Influence of Arctic Conditions on the Diatom Diversity of Islands Within the Conservation of Arctic Flora and Fauna Region
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Principle of Selection of Data on Biodiversity and Climate Parameters
| Site No. | Name | Region | Abbreviation | Latitude | Longitude | Area, km2 | References |
|---|---|---|---|---|---|---|---|
| 1 | Wrangel Island | Russian Arctic | Wr | 71°14′00″ N | 179°25′00″ W | 7600 | [18] |
| 2 | St. Lawrence Island | Alaska | SL | 63°21′44″ N | 170°16′02″ W | 4640 | [49] |
| 3 | Vancouver Island | Canada’s Pacific Coast | Va | 49°36′00″ N | 125°30′00″ W | 32,100 | [30] |
| 4 | Prince Patrick Island | Northwest Territories of Canada | PP | 76°45′02″ N | 119°30′12″ W | 15,848 | [25,26] |
| 5 | Victoria Island | Northwest Territories of Canada | Vi | 70°25′00” N | 107°45′00” W | 217,291 | [25,31,41,47,53] |
| 6 | Ellef Ringnes Island | Canadian High Arctic | ER | 78°30′00″ N | 102°15′00″ W | 11,295 | [25,26] |
| 7 | Bathurst Island | Canadian High Arctic | Ba | 75°46′00” N | 99°47′00″ W | 16,042 | [25,29,38,41] |
| 8 | Cornwallis Island | Canadian High Arctic | Co | 75°08′00″ N | 95°00′00″ W | 6995 | [24] |
| 9 | Ellesmere Island | Canadian High Arctic | El | 79°50′00” N | 78°00′00” W | 196,236 | [25,26,27,28,29,32,33,41,42,44] |
| 10 | Greenland—7 points | Greenland | G | 64°10′00” N | 51°43′00″ W | 2,166,086 | [39,54] |
| 11 | Iceland | Iceland | Ic | 64°08′00” N | 21°56′00″ W | 103,125 | [16,35,43] |
| 12 | Svalbard Islands | Norway | Sv | 78°13′00” N | 15°39′00″ E | 62,045 | [36,40,45,51] |
| 13 | Franz Josef Land | Russian Arctic | FJ | 80°34′00″ N | 54°47′00″ E | 16,134 | [37,40,46] |
| 14 | New Zemlya | Russian Arctic | NZ | 73°57′09″ N | 56°20′55″ E | 83,000 | [21,34] |
| 15 | Vaygach Island | Russian Arctic | Vy | 69°59′49″ N | 59°34′44″ E | 3383 | [34] |
| 16 | Severnaya Zemlya Island | Russian Arctic | SZ | 79°30′00″ N | 97°15′00″ E | 37,000 | [50] |
| 17 | Kotelnyy–Anzhu Island | Russian Arctic | KA | 75°20′00” N | 141°00′00″ E | 23,165 | [22,23] |
| 18 | Bering Island | Russian Arctic | Be | 55°00′03″ N | 166°16′23″ E | 1667 | [48] |
2.3. Estimating the Exploration Level of the Studied Floras
2.4. Modeling Species–Area Relationships and Their Climatic Sensitivity
2.5. Bioindication and Statistics
3. Results
3.1. Climate-Related Environmental Parameters
3.2. The Diatom Floras on the Studied Islands
3.3. The Exploration Level of the Diatom Floras on the Studied Islands
3.4. Species–Area Relationships for the Diatom Floras on the Studied Islands and Their Climatic Adjustment
3.5. Diatom Diversity and Latitude
3.6. Diatom Diversity and Threatened Categories of IUCN
3.7. Diatom Bioindicators over Island Latitude
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| JASP | Jeffreys’s Amazing Statistics Program |
| IUCN | International Union for Conservation of Nature and Natural Resources |
| MODIS | Moderate Resolution Imaging Spectroradiometer |
| DHI | Dynamic Habitat Indices |
| PET | Potential evapotranspiration |
| CAFF | Conservation of Arctic Flora and Fauna |
| SAR | Species–area relationship |
References
- Knights, D.; Piliouras, A.; Schwenk, J.; Hariharan, J.; Russoniello, C. Seasonal and morphological controls on nitrate retention in Arctic deltas. Geophys. Res. Lett. 2023, 50, e2022GL102201. [Google Scholar] [CrossRef]
- Jeppesen, E.; Brucet, S.; Naselli-Flores, L.; Papastergiadou, E.; Stefanidis, K.; Nõges, T.; Nõges, P.; Attayde, J.L.; Zohary, T.; Coppens, J.; et al. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 2015, 750, 201–227. [Google Scholar] [CrossRef]
- Lugg, A.; Copeland, C. Review of cold water pollution in the Murray–Darling Basin and the impacts on fish communities. Ecol. Manag. Restor. 2014, 15, 71–79. [Google Scholar] [CrossRef]
- Arctic Biodiversity Assessment. Available online: https://www.arcticbiodiversity.is/ (accessed on 1 October 2025).
- Safeguarding Arctic Biodiversity. Available online: https://arctic-council.org/explore/topics/biodiversity/ (accessed on 10 October 2025).
