A Hypothesis on Suspension Feeding in Early Chelicerates (Offacolidae)
Abstract
1. Introduction
2. Observations
2.1. Observations on the Anatomy of Offacolidae
2.2. Observations on the Geological, Chronological, Paleoenvironmental, and Paleogeographical Contexts of Offacolidae
3. Discussion
3.1. Was the Anatomy of Offacolidae Suitable for a Suspension Feeder Feeding Strategy?
3.2. Was the Environment Inhabited by Offacolidae Suitable for a Suspension Feeder Feeding Strategy?
3.3. Testing the Hypothesis of Suspension Feeding in Offacolidae
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Servais, T.; Perrier, V.; Danelian, T.; Klug, C.; Martin, R.; Munnecke, A.; Nowak, H.; Nützel, A.; Vandenbroucke, T.R.A.; Williams, M.; et al. The onset of the ‘Ordovician Plankton Revolution’ in the late Cambrian. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 458, 12–28. [Google Scholar] [CrossRef]
- Saleh, F.; Antcliffe, J.B.; Lustri, L.; Daley, A.C.; Gibert, C. Cambrian and Ordovician diversity fluctuations could be resolved through a single ecological hypothesis. Lethaia 2023, 56, 1–13. [Google Scholar] [CrossRef]
- Quere, C.L.; Harrison, S.P.; Colin Prentice, I.; Buitenhuis, E.T.; Aumont, O.; Bopp, L.; Claustre, H.; Cotrim Da Cunha, L.; Geider, R.; Giraud, X. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Glob. Change Biol. 2005, 11, 2016–2040. [Google Scholar] [CrossRef]
- Nowak, H.; Servais, T.; Monnet, C.; Molyneux, S.G.; Vandenbroucke, T.R.A. Phytoplankton dynamics from the Cambrian Explosion to the onset of the Great Ordovician Biodiversification Event: A review of Cambrian acritarch diversity. Earth-Sci. Rev. 2015, 151, 117–131. [Google Scholar] [CrossRef]
- Edwards, C.T. Links between early Paleozoic oxygenation and the Great Ordovician Biodiversification Event (GOBE): A review. Palaeoworld 2019, 28, 37–50. [Google Scholar] [CrossRef]
- Zhang, T.; Shen, Y.; Algeo, T.J. High-resolution carbon isotopic records from the Ordovician of South China: Links to climatic cooling and the Great Ordovician Biodiversification Event (GOBE). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 289, 102–112. [Google Scholar] [CrossRef]
- Servais, T.; Owen, A.W.; Harper, D.A.; Kröger, B.; Munnecke, A. The great Ordovician biodiversification event (GOBE): The palaeoecological dimension. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 294, 99–119. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, R.; Zong, R.; Gong, Y. The evolution and initial rise of pelagic caryocaridids in the Ordovician. Earth-Sci. Rev. 2022, 231, 104097. [Google Scholar] [CrossRef]
- Nützel, A.; Frýda, J. Paleozoic plankton revolution: Evidence from early gastropod ontogeny. Geology 2003, 31, 829–831. [Google Scholar] [CrossRef]
- Danelian, T.; Monnet, C. Early Paleozoic radiolarian plankton diversity and the Great Ordovician Biodiversification event. Earth-Sci. Rev. 2021, 218, 103672. [Google Scholar] [CrossRef]
- Emiliani, C. Nomenclature and grammar. J. Wash. Acad. Sci. 1952, 42, 137–141. [Google Scholar]
- Emiliani, C. Planktic/planktonic, nektic/nektonic, benthic/benthonic. J. Paleontol. 1991, 65, 329. [Google Scholar] [CrossRef]
- Martin, E.E.L.O.; Pittet, B.; Gutiérrez-Marco, J.-C.; Vannier, J.; El Hariri, K.; Lerosey-Aubril, R.; Masrour, M.; Nowak, H.; Servais, T.; Vandenbroucke, T.R.A.; et al. The lower Ordovician Fezouata Konservat-Lagerstätte from Morocco: Age, environment and evolutionary perspectives. Gondwana Res. 2016, 34, 274–283. [Google Scholar] [CrossRef]
