Invasiveness of Impatiens parviflora in Carpathian Beech Forests: Insights from Soil Nematode Communities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Characteristics
2.2. Soil Collection, Analysis, Nematode Extraction and Identification
2.3. Nematodes, Community Indices and Statistical Analysis
3. Results
3.1. Soil Properties
3.2. Functional Diversity and Food Web Diagnostics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Normand, S.; Svenning, J.C.; Skov, F. National and European perspectives on climate change sensitivity of the habitats directive characteristic plant species. J. Nat. Conserv. 2007, 15, 41–53. [Google Scholar] [CrossRef]
- Lookwood, J.L.; Hoopes, M.P.; Marchetti, M.P. Invasion Ecology; Blackwell: Oxford, UK, 2007. [Google Scholar]
- Von Holle, B.; Delcourt, H.R.; Simberloff, D. The importance of biological inertia in plant community resistance to invasion. J. Veg. Sci. 2003, 14, 425–432. [Google Scholar] [CrossRef]
- Martin, P.H.; Canham, C.D.; Marks, P.L. Why forests appear resistant to exotic plant invasions: Intentional introductions, stand dynamics, and the role of shade tolerance. Front. Ecol. Environ. 2009, 7, 142–149. [Google Scholar] [CrossRef]
- Trepl, L. Über Impatiens parviflora DC. als Agriophyt in Mitteleuropa. Diss. Bot. 1984, 73, 1–400. [Google Scholar]
- Chmura, D.; Sierka, E. Relation between invasive plant and species richness of forest floor vegetation: A study of Impatiens parviflora DC. Pol. J. Ecol. 2006, 54, 417–421. [Google Scholar]
- Jarčuška, B.; Slezák, M.; Hrivnák, R.; Senko, D. Invasibility of alien Impatiens parviflora in temperate forest understories. Flora 2016, 224, 14–22. [Google Scholar] [CrossRef]
- Čuda, J.; Skálová, H.; Janovský, Z.; Pyšek, P. Habitat requirements, short-term population dynamics and coexistence of native and invasive Impatiens species: A field study. Biol. Invasions 2014, 16, 177–190. [Google Scholar] [CrossRef]
- Quinet, M.; Descamps, C.; Coster, Q.; Lutts, S.; Jacquemart, A.L. Tolerance to water stress and shade in the invasive Impatiens parviflora. Int. J. Plant Sci. 2015, 176, 848–858. [Google Scholar] [CrossRef]
- Lanta, V.; Liancourt, P.; Altman, J. Determinants of invasion by single versus multiple plant species in temperate lowland forests. Biol. Invasions 2022, 24, 2513–2528. [Google Scholar] [CrossRef]
- Bobuľská, L.; Macková, D.; Malina, R.; Demková, L. Occurrence and dynamics of Impatiens parviflora depending on various environmental conditions in the protected areas in Slovakia. Eur. J. Ecol. 2016, 2, 87–94. [Google Scholar] [CrossRef]
- Kujawa-Pawlaczyk, J. The spread of Impatiens parviflora DC. in Bialowieza forest. Phytocoen. Semin. Geobot. 1991, 1, 213–222. [Google Scholar]
- Florianová, A.; Münzbergová, Z. Drivers of natural spread of invasive Impatiens parviflora differ between life-cycle stages. Biol. Invasions 2018, 20, 2121–2140. [Google Scholar] [CrossRef]
- Obidziński, T.; Symonides, E. The influence of the groundlayer structure on the invasion of small balsam (Impatiens parviflora DC.) to natural and degraded forest. Acta Soc. Bot. Pol. 2000, 69, 311–318. [Google Scholar] [CrossRef]
- Chmura, D. Biology and Ecology of an Invasion of Impatiens Parviflora DC in Natural and Semi-Natural Habitats, 216; Wydawnictwo Naukowe Akademii Techniczno-Humanistycznej w Bielsku-Białej: Bielsko-Biała, Poland, 2014. [Google Scholar]