- Duff, K.E.; Laing, T.E.; Smol, J.P.; Lean, D.R.S. Limnological characteristics of lakes located across arctic treeline in northern Russia. Hydrobiologia 1998, 391, 203–220. [Google Scholar] [CrossRef]
- Polyakov, I.V.; Alexeev, V.A.; Belchansky, G.I.; Dmitrenko, I.A.; Ivanov, V.V.; Kirillov, S.A.; Korablev, A.A.; Steele, M.; Timokhov, L.A.; Yashayaev, I. Arctic Ocean Freshwater Changes over the Past 100 Years and Their Causes. J. Clim. 2008, 21, 364–384. [Google Scholar] [CrossRef]
- Prowse, T.D.; Wrona, F.J.; Reist, J.D.; Hobbie, J.E.; Lévesque, L.M.J.; Vincent, W.F. General Features of the Arctic Relevant to Climate Change in Freshwater Ecosystems. Ambio 2006, 35, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Albert, R.-L.; Korhola, A.; Sorvari, S. Analysis of factors controlling epilithic diatom community compositions in subarctic lakes of Finnish Lapland. Adv. Limnol. 2009, 62, 125–151. [Google Scholar] [CrossRef]
- Wehr, J.D.; Sheath, R.G.; Kociolek, J.P. Freshwater Algae of North America: Ecology and Classification, 2nd ed.; AcademicPress: San Diego, CA, USA, 2013; p. 1050. [Google Scholar]
- Bellinger, E.G.; Sigee, D.C. Freshwater Algae: Identification and Use as Bioindicators; John Wiley & Sons: Chichester, UK, 2015; p. 284. [Google Scholar]
- Battarbee, R.W. Diatom analysis. In Handbook of Holocene Palaeoecology and Palaeohydrology; Wiley: Chichester, UK, 1986; pp. 527–570. [Google Scholar]
- Culp, J.M.; Lento, J.; Goedkoop, W.; Power, M.; Rautio, M.; Christoffersen, K.S.; Guðbergsson, G.; Lau, D.; Liljaniemi, P.; Sandøy, S.; et al. Developing a circumpolar monitoring framework for Arctic freshwater biodiversity. Biodiversity 2012, 13, 215–227. [Google Scholar] [CrossRef]
- Flower, R.J.; Kernan, M.; Noon, P.E.; Jones, V.J. On the factors affecting distributions of freshwater diatom species in a remote South Atlantic archipelago. Eur. J. Phycol. 2012, 47, 291–309. [Google Scholar] [CrossRef][Green Version]
- Christensen, T.; Payne, J.F.; Schmidt, N.M.; Madsen, J.; Taylor, J.J.; Doyle, M.; Gill, M.; Nymand, J.; Svoboda, M.; Rosa, C.; et al. Terrestrial Expert Monitoring Plan—Background Paper; A Supporting Publication to the CBMP Framework Document. CAFF Monitoring Series Report; CAFF International Secretariat: Akureyri, Iceland, 2011; Nr. 6; ISBN 978-9935-431-11-0. [Google Scholar]
- Lento, J.; Goedkoop, W.; Culp, J.; Christoffersen, K.S.; Larusson, K.F.; Fefilova, E.; Gudbergsson, G.; Liljaniemi, P.; Olafsson, J.S.; Sandoy, S.; et al. State of the Arctic Freshwater Biodiversity; Conservation of Arctic Flora and Fauna International Secretariat: Akureyri, Iceland, 2019; Available online: https://www.caff.is/freshwater/freshwater-monitoring-publications/488-state-of-the-arctic-freshwater-biodiversity-report-full-report (accessed on 6 October 2023).