- Vannier, J.; Racheboeuf, P.R.; Brussa, E.D.; Williams, M.; Rushton, A.W.; Servais, T.; Siveter, D.J. Cosmopolitan arthropod zooplankton in the Ordovician seas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 195, 173–191. [Google Scholar] [CrossRef]
- Perrier, V.; Williams, M.; Siveter, D.J. The fossil record and palaeoenvironmental significance of marine arthropod zooplankton. Earth-Sci. Rev. 2015, 146, 146–162. [Google Scholar] [CrossRef]
- Aria, C. The origin and early evolution of arthropods. Biol. Rev. 2021, 97, 1786–1809. [Google Scholar] [CrossRef]
- Fussmann, G. The importance of crustacean zooplankton in structuring rotifer and phytoplankton communities; an enclosure study. J. Plankton Res. 1996, 18, 1897–1915. [Google Scholar] [CrossRef]
- Liu, Y.; Haug, J.T.; Haug, C.; Briggs, D.E.; Hou, X. A 520 million-year-old chelicerate larva. Nat. Commun. 2014, 5, 4440. [Google Scholar] [CrossRef]
- Laibl, L.; Saleh, F.; Pérez-Peris, F. Drifting with trilobites: The invasion of early post-embryonic trilobite stages to the pelagic realm. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2023, 613, 111403. [Google Scholar] [CrossRef]
- Richards, J.C.; Nanglu, K.; Ortega-Hernández, J. The Fezouata Shale Formation biota is typical for the high latitudes of the Early Ordovician—A quantitative approach. Paleobiology 2024, 50, 226–238. [Google Scholar] [CrossRef]
- Potin, G.J.-M.; Gueriau, P.; Daley, A.C. Radiodont frontal appendages from the Fezouata Biota (Morocco) reveal high diversity and ecological adaptations to suspension-feeding during the Early Ordovician. Front. Ecol. Evol. 2023, 11, 1214109. [Google Scholar] [CrossRef]
- Van Roy, P.; Daley, A.C.; Briggs, D.E. Anomalocaridid trunk limb homology revealed by a giant filter-feeder with paired flaps. Nature 2015, 522, 77–80. [Google Scholar] [CrossRef]
- Pates, S.; Botting, J.P.; McCobb, L.M.; Muir, L.A. A miniature Ordovician hurdiid from Wales demonstrates the adaptability of Radiodonta. R. Soc. Open Sci. 2020, 7, 200459. [Google Scholar] [CrossRef]
- Daley, A.C.; Budd, G.E.; Caron, J.-B.; Edgecombe, G.D.; Collins, D. The Burgess Shale anomalocaridid Hurdia and its significance for early euarthropod evolution. Science 2009, 323, 1597–1600. [Google Scholar] [CrossRef]
- Potin, G.J.-M.; Daley, A.C. The significance of Anomalocaris and other Radiodonta for understanding paleoecology and evolution during the Cambrian explosion. Front. Earth Sci. 2023, 11, 1160285. [Google Scholar] [CrossRef]
- Smith, F.A.; Johnson, D.; Reinhardt, K. Encyclopedia of Ecology; Fitzroy Dearborn Publishers: London, UK, 2008. [Google Scholar]
- Hamann, L.; Blanke, A. Suspension feeders: Diversity, principles of particle separation and biomimetic potential. J. R. Soc. Interface 2022, 19, 20210741. [Google Scholar] [CrossRef]
- Rubenstein, D.I.; Koehl, M.A. The mechanisms of filter feeding: Some theoretical considerations. Am. Nat. 1977, 111, 981–994. [Google Scholar] [CrossRef]
- Klug, C.; Kröger, B.; Kiessling, W.; Mullins, G.L.; Servais, T.; Frýda, J.; Korn, D.; Turner, S. The Devonian nekton revolution. Lethaia 2010, 43, 465–477. [Google Scholar] [CrossRef]
- Stoecker, D.K.; Lavrentyev, P.J. Mixotrophic plankton in the polar seas: A pan-arctic review. Front. Mar. Sci. 2018, 5, 292. [Google Scholar] [CrossRef]
- Gili, J.-M.; Coma, R.; Orejas, C.; López-González, P.J.; Zabala, M. Are Antarctic suspension-feeding communities different from those elsewhere in the world? Polar Biol. 2001, 24, 473–485. [Google Scholar] [CrossRef]
