Steinke, D.; Hanner, R. The FISH-BOL collaborators’ protocol. Mitochondrial DNA 2011, 22, 10–14. [Google Scholar] [CrossRef]
- Scarano, D.; Montemurro, C.; Corrado, G.; Blanco, A.; Rao, R. DNA markers as a tool for genetic traceability of primary product in agri-food chains. Ital. J. Agron. 2012, 7, 346–350. [Google Scholar]
- Consolandi, C.; Palmieri, L.; Doveri, S.; Maestri, E.; Marmiroli, N.; Reale, S.; Lee, D.; Baldoni, L.; Tosti, N.; Severgnini, M.; et al. Olive variety identification by ligation detection in a universal array format. J. Biotecnol. 2007, 129, 565–574. [Google Scholar]
- Testolin, R.; Lain, O. DNA extraction from olive oil and PCR amplification of microsatellite markers. Food Chem. Toxicol. 2005, 70, 108–112. [Google Scholar]
- Moreno, S.; Martin, J.P.; Ortiz, J.M. Inter-simple sequence repeats PCR for characterization of closely related grapevine germplasm. Euphytica 1998, 110, 117–125. [Google Scholar] [CrossRef]
- Herrera, R.; Cares, V.; Wilkinson, M.; Caligari, P.D.S. Characterization of the genetic variation and cultivar identification of Vitis vinifera cultivars using RAPD and anchored microsatellites markers. Euphytica 2002, 124, 139–145. [Google Scholar] [CrossRef]
- Fanizza, G.; Chaabane, R.; Lamaj, F.; Ricciardi, L.; Resta, P. AFLP analysis of genetic relationships among aromatic grapevines (Vitis vinifera). Theor. Appl. Genet. 2003, 107, 1043–1047. [Google Scholar] [CrossRef]
- Benjak, A.; Ercisli, S.; Vokurka, A.; Maletic, E.; Pejic, I. Genetic relationships among grapevine cultivars native to Croatia, Greece and Turkey. Vitis 2005, 44, 73–77. [Google Scholar]
- Singh, N.; Choudhury, D.R.; Singh, A.K.; Kumar, S.; Srinivasan, K.; Tyagi, R.K.; Singh, N.K. Comparison of SSR and SNP Markers in Estimation of Genetic Diversity and Population Structure of Indian Rice Varieties. PLoS One 2013, 8, e84136. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Scarano, D.; Rao, R. DNA Markers for Food Products Authentication. Diversity 2014, 6, 579-596. https://doi.org/10.3390/d6030579
Scarano D, Rao R. DNA Markers for Food Products Authentication. Diversity. 2014; 6(3):579-596. https://doi.org/10.3390/d6030579
Chicago/Turabian StyleScarano, Daria, and Rosa Rao. 2014. "DNA Markers for Food Products Authentication" Diversity 6, no. 3: 579-596. https://doi.org/10.3390/d6030579
APA StyleScarano, D., & Rao, R. (2014). DNA Markers for Food Products Authentication. Diversity, 6(3), 579-596. https://doi.org/10.3390/d6030579