- Foged, N. Diatoms in Alaska. In Bibliotheca Phycologica; Cramer, J., Ed.; Gebrüder Borntraeger Verlagsbuchhandlung (Nägele u.Obermiller): Stuttgart, Germany, 1981; Band 53; pp. 1–317. [Google Scholar]
- Kharitonov, V.G. Diatoms of the benthic water bodies of the Wrangel Island. Novit. Syst. Plant. Non Vasc. 1981, 18, 33–39. (In Russian) [Google Scholar]
- Hobbie, J.E.; Peterson, B.J.; Bettez, N.; Deegan, L.; O’Brien, W.J.; Kling, G.W.; Kipphut, G.W.; Bowden, W.B.; Hershey, A.E. Impact of global change on the biogeochemistry and ecology of an Arctic freshwater system. Polar Res. 1999, 18, 207–214. [Google Scholar] [CrossRef]
- Kendrick, M.R.; Huryn, A.D.; Bowden, W.B.; Deegan, L.A.; Findlay, R.H.; Hershey, A.E.; Peterson, B.J.; Beneš, J.P.; Schuett, E.B. Linking permafrost thaw to shifting biogeochemistry and food web resources in an arctic river. Glob. Change Biol. 2018, 24, 5738–5750. [Google Scholar] [CrossRef]
- Barinova, S.S. An assessment of the state of aquatic ecosystems of Novaya Zemlya Archipelago (Novozemelskiy reserve, Russia). Int. J. Algae 2000, 2, 62–69. [Google Scholar] [CrossRef]
- Barinova, S.; Gabyshev, V. The Influence of Arctic Conditions on the Formation of Algae and Cyanobacteria Diversity and on the Water Quality of Freshwater Habitats on Kotelny Island, Lena Delta Wildlife Reserve, Yakutia. Water 2024, 16, 1231. [Google Scholar] [CrossRef]
- Genkal, S.I.; Gabyshev, V.A. Diatom algae (Bacillariophyta) in waterbodies and watercourses on Kotelny Island (New Siberian Islands Archipelago). Bot. Zhurnal 2020, 105, 750–761. (In Russian) [Google Scholar] [CrossRef]
- Antoniades, D.; Douglas, M.S.V. Characterization of high arctic stream diatom assemblages from Cornwallis Island, Nunavut, Canada. Can. J. Bot. 2002, 80, 50–58. [Google Scholar] [CrossRef]
- Antoniades, D.; Douglas, M.S.V.; Smol, J.P. Benthic diatom autecology and inference model development from the Canadian High Arctic Archipelago. J. Phycol. 2005, 41, 30–45. [Google Scholar] [CrossRef]
- Antoniades, D.; Hamilton, P.B.; Douglas, M.S.; Smol, J.P. Diatoms of North America: The Freshwater Floras of Prince Patrick, Ellef Ringnes and Northern Ellesmere Islands from the Canadian Arctic Archipelago; A.R.G. Gantner Verlag K.G.: Ruggell, Liechtenstein, 2008; p. 649. [Google Scholar]
- Bahls, L. Diatoms of Montana and Western North America: Catalog and Atlas of Species in the Montana Diatom Collection; Academy of Natural Sciences of Philadelphia Special Publication: Philadelphia, PA, USA, 2021; Volume 1, pp. 1–508. [Google Scholar]
- Bahls, L.; Luna, T. Diatoms from Wrangell-St. Elias National Park, Alaska, USA. PhytoKeys 2018, 113, 33–57. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, G.; Gajewski, K.; Hamilton, P.B. Freshwater Diatom Biogeography in the Canadian Arctic Archipelago. J. Biogeogr. 2004, 31, 1955–1973. [Google Scholar] [CrossRef]
- Sawai, Y.; Tanigawa, K.; Shinozaki, T.; Bobrowsky, P.T.; Huntley, D.; Goff, J. Diatom (Bacillariophyceae) assemblages in tidal environments of Vancouver Island, British Columbia, Canada. Phycol. Res. 2021, 70, 3–21. [Google Scholar] [CrossRef]
- Douglas, M.S.V.; Hamilton, P.B.; Pienitz, R.; Smol, J.P. Algal indicators of environmental change in Arctic and Antarctic lakes and ponds. In Long-Term Environmental Change in Arctic and Antarctic Lakes; Pienitz, R., Douglas, M.S.V., Smol, J.P., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 117–157. [Google Scholar]
- Douglas, M.S.V.; Smol, J.P. Freshwater diatoms from high arctic ponds (Cape Herschel, Ellesmere Island, N.W.T.). Nova Hedwig. 1993, 57, 511–552. [Google Scholar]
- Douglas, M.S.V.; Smol, J.P. Freshwater diatoms as indicators of environmental change in the High Arctic. In The Diatoms: Applications for the Environmental and Earth Sciences, 2nd ed.; Smol, J.P., Stoermer, E.F., Eds.; Cambridge University Press: Cambridge, UK, 2010; Part 13; pp. 249–266. [Google Scholar]
- Genkal, S.I.; Vekhov, N.V. Diatoms of Water Bodies of the Russian Arctic: Novaya Zemlya Archipelago and Vaigach Island; Nauka: Moscow, Russia, 2007; pp. 1–59. (In Russian) [Google Scholar]
- Hallgrímsson, H. Algae Census: List of Aquatic and Terrestrial Algae in Iceland According to Sources; Natturufrædistofnun Islands: Reykjavík, Iceland, 2008; p. 96. (In Icelandic) [Google Scholar]
- Kim, G.H.; Klochkova, T.A.; Han, J.W.; Kang, S.-H.; Choi, H.G.; Chung, K.W.; Kim, S.J. Freshwater and Terrestrial Algae from Ny-Ålesund and Blomstrandhalvøya Island (Svalbard). Arctic 2011, 64, 25–31. [Google Scholar] [CrossRef][Green Version]