- Eldredge, N.; Smith, L. Revision of the suborder Synziphosurina (Chelicerata, Merostomata): With remarks on merostome phylogeny. Am. Mus. Novit. 1974, 2543, 1–41. [Google Scholar]
- Dunlop, J.A. Geological history and phylogeny of Chelicerata. Arthropod Struct. Dev. 2010, 39, 124–142. [Google Scholar] [CrossRef]
- Zittel, K.V. Handbuch der Palaeontologie, Part 1. Palaeozoolgie, Vol. 2; R. Oldenbourg: Munich, Germany; Leipzig, Germany, 1885; p. 893. [Google Scholar]
- Lamsdell, J.C. Revised systematics of Palaeozoic ‘horseshoe crabs’ and the myth of monophyletic Xiphosura. Zool. J. Linn. Soc. 2013, 167, 1–27. [Google Scholar] [CrossRef]
- Sutton, M.D.; Briggs, D.E.; Siveter, D.J.; Siveter, D.J.; Orr, P.J. The arthropod Offacolus kingi (Chelicerata) from the Silurian of Herefordshire, England: Computer based morphological reconstructions and phylogenetic affinities. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2002, 269, 1195–1203. [Google Scholar] [CrossRef]
- Orr, P.J.; Siveter, D.J.; Briggs, D.E.; Siveter, D.J.; Sutton, M.D. A new arthropod from the Silurian Konservat–Lagerstätte of Herefordshire, UK. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2000, 267, 1497–1504. [Google Scholar] [CrossRef]
- Briggs, D.E.; Siveter, D.J.; Siveter, D.J.; Sutton, M.D.; Garwood, R.J.; Legg, D. Silurian horseshoe crab illuminates the evolution of arthropod limbs. Proc. Natl. Acad. Sci. USA 2012, 109, 15702–15705. [Google Scholar] [CrossRef]
- Lustri, L.; Antcliffe, J.B.; Gueriau, P.; Daley, A.C. New specimens of Bunaia woodwardi Clarke, 1919 (Euchelicerata): A new member of Offacolidae providing insight supporting the Arachnomorpha. R. Soc. Open Sci. 2024, 11, 240499. [Google Scholar] [CrossRef]
- Lustri, L.; Gueriau, P.; Daley, A.C. Lower Ordovician synziphosurine reveals early euchelicerate diversity and evolution. Nat. Commun. 2024, 15, 3808. [Google Scholar] [CrossRef]
- Van Roy, P.; Briggs, D.E.; Gaines, R.R. The Fezouata fossils of Morocco; an extraordinary record of marine life in the Early Ordovician. J. Geol. Soc. 2015, 172, 541–549. [Google Scholar] [CrossRef]
- Clarke, J.M. Bunaia Woodwardi, a New Merostome from the Silurian Waterlimes of New York. Geol. Mag. 1919, 6, 531–533. [Google Scholar] [CrossRef]
- Bicknell, R.D.; Simone, Y.; van der Meijden, A.; Wroe, S.; Edgecombe, G.D.; Paterson, J.R. Biomechanical analyses of pterygotid sea scorpion chelicerae uncover predatory specialisation within eurypterids. PeerJ 2022, 10, e14515. [Google Scholar] [CrossRef]
- Haug, C. The evolution of feeding within Euchelicerata: Data from the fossil groups Eurypterida and Trigonotarbida illustrate possible evolutionary pathways. PeerJ 2020, 8, e9696. [Google Scholar] [CrossRef]
- Soler-Membrives, A.; Rossi, S.; Munilla, T. Feeding ecology of Ammothella longipes (Arthropoda: Pycnogonida) in the Mediterranean Sea: A fatty acid biomarker approach. Estuar. Coast. Shelf Sci. 2011, 92, 588–597. [Google Scholar] [CrossRef]
- Aria, C.; Caron, J.-B. Mandibulate convergence in an armoured Cambrian stem chelicerate. BMC Evol. Biol. 2017, 17, 261. [Google Scholar] [CrossRef]
- Aria, C.; Caron, J.-B. A middle Cambrian arthropod with chelicerae and proto-book gills. Nature 2019, 573, 586–589. [Google Scholar] [CrossRef]