- Hejda, M. What is the impact of Impatiens parviflora on diversity and composition of herbal layer communities of temperate forests? PLoS ONE 2012, 7, e395. [Google Scholar] [CrossRef] [PubMed]
- Nannipieri, P.; Ascher, J.; Ceccherini, M.; Landi, L.; Pietramellara, G.; Renella, G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2003, 54, 655–670. [Google Scholar] [CrossRef]
- Neher, D.A.; Barbercheck, M.E. Diversity and function of soil mesofauna. In Biodiversity in Agroecosystems; Collins, W.W., Qualset, C.O., Eds.; Lewis Publishers: New York, NY, USA, 1998; pp. 27–47. [Google Scholar]
- Yeates, G.W. Nematodes as soil indicators: Functional and biodiversity aspects. Biol. Fertil. Soils 2003, 37, 199–210. [Google Scholar] [CrossRef]
- Wasilewska, L. Soil invertebrates as bioindicators, with special reference to soil-inhabiting nematodes. Russ. J. Nematol. 1997, 5, 113–126. [Google Scholar]
- Bongers, T. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia 1990, 83, 14–19. [Google Scholar] [CrossRef]
- Ferris, H.; Bongers, T.; de Goede, R.G. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Appl. Soil Ecol. 2001, 18, 13–29. [Google Scholar] [CrossRef]
- Wolfe, B.E.; Klironomos, J.N. Breaking new ground: Soil communities and exotic plant invasion. Bioscience 2005, 55, 477–487. [Google Scholar] [CrossRef]
- Chapin, I.F.S.; Zavaleta, E.S.; Eviner, V.T.; Naylor, R.L.; Vitousek, P.M.; Reynolds, H.L.; Díaz, S. Consequences of changing biodiversity. Nature 2000, 405, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Roiloa, S.R.; Yu, F.H.; Barreiro, R. Plant invasions: Mechanisms, impacts and management. Flora 2020, 267, 151603. [Google Scholar] [CrossRef]
- Hulme, P.E.; Bremner, E.T. Assessing the impact of Impatiens glandulifera on riparian habitats: Partitioning diversity components following species removal. J. Appl. Ecol. 2006, 43, 43–50. [Google Scholar] [CrossRef]
- Truscott, A.; Palmer, S.C.; Soulsby, C.; Westaway, S.; Hulme, P.E. Consequences of invasion by the alien plant Mimulus guttatus on the species composition and soil properties of riparian plant communities in Scotland. Perspect. Plant Ecol. Evol. Syst. 2008, 10, 231–240. [Google Scholar] [CrossRef]
- Renčo, M.; Kornobis, F.W.; Domaradzki, K.; Jakubska-Busse, A.; Jurová, J.; Homolová, Z. How does an invasive Heracleum sosnowskyi affect soil nematode communities in natural conditions? Nematology 2019, 21, 71–89. [Google Scholar] [CrossRef]
- Čerevková, A.; Ivashchenko, K.; Miklisová, D.; Ananyeva, N.; Renčo, M. Influence of invasion by Sosnowsky’s hogweed on nematode communities and microbial activity in forest and grassland ecosystems. Glob. Ecol. Conserv. 2020, 21, e00851. [Google Scholar] [CrossRef]
- Čerevková, A.; Bobuľská, L.; Miklisová, D.; Renčo, M. A case study of soil food web components affected by Fallopia japonica (Polygonaceae) in three natural habitats in Central Europe. J. Nematol. 2019, 51, e2019-42. [Google Scholar] [CrossRef]
- Renčo, M.; Čerevková, A.; Homolová, Z. Nematode communities indicate the negative impact of Reynoutria japonica invasion on soil fauna in ruderal habitats of Tatra National park in Slovakia. Glob. Ecol. Conserv. 2021, 26, e01470. [Google Scholar] [CrossRef]
- Jurová, J.; Renčo, M.; Gömöryová, E.; Čerevková, A. Effects of the invasive common milkweed (Asclepias syriaca) on nematode communities in natural grasslands. Nematology 2020, 22, 423–438. [Google Scholar] [CrossRef]