- Krasheninnikov, A.B.; Gavrilo, M.V.; Elkin, A.A.; Moseev, D.S.; Kaigorodov, R.V.; Toropov, L.I. Features of freshwater ecosystems of the Franz Josef Land archipelago. Polar Sci. 2022, 33, 100849. [Google Scholar] [CrossRef]
- Lim, D.; Douglas, M.; Smol, J. Diatoms and their relationship to environmental variables from lakes and ponds on Bathurst Island, Nunavut, Canadian High Arctic. Hydrobiologia 2001, 450, 215–230. [Google Scholar] [CrossRef]
- Manolaki, P.; Wu, N.; Mattesen, E.; Pastor, A.; Riis, T. Benthic diatom communities in high-Arctic streams across a water chemistry gradient in Zackenberg Valley, Northeast Greenland. Polar Biol. 2024, 47, 1559–1574. [Google Scholar] [CrossRef]
- Matveyeva, N.V.; Zanokha, L.L.; Afonina, O.M.; Potemkin, A.D.; Patova, E.N.; Davydov, D.A.; Andreeva, V.M.; Zhurbenko, M.P.; Konoreva, L.A.; Zmitrovich, I.V.; et al. Plants and Fungi of the Polar Deserts in the Northern Hemisphere; Marafon: St. Petersburg, Russia, 2015; p. 320. (In Russian) [Google Scholar]
- Michelutti, N.; Holtham, A.J.; Douglas, M.S.V.; Smol, J.P. Periphytic diatom assemblages from ultra-oligotrophic and uv transparent lakes and ponds on Victoria Island and comparisons with other diatom surveys in the Canadian Arctic. J. Phycol. 2003, 39, 465–480. [Google Scholar] [CrossRef]
- Michelutti, N.; McCleary, K.; Douglas, M.S.; Smol, J.P. Comparison of Freshwater Diatom Assemblages from a High Arctic Oasis to Nearby Polar Desert Sites and Their Application to Environmental Inference Models. J. Phycol. 2013, 49, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Hallgrímsson, H. Þörungatal: Skrá yfir vatna- og landþörunga á Íslandi samkaemt heimildum [Algae census: List of aquatic and terrestrial algae in Iceland according to sources]. Fjölrit Náttúrufrædistofnunar Natturufrædistofnun Isl. Reykjavík 2007, 48, 1–94. [Google Scholar]
- Perren, B.B.; Bradley, R.S.; Francus, P. Rapid Lacustrine Response to Recent High Arctic Warming: A Diatom Record from Sawtooth Lake, Ellesmere Island, Nunavut. Arct. Antarct. Alp. Res. 2003, 35, 271–278. [Google Scholar] [CrossRef]
- Picińska-Fałtynowicz, J. Freshwater benthic diatoms from the south-western part of the Hornsund fiord area, SW Spitsbergen. Polar Res. 1988, 6, 19–34. [Google Scholar] [CrossRef]
- Pla-Rabés, S.; Hamilton, P.B.; Ballesteros, E.; Gavrilo, M.; Friedlander, A.M.; Sala, E. The structure and diversity of freshwater diatom assemblages from Franz Josef Land Archipelago: A northern outpost for freshwater diatoms. PeerJ 2016, 4, e1705. [Google Scholar] [CrossRef] [PubMed]
- Podritske, B.; Gajewski, K. Diatom community response to multiple scales of Holocene climate variability in a small lake on Victoria Island, NWT, Canada. Quat. Sci. Rev. 2007, 26, 3179–3196. [Google Scholar] [CrossRef]
- Potapova, M. Diatoms of Bering Island, Kamchatka, Russia. Nova Hedwig. 2014, 143, 63–102. [Google Scholar]
- Rampone, J. Diatoms as Indicators of Climate Change on St. Lawrence Island, Alaska. Bachelor’s Thesis, Queen’s University, Kingston, ON, Canada, 28 April 2015. [Google Scholar]
- Sapozhnikov, P.V.; Kalinina, O.Y.; Snigirova, A.A. Modern benthic diatom taxocenes of loose grounds of the coast of the Severnaya Zemlya archipelago and adjacent sea areas. Issues Mod. Algol. 2020, 3, 1–18. [Google Scholar] [CrossRef]
- Skulberg, O.M. Terrestrial and limnic algae and cyanobacteria. In A Catalogue of Svalbard Plants, Fungi, Algae and Cyanobacteria; Elvebakk, A., Prestrud, P., Eds.; Norwegian Polar Institute: Oslo, Norway, 1996; Part 9; pp. 383–395. [Google Scholar]
- Smol, J.P.; Stoermer, E.F. The Diatoms: Applications for the Environmental and Earth Sciences, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010; p. 686. [Google Scholar]
- Van De Vijver, B.; Van Kerckvoorde, A.; Beyens, L. Freshwater and terrestrial moss diatom assemblages of the Cambridge Bay area, Victoria Island (Nunavut, Canada). Nova Hedwig. 2003, 76, 225–243. [Google Scholar] [CrossRef]
- Weckström, K.; Weckström, J.; Wischnewski, J.; Davidson, T.A.; Lauridsen, T.L.; Landkildehus, F.; Christoffersen, K.S.; Jeppesen, E. Unlocking environmental archives in the Arctic—Insights from modern diatom-environment relationships in lakes and ponds across Greenland. Front. Ecol. Evol. 2023, 11, 1177638. [Google Scholar] [CrossRef]
- Guiry, M.D.; Guiry, G.M. AlgaeBase. World-Wide Electronic Publication, University of Galway. Available online: https://www.algaebase.org (accessed on 3 March 2025).