- Lamsdell, J.C.; Briggs, D.E.; Liu, H.P.; Witzke, B.J.; McKay, R.M. The oldest described eurypterid: A giant Middle Ordovician (Darriwilian) megalograptid from the Winneshiek Lagerstätte of Iowa. BMC Evol. Biol. 2015, 15, 169. [Google Scholar] [CrossRef]
- Bicknell, R.D.; Ledogar, J.A.; Wroe, S.; Gutzler, B.C.; Watson, W.H., III; Paterson, J.R. Computational biomechanical analyses demonstrate similar shell-crushing abilities in modern and ancient arthropods. Proc. R. Soc. B 2018, 285, 20181935. [Google Scholar] [CrossRef]
- Bicknell, R.D.; Klinkhamer, A.J.; Flavel, R.J.; Wroe, S.; Paterson, J.R. A 3D anatomical atlas of appendage musculature in the chelicerate arthropod Limulus polyphemus. PLoS ONE 2018, 13, e0191400. [Google Scholar] [CrossRef]
- Borza, P.; Duleba, M.; Egri, Á. Filter feeding in the mysid crustacean Limnomysis benedeni: Evidence of the maxillary pump and the ventral filtration current. Zool. Anz. 2023, 302, 260–265. [Google Scholar] [CrossRef]
- Destombes, J. Stratigraphie et paléogéographie de l’Ordovicien de l’Anti-Atlas (Maroc): Un essai de synthèse. Bull. Société Géologique Fr. 1962, 7, 453–460. [Google Scholar] [CrossRef]
- Van Roy, P.; Orr, P.J.; Botting, J.P.; Muir, L.A.; Vinther, J.; Lefebvre, B.; El Hariri, K.; Briggs, D.E. Ordovician faunas of Burgess Shale type. Nature 2010, 465, 215–218. [Google Scholar] [CrossRef]
- Vaucher, R.; Martin, E.L.; Hormière, H.; Pittet, B. A genetic link between Konzentrat-and Konservat-Lagerstätten in the Fezouata Shale (lower Ordovician, Morocco). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 460, 24–34. [Google Scholar] [CrossRef]
- Saleh, F.; Pittet, B.; Sansjofre, P.; Guériau, P.; Lalonde, S.; Perrillat, J.-P.; Vidal, M.; Lucas, V.; El Hariri, K.; Kouraiss, K. Taphonomic pathway of exceptionally preserved fossils in the Lower Ordovician of Morocco. Geobios 2020, 60, 99–115. [Google Scholar] [CrossRef]
- Saleh, F.; Vaucher, R.; Antcliffe, J.B.; Daley, A.C.; El Hariri, K.; Kouraiss, K.; Lefebvre, B.; Martin, E.L.; Perrillat, J.-P.; Sansjofre, P. Insights into soft-part preservation from the Early Ordovician Fezouata Biota. Earth-Sci. Rev. 2021, 213, 103464. [Google Scholar] [CrossRef]
- Saleh, F.; Guenser, P.; Gibert, C.; Balseiro, D.; Serra, F.; Waisfeld, B.G.; Antcliffe, J.B.; Daley, A.C.; Mángano, M.G.; Buatois, L.A. Contrasting Early Ordovician assembly patterns highlight the complex initial stages of the Ordovician Radiation. Sci. Rep. 2022, 12, 3852. [Google Scholar] [CrossRef]
- Lefebvre, B.; Gutiérrez-Marco, J.C.; Lehnert, O.; Martin, E.L.; Nowak, H.; Akodad, M.; El Hariri, K.; Servais, T. Age calibration of the Lower Ordovician Fezouata Lagerstätte, Morocco. Lethaia 2018, 51, 296–311. [Google Scholar] [CrossRef]
- Saleh, F.; Pittet, B.; Perrillat, J.-P.; Lefebvre, B. Orbital control on exceptional fossil preservation. Geology 2019, 47, 103–106. [Google Scholar] [CrossRef]
- Vaucher, R.; Pittet, B.; Hormière, H.; Martin, E.L.; Lefebvre, B. A wave-dominated, tide-modulated model for the Lower Ordovician of the Anti-Atlas, Morocco. Sedimentology 2017, 64, 777–807. [Google Scholar] [CrossRef]
- Saleh, F.; Antcliffe, J.B.; Lefebvre, B.; Pittet, B.; Laibl, L.; Peris, F.P.; Lustri, L.; Gueriau, P.; Daley, A.C. Taphonomic bias in exceptionally preserved biotas. Earth Planet. Sci. Lett. 2020, 529, 115873. [Google Scholar] [CrossRef]
- Maletz, J.; Gutiérrez-Marco, J.C. The purported record of an epibiontic rhabdopleurid in the early Ordovician Fezouata biota of Morocco, with a discussion about benthic pterobranchs (Hemichordata) in the Lagerstätte. Geobios 2024, 87, 25–35. [Google Scholar] [CrossRef]