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Myneni, R.; Knyazikhin, Y.; Park, T. MOD15A2H MODIS Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V006; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2015. [Google Scholar] [CrossRef]
- Zomer, R.J.; Xu, J.; Trabucco, A. Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Sci. Data 2022, 9, 409. [Google Scholar] [CrossRef]
- Willis, J.C. Age and Area. A study in Geographical Distribution and Origin of Species; Cambridge University Press: Cambridge, UK, 1922; p. 259. [Google Scholar]
- Barinova, S. Systemic Criteria for the Analysis of Alpha- and Gamma-Diversity of Freshwater Algae. Int. J. Environ. Sci. Nat. Resour. 2017, 4, 555633. [Google Scholar] [CrossRef]
- JASP Team. JASP, Version 0.18.3; [Computer software]; JASP Team: Amsterdam, The Nederland, 2024. Available online: https://jasp-stats.org/ (accessed on 6 October 2023).
- Arrhenius, O. Species and area. J. Ecol. 1921, 9, 95–99. [Google Scholar] [CrossRef]
- MacArthur, R.H.; Wilson, E.O. An equilibrium theory of insular zoogeography. Evolution 1963, 17, 373–387. [Google Scholar] [CrossRef]
- MacArthur, R.H.; Wilson, E.O. The Theory of Island Biogeography; Princeton University Press: Princeton, NJ, USA, 1967; p. 203. [Google Scholar]
- Gleason, H.A. On the relation between species and area. Ecology 1922, 3, 158–162. [Google Scholar] [CrossRef]
- Barinova, S. Database of Ecological Indicators of Freshwater Algae and Cyanobacteria. Ecol. Divers. 2025, 2, 10003. [Google Scholar] [CrossRef]
- McAleece, N.; Gage, J.D.G.; Lambshead, P.J.D.; Paterson, G.L.J. BioDiversity Professional Statistics Analysis Software; Scottish Association for Marine Science: Oban, UK; Natural History Museum London: London, UK, 1997; Available online: https://www.sams.ac.uk/science/outputs/ (accessed on 6 October 2023).
- Wessa, P. Person Correlation (v1.0.13) in Free Statistics Software; v1.2.1. Office for Research Development and Education: Singapore, 2017. Available online: https://www.wessa.net/rwasp_correlation.wasp/ (accessed on 23 December 2024).
- Hofmann, G.; Lange-Bertalot, H.; Werum, M.; Klee, R. Rote Liste und Gesamtartenliste der limnischen Kieselalgen (Bacillariophyta) Deutschlands. In Rote Liste der gefährdeten Tiere, Pflanzen und Pilze Deutschlands; Band 7: Pflanzen; Naturschutz und Biologische Vielfalt; Bundesamt für Naturschutz: Bonn, Germany, 2018; Volume 70, pp. 601–708. [Google Scholar]
- IUCN. IUCN Red List Categories and Criteria, Version 3.1, 2nd ed.; IUCN: Gland, Switzerland; Cambridge, UK, 2012; pp. 1–32.
- Love, J.; Selker, R.; Marsman, M.; Jamil, T.; Dropmann, D.; Verhagen, J.A.; Ly, A.; Gronau, F.Q.; Smira, M.; Epskamp, S.; et al. JASP: Graphical statistical software for common statistical designs. J. Stat. Softw. 2019, 88, 1–17. [Google Scholar] [CrossRef]
- Jamoneau, A.; Soininen, J.; Tison-Rosebery, J.; Boutry, S.; Budnick, W.R.; He, S.; Marquié, J.; Jyrkänkallio-Mikkola, J.; Pajunen, V.; Teittinen, A.; et al. Stream diatom biodiversity in islands and continents—A global perspective on effects of area, isolation and environment. J. Biogeogr. 2022, 49, 2156–2168. [Google Scholar] [CrossRef]
- Kreft, H.; Jetz, W.; Mutke, J.; Kier, G.; Barthlott, W. Global diversity of island floras from a macroecological perspective. Ecol. Lett. 2008, 11, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Soininen, J.; Jamoneau, A.; Rosebery, J.; Passy, S.I. Global patterns and drivers of species and trait composition in diatoms. Glob. Ecol. Biogeogr. 2016, 25, 940–950. [Google Scholar] [CrossRef]
- Connor, E.F.; McCoy, E.D. The statistics and biology of the species-area relationship. Am. Nat. 1979, 113, 791–833. [Google Scholar] [CrossRef]
- Rosenzweig, M.L. Species Diversity in Space and Time; Cambridge University Press: Cambridge, UK, 1995; p. 436. [Google Scholar]
- Whittaker, R.J.; Fernández-Palacios, J.M. Island Biogeography, 2nd ed.; Oxford University Press: Oxford, UK, 2007; p. 401. [Google Scholar]
- Gebrewahid, Y.; Abrehe, S.; Meresa, E.; Eyasu, G.; Abay, K.; Gebreab, G.; Kidanemariam, K.; Adissu, G.; Abreha, G.; Darcha, G. Current and future predicting potential areas of Oxytenanthera abyssinica (A. Richard) using MaxEnt model under climate change in Northern Ethiopia. Ecol. Process. 2020, 9, 6. [Google Scholar] [CrossRef]
- Gao, X.; Lin, F.; Li, M.; Mei, Y.; Li, Y.; Bai, Y.; He, X.; Zheng, Y. Prediction of the potential distribution of a raspberry (Rubus idaeus) in China based on MaxEnt model. Sci. Rep. 2024, 14, 24438. [Google Scholar] [CrossRef]
- Hosseini, N.; Mehrabian, A.; Nasab, F.K.; Mostafavi, H.; Ghorbanpour, M. Forecasting climate change effects on the potential distribution of Zhumeria majdae as an endangered monotypic endemic species: A maxent modeling approach. BMC Ecol. Evol. 2025, 25, 85. [Google Scholar] [CrossRef] [PubMed]
- Lomolino, M.V. Ecology’s most general, yet protean pattern: The species-area relationship. J. Biogeogr. 2000, 27, 17–26. [Google Scholar] [CrossRef]
- Tjørve, E. Shapes and functions of species–area curves: A review of possible models. J. Biogeogr. 2003, 30, 827–835. [Google Scholar] [CrossRef]
- Drakare, S.; Lennon, J.J.; Hillebrand, H. The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol. Lett. 2006, 9, 215–227. [Google Scholar] [CrossRef]
- Carey, M.; Boland, J.; Keppel, G. Generalized Logarithmic Species-Area Relationship Resolves the Arrhenius-Gleason Debate. Environ. Model. Assess. 2023, 28, 491–499. [Google Scholar] [CrossRef]
- Fernández-Palacios, J.M.; Rijsdijk, K.F.; Norder, S.J.; Otto, R.; de Nascimento, L.; Fernández-Lugo, S.; Tjørve, E.; Whittaker, R.J. Towards a glacial-sensitive model of island biogeography. Glob. Ecol. Biogeogr. 2016, 25, 817–830. [Google Scholar] [CrossRef]
- Whittaker, R.J.; Fernández-Palacios, J.M.; Matthews, T.J.; Borregaard, M.K.; Triantis, K.A. Island biogeography: Taking the long view of nature’s laboratories. Science 2017, 357, eaam8326. [Google Scholar] [CrossRef]
- Moiseenko, T.I.; Sharov, A.N.; Vandish, O.I.; Kudryavtseva, L.P.; Gashkina, N.A.; Rose, C. Long-term modification of Arctic lake ecosystems: Reference condition, degradation under toxic impacts and recovery (case study Imandra Lakes, Russia). Limnologica 2009, 39, 1–13. [Google Scholar] [CrossRef][Green Version]
- Barinova, S.; Gabyshev, V.; Genkal, S.; Gabysheva, O. Diatoms of Small Water Bodies as Bioindicators in the Assessment of Climatic and Anthropogenic Impacts on the Coast of Tiksi Bay, Russian Arctic. Water 2023, 15, 1533. [Google Scholar] [CrossRef]
- Montoya-Moreno, Y.; Sala, S.; Vouilloud, A.; Aguirre, N.; Plata-Díaz, Y. Lista de las diatomeas de ambientes continentales de Colombia. Biota Colomb. 2013, 14, 13–78. [Google Scholar] [CrossRef]
- Barinova, S.; Stenina, A. Ecological adaptation of diatoms in the Arctic lakes of the Kostyanoi Nos Cape (Nenezky Natural Reserve, Russian North). Plant Biosyst. 2013, 147, 397–410. [Google Scholar] [CrossRef]
- Lange-Bertalot, H.; Metzeltin, D. Indicators of oligotrophy. In Iconographia Diatomologica. Annotated Diatom Micrographs; Lange-Bertalot, H., Ed.; Ecology, Diversity, Taxonomy; Koeltz Scientific Books: Königstein, Germany; Volume 2, 1996; p. 390. [Google Scholar]
- Cantonati, M.; Hofmann, G.; Spitale, D.; Werum, M.; Lange-Bertalot, H. Diatom Red Lists: Important tools to assess and preserve biodiversity and habitats in the face of direct impacts and environmental change. Biodivers. Conserv. 2022, 31, 453–477. [Google Scholar] [CrossRef]