- Saleh, F.; Lustri, L.; Gueriau, P.; Potin, G.J.-M.; Pérez-Peris, F.; Laibl, L.; Jamart, V.; Vite, A.; Antcliffe, J.B.; Daley, A.C. The Cabrières Biota (France) provides insights into Ordovician polar ecosystems. Nat. Ecol. Evol. 2024, 8, 651–662. [Google Scholar] [CrossRef]
- Brett, C.E. Silurian-Early Devonian sequence stratigraphy, cycles and paleoenvironments of the Niagara Peninsula area of Ontario, Canada. In Canada Geological Survey. GSA Annual Meeting Field Trip Guide; 1998. [Google Scholar]
- Ciurca, S.J., Jr. Eurypterid horizons and the stratigraphy of Upper Silurian and Lower Devonian rocks of central-eastern New York State. In Proceedings of the New York State Geological Association 50th Annual Meeting, Syracuse, NY, USA, 23–24 September 1978; pp. 225–249. [Google Scholar]
- Ciurca, S.J., Jr. Eurypterid horizons and the stratigraphy of the Upper Silurian and Lower Devonian of western New York State. In Proceedings of the 45th Annual Meeting and Guidebook; New York State Geological Association: Oswego, NY, USA, 1973; pp. 1–14. [Google Scholar]
- Hamell, R. Stratigraphy, petrology and paleoenvironmental interpretation of the Bertie Group (Late Cayugan) in New York. Emp. State Geogram 1982, 18, 37–38. [Google Scholar]
- Ciurca, S.J., Jr. Eurypterid biofacies of the Silurian–Devonian evaporite sequence: Niagara peninsula, Ontario, Canada and New York. In Proceedings of the New York State Geological Association 62nd Annual Meeting, Fredonia, NY, USA, 28–30 September 1990; pp. 1–30. [Google Scholar]
- Vrazo, M.B.; Braddy, S.J. Testing the ‘mass-moult-mate’hypothesis of eurypterid palaeoecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 311, 63–73. [Google Scholar] [CrossRef]
- Vrazo, M.B.; Brett, C.E.; Ciurca, S.J., Jr. Paleoecological and stratigraphic controls on eurypterid Lagerstätten: A model for preservation in the mid-Paleozoic. Paleobiology 2017, 43, 383–406. [Google Scholar] [CrossRef]
- Vrazo, M.B.; Brett, C.E.; Ciurca, S.J., Jr. Buried or brined? Eurypterids and evaporites in the Silurian Appalachian basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 444, 48–59. [Google Scholar] [CrossRef]
- Der Voo, R.V. Paleozoic paleogeography of North America, Gondwana, and intervening displaced terranes: Comparisons of paleomagnetism with paleoclimatology and biogeographical patterns. Geol. Soc. Am. Bull. 1988, 100, 311–324. [Google Scholar] [CrossRef]
- Orr, P.J.; Briggs, D.E.; Siveter, D.J.; Siveter, D.J. Three-dimensional preservation of a non-biomineralized arthropod in concretions in Silurian volcaniclastic rocks from Herefordshire, England. J. Geol. Soc. 2000, 157, 173–186. [Google Scholar] [CrossRef]
- Briggs, D.E.; Siveter, D.J.; Siveter, D.J.; Sutton, M.D.; Legg, D.; Lamsdell, J.C. A vicissicaudatan arthropod from the Silurian Herefordshire Lagerstätte, UK. R. Soc. Open Sci. 2023, 10, 230661. [Google Scholar] [CrossRef]
- Siveter, D.J.; Aitchison, J.; Siveter, D.J.; Sutton, M. The Radiolaria of the Silurian Konservat-Lagerstätte of Herefordshire, England. J. Micropalaeontol. 2007, 26, 87–95. [Google Scholar] [CrossRef]
- Siveter, D.J.; Briggs, D.E.; Siveter, D.J.; Sutton, M.D. The Herefordshire Lagerstätte: Fleshing out Silurian marine life. J. Geol. Soc. 2020, 177, 1–13. [Google Scholar] [CrossRef]