- Pérez-Burillo, J.; Jamoneau, A.; Passy, S.I.; Tison-Rosebery, J.; Blanco, S.; Borrini, A.; Boutry, S.; Budnick, W.R.; Cantonati, M.; Valente, A.C.; et al. Stream diatom community assembly processes in islands and continents: A global perspective. J. Biogeogr. 2023, 51, 382–393. [Google Scholar] [CrossRef]
- Kopalová, K.; Veselá, J.; Elster, J.; Nedbalová, L.; Komárek, J.; Van de Vijver, B. Benthic diatoms (Bacillariophyta) from seepages and streams on James Ross Island (NW Weddell Sea, Antarctica). Plant Ecol. Evol. 2012, 145, 190–208. [Google Scholar] [CrossRef]
- Silva, J.F.; Oliveira, M.A.; Alves, R.P.; Cassol, A.P.V.; Anunciação, R.R.; Silva, E.P.; Schünemann, A.L.; Pereira, A.B. Geographic distribution of epilithic diatoms (Bacillariophyceae) in Antarctic lakes, South Shetland Islands, Maritime Antarctica Region. Check List 2019, 15, 797–809. [Google Scholar] [CrossRef]
- Zidarova, R.; Kopalová, K.; Van de Vijver, B. Diatoms from the Antarctic Region. I: Maritime Antarctica. In Iconographia Diatomologica, Annotated Diatom Micrographs, Taxonomy—Biogeography; Lange-Bertalot, H., Ed.; Koeltz Botanical Books: Schmitten-Oberreifenberg, Germany, 2016; Volume 24, p. 509. [Google Scholar]
- Barinova, S. The effect of altitude on distribution of freshwater algae in continental Israel. Curr. Top. Plant Biol. 2011, 12, 89–95. [Google Scholar]
- Hoffmann, M.; Brooks, T.M.; da Fonseca, G.A.B.; Gascon, C.; Hawkins, A.F.A.; James, R.E.; Langhammer, P.; Mittermeier, R.A.; Pilgrim, J.D.; Rodrigues, A.S.L.; et al. Conservation planning and the IUCN Red List. Endanger. Species Res. 2008, 6, 113–125. [Google Scholar] [CrossRef]
- Chesson, P.; Huntly, N. The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am. Nat. 1997, 150, 519–553. [Google Scholar] [CrossRef] [PubMed]
















| Model ID | Model Type | Effect of Climate- Related Factor | Generic Equation |
|---|---|---|---|
| 1 | Log–log (Arrhenius type); Dependent variable—lnS | No (baseline) | lnS = b0 + bA·lnA |
| 2 | Intercept | lnS = b0 + bA·lnA + bC·C | |
| 3 | Slope | lnS = b0 + bA·lnA + bC×A·ClnA | |
| 4 | Intercept and slope | lnS = b0 + bA·lnA + bC·C + bC×A·ClnA | |
| 5 | Semi-log (Gleason type); Dependent variable—S | No (baseline) | S = b0 + bA·lnA |
| 6 | Intercept | S = b0 + bA·lnA + bC·C | |
| 7 | Slope | S = b0 + bA·lnA + bC×A·ClnA | |
| 8 | Intercept and slope | S = b0 + bA·lnA + bC·C + bC×A·ClnA |
| Site No. | Name | Abbreviation | No. of Genera | Sp./Genus | No. of Taxa | Sp. Only | Ssp./Sp. | Sp./Area |
|---|---|---|---|---|---|---|---|---|
| 1 | Wrangel Island | Wr | 39 | 2.5 | 103 | 99 | 1.04 | 0.013 |
| 2 | St. Lawrence Island | SL | 31 | 1.8 | 57 | 57 | 1.00 | 0.012 |
| 3 | Vancouver Island | Va | 48 | 2.3 | 110 | 108 | 1.02 | 0.003 |
| 4 | Prince Patrick Island | PP | 31 | 2.8 | 87 | 87 | 1.00 | 0.005 |
| 5 | Victoria Island | Vi | 63 | 2.6 | 166 | 164 | 1.01 | 0.001 |
| 6 | Ellef Ringnes Island | ER | 31 | 2.4 | 74 | 74 | 1.00 | 0.007 |
| 7 | Bathurst Island | Ba | 27 | 1.9 | 52 | 52 | 1.00 | 0.003 |
| 8 | Cornwallis Island | Co | 38 | 1.4 | 54 | 54 | 1.00 | 0.008 |
| 9 | Ellesmere Island | El | 50 | 3.2 | 166 | 162 | 1.02 | 0.001 |
| 10 | Greenland—7 points | G | 69 | 3.5 | 243 | 242 | 1.00 | 0.0001 |
| 11 | Iceland | Ic | 125 | 4.8 | 620 | 606 | 1.02 | 0.006 |
| 12 | Svalbard Islands | Sv | 40 | 2.5 | 106 | 101 | 1.05 | 0.002 |
| 13 | Franz Josef Land | FJ | 40 | 1.9 | 75 | 75 | 1.00 | 0.005 |
| 14 | New Zemlya | NZ | 86 | 3.0 | 259 | 255 | 1.02 | 0.003 |
| 15 | Vaygach Island | Vy | 56 | 2.5 | 139 | 138 | 1.01 | 0.041 |
| 16 | Severnaya Zemlya Island | SZ | 54 | 3.2 | 176 | 174 | 1.01 | 0.005 |
| 17 | Kotelnyy–Anzhu Island | K | 35 | 2.3 | 79 | 79 | 1.00 | 0.003 |
| 18 | Bering Island | Be | 88 | 3.3 | 291 | 288 | 1.01 | 0.173 |
| Model ID | Predictors | Effects of Predictors | Overall Model Fit | ||||
|---|---|---|---|---|---|---|---|
| b | SEb | p | F | p | R2 | ||
| 1 | Constant | 2.919 | 1.032 | 0.013 | 3.531 | 0.080 | 0.191 |
| Area (ln) | 0.189 | 0.101 | 0.080 | ||||
| 2A | Constant | 6.511 | 1.392 | <0.001 | 7.903 | 0.005 | 0.530 |
| Area (ln) | 0.244 | 0.081 | 0.010 | ||||
| Latitude | −0.057 | 0.018 | 0.007 | ||||
| 2B | Constant | 1.843 | 0.794 | 0.036 | 10.855 | 0.001 | 0.608 |
| Area (ln) | 0.211 | 0.073 | 0.012 | ||||
| CAFF region | 0.635 | 0.165 | 0.002 | ||||
| 2C | Constant | 2.695 | 0.616 | 0.001 | 19.166 | <0.001 | 0.732 |
| Area (ln) | 0.168 | 0.060 | 0.014 | ||||
| BIO19 | 0.007 | 0.001 | <0.001 | ||||
| 5 | Constant | −153.747 | 217.990 | 0.491 | 2.142 | 0.164 | 0.125 |
| Area (ln) | 31.149 | 21.285 | 0.164 | ||||
| 6A | Constant | 592.860 | 297.110 | 0.066 | 6.484 | 0.010 | 0.481 |
| Area (ln) | 42.457 | 17.357 | 0.028 | ||||
| Latitude | −11.884 | 3.836 | 0.008 | ||||
| 6B | Constant | −411.910 | 139.280 | 0.010 | 16.942 | <0.001 | 0.708 |
| Area (ln) | 36.282 | 12.772 | 0.013 | ||||
| CAFF region | 152.400 | 28.852 | <0.001 | ||||
| 6C | Constant | −205.730 | 98.732 | 0.056 | 34.976 | <0.001 | 0.833 |
| Area (ln) | 26.266 | 9.639 | 0.016 | ||||
| BIO19 | 1.528 | 0.198 | <0.001 | ||||
| IUCN Category [70] | IUCN Code [70] | No of Red List Category [69] | Red List Category [69] | Number of Species |
|---|---|---|---|---|
| Extinct | EX | 1 | Extinct or Lost | 2 |
| Critically endangered | CR | 2, 3 | Threatened with Extinction, Highly Threatened | 31 |
| Endangered | EN | 4, 5 | Threatened, Threat of Unknown Extent | 79 |
| Vulnerable | VU | 6 | Extremely Rare | 9 |
| Near threatened | NT | 7 | Near Threatened | 22 |
| Least concern | LC | 9 | Not Threatened | 161 |
| Data deficient | DD | 8 | Data Deficient | 20 |
| Not evaluated | NE | 0, 10 | Not Established | 62 |
| IUCN Code | 13-FJ | 9-E | 16-SZ | 6-ER | 12-Sv | 4-PP | 7-B | 17-K | 8-C | 14-NZ | 1-W | 5-V | 15-Va | 10-G | 11-Ic | 2-SL | 18-B | 3-V |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| EX | 0 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| CR | 6 | 7 | 4 | 5 | 5 | 5 | 3 | 1 | 1 | 12 | 6 | 8 | 3 | 13 | 23 | 3 | 9 | 0 |
| EN | 9 | 17 | 6 | 7 | 7 | 8 | 9 | 10 | 9 | 16 | 9 | 13 | 11 | 37 | 48 | 4 | 37 | 1 |
| VU | 0 | 3 | 0 | 1 | 2 | 2 | 1 | 1 | 0 | 5 | 0 | 2 | 1 | 3 | 4 | 0 | 2 | 0 |
| NT | 4 | 11 | 3 | 6 | 4 | 5 | 3 | 4 | 3 | 10 | 5 | 8 | 6 | 12 | 13 | 3 | 12 | 1 |
| LC | 16 | 31 | 23 | 16 | 32 | 21 | 12 | 44 | 15 | 66 | 32 | 44 | 48 | 41 | 114 | 16 | 53 | 21 |
| DD | 2 | 2 | 3 | 1 | 3 | 1 | 1 | 1 | 0 | 7 | 1 | 5 | 9 | 7 | 13 | 3 | 5 | 2 |
| NE | 8 | 9 | 8 | 3 | 5 | 6 | 3 | 9 | 2 | 20 | 9 | 5 | 10 | 12 | 27 | 4 | 11 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barinova, S.; Gabyshev, V.A.; Borisov, B.; Rybnikov, S.R. Influence of Arctic Conditions on the Diatom Diversity of Islands Within the Conservation of Arctic Flora and Fauna Region. Diversity 2025, 17, 808. https://doi.org/10.3390/d17120808
Barinova S, Gabyshev VA, Borisov B, Rybnikov SR. Influence of Arctic Conditions on the Diatom Diversity of Islands Within the Conservation of Arctic Flora and Fauna Region. Diversity. 2025; 17(12):808. https://doi.org/10.3390/d17120808
Chicago/Turabian StyleBarinova, Sophia, Viktor A. Gabyshev, Boris Borisov, and Sviatoslav R. Rybnikov. 2025. "Influence of Arctic Conditions on the Diatom Diversity of Islands Within the Conservation of Arctic Flora and Fauna Region" Diversity 17, no. 12: 808. https://doi.org/10.3390/d17120808
APA StyleBarinova, S., Gabyshev, V. A., Borisov, B., & Rybnikov, S. R. (2025). Influence of Arctic Conditions on the Diatom Diversity of Islands Within the Conservation of Arctic Flora and Fauna Region. Diversity, 17(12), 808. https://doi.org/10.3390/d17120808