- Saleh, F.; Clements, T.; Perrier, V.; Daley, A.C.; Antcliffe, J.B. Variations in preservation of exceptional fossils within concretions. Swiss J. Palaeontol. 2023, 142, 20. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Wang, J.; Lyu, J.; Jiang, W.; Wu, Z.; Wu, J. High stability in filtration apparatus of African shrimp. Iscience 2023, 26, 107444. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo-López, A.; Caron, J.-B. The Cambrian Odaraia alata and the colonization of nektonic suspension-feeding niches by early mandibulates. Proc. B 2024, 291, 20240622. [Google Scholar] [CrossRef] [PubMed]
- Vinther, J.; Stein, M.; Longrich, N.R.; Harper, D.A. A suspension-feeding anomalocarid from the Early Cambrian. Nature 2014, 507, 496–499. [Google Scholar] [CrossRef]
- Riisgård, H.U.; Thiel, M.; Watling, L. Filter-feeding mechanisms in crustaceans. In Life Styles and Feeding Biology. The Natural History of the Crustacea; Oxford: New York, NY, USA, 2015; Volume 2, pp. 418–463. [Google Scholar]
- Carvalho-Batista, A.; Oliveira, C.M.; Souza, G.; Carvalho, F.L.; Mantelatto, F.L. Morphometric aspects of two coexisting amphidromous shrimps, Atya gabonensis Giebel, 1875 and Atya scabra (Leach, 1816), in the Paraíba do Sul River, Brazil. Nauplius 2021, 29, e2021018. [Google Scholar] [CrossRef]
- Koehl, M. The morphology and performance of suspension-feeding appendages. J. Theor. Biol. 1983, 105, 1–12. [Google Scholar] [CrossRef]
- Diaz, H. The mole crab Emerita talpoida (Say): A case of changing life history pattern. Ecol. Monogr. 1980, 50, 437–456. [Google Scholar] [CrossRef]
- Nixon, S.; Oviatt, C.; Frithsen, J.; Sullivan, B. Nutrients and the productivity of estuarine and coastal marine ecosystems. J. Limnol. Soc. S. Afr. 1986, 12, 43–71. [Google Scholar] [CrossRef]
- Witman, J.D.; Cusson, M.; Archambault, P.; Pershing, A.J.; Mieszkowska, N. The relation between productivity and species diversity in temperate–arctic marine ecosystems. Ecology 2008, 89, S66–S80. [Google Scholar] [CrossRef]
- Gould, S.J. Wonderful Life: The Burgess Shale and the Nature of History; WW Norton & Company: New York, NY, USA, 1990. [Google Scholar]
- Pates, S.; Drage, H.B. Hydrodynamic function of genal prolongations in trinucleimorph trilobites revealed by computational fluid dynamics. bioRxiv 2024. bioRxiv:2024.2001.2026.577348. [Google Scholar]
- Pates, S.; Ma, J.; Wu, Y.; Fu, D. Impact of ontogeny and spines on the hydrodynamic performance of the Cambrian arthropod Isoxys. R. Soc. Open Sci. 2024, 11, 240894. [Google Scholar] [CrossRef]
- Pates, S.; Xue, Y. Hydrodynamic performance of Ordovician archaeostracan carapaces. PLoS ONE 2024, 19, e0304559. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lustri, L.; Collantes, L.; Esteves, C.J.P.; O’Flynn, R.J.; Saleh, F.; Liu, Y. A Hypothesis on Suspension Feeding in Early Chelicerates (Offacolidae). Diversity 2025, 17, 412. https://doi.org/10.3390/d17060412
Lustri L, Collantes L, Esteves CJP, O’Flynn RJ, Saleh F, Liu Y. A Hypothesis on Suspension Feeding in Early Chelicerates (Offacolidae). Diversity. 2025; 17(6):412. https://doi.org/10.3390/d17060412
Chicago/Turabian StyleLustri, Lorenzo, Luis Collantes, Cristiana J. P. Esteves, Robert J. O’Flynn, Farid Saleh, and Yu Liu. 2025. "A Hypothesis on Suspension Feeding in Early Chelicerates (Offacolidae)" Diversity 17, no. 6: 412. https://doi.org/10.3390/d17060412
APA StyleLustri, L., Collantes, L., Esteves, C. J. P., O’Flynn, R. J., Saleh, F., & Liu, Y. (2025). A Hypothesis on Suspension Feeding in Early Chelicerates (Offacolidae). Diversity, 17(6), 412. https://doi.org/10.3390/d17060412