- Yeates, G.W.; Bongers, T.D.; De Goede, R.G.M.; Freckman, D.W.; Georgieva, S.S. Feeding habits in soil nematode families and genera—An outline for soil ecologists. J. Nematol. 1993, 25, 315–325. [Google Scholar]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Yeates, G.W. Modification and qualification of the nematode maturity index. Pedobiologia 1994, 38, 97–101. [Google Scholar] [CrossRef]
- Ter Braak, C.J.F.; Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0; Microcomputer Power: Ithaca, NY, USA, 2012. [Google Scholar]
- Renčo, M.; Čerevková, A.; Gömöryová, E. Soil nematode fauna and microbial characteristics in an early-successional forest ecosystem. Forests 2019, 10, 888. [Google Scholar] [CrossRef]
- Von Oheimb, G.; Friedel, A.; Bertsch, A.; Härdtle, W. The effects of windthrow on plant species richness in a Central European beech forest. Plant Ecol. 2007, 191, 47–65. [Google Scholar] [CrossRef]
- Chmura, D.; Sierka, E.; Orczewska, A. Autecology of Impatiens parviflora DC. in natural forest communities. Roczniki Akademii Rolniczej w Poznaniu. Bot.-Steciana 2007, 11, 17–21. [Google Scholar]
- Vanderhoeven, S.; Dassonville, N.; Meerts, P. Increased topsoil mineral nutrient concentrations under exotic invasive plants in Belgium. Plant Soil 2005, 275, 169–179. [Google Scholar] [CrossRef]
- Chapuis-Lardy, L.; Vanderhoeven, S.; Dassonville, N.; Koutika, L.S.; Meerts, P. Effect of the exotic invasive plant Solidago gigantea on soil phosphorus status. Biol. Fertil. Soils 2006, 42, 481–489. [Google Scholar] [CrossRef]
- Dassonville, N.; Vanderhoeven, S.; Vanparys, V.; Hayez, M.; Gruber, W.; Meerts, P. Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe. Oecologia 2008, 157, 131–140. [Google Scholar] [CrossRef]
- Liao, C.; Peng, R.; Luo, Y.; Zhou, X.; Wu, X.; Fang, C.; Chen, J.; Bo, L. Altered ecosystem carbon and nitrogen cycles by plant invasion: A meta-analysis. New Phytol. 2008, 177, 706–714. [Google Scholar] [CrossRef]
- Steinlein, T. Invasive alien plants and their effects on native microbial soil communities. In Progress in Botany; Lüttge, U., Beyschlag, W., Francis, D., Cushman, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Glushakova, A.M.; Kachalkin, A.V.; Chernov, I.Y. Effect of invasive herb species on the structure of soil yeast complexes in mixed forests exemplified by Impatiens parviflora DC. Microbiology 2015, 84, 717–721. [Google Scholar] [CrossRef]
- Stukalyuk, S.V. Changes in the structure of ant assemblages in broad-leafed forests with domination of Impatiens parviflora Dc. (Balsaminaceae) in herbaceous layer. Russ. J. Biol. Invasions 2016, 7, 383–395. [Google Scholar] [CrossRef]
- Zhang, P.; Neher, D.A.; Li, B.; Wu, J. The impacts of above and belowground plant input on soil microbiota: Invasive Spartina alterniflora versus native Phragmites australis. Ecosystems 2018, 21, 469–481. [Google Scholar] [CrossRef]
- Renčo, M.; Baležentiené, L. An analysis of soil free-living and plant-parasitic nematode communities in three habitats invaded by Heracleum sosnowskyi in central Lithuania. Biol. Invasions 2015, 17, 1025–1039. [Google Scholar] [CrossRef]
- Brinkman, E.P.; van Veen, J.A.; van der Putten, W.H. Endoparasitic nematodes reduce multiplication of ectoparasitic nematodes, but do not prevent growth reduction of Ammophila arenaria (L.) Link (marram grass). Appl. Soil Ecol. 2004, 27, 65–75. [Google Scholar] [CrossRef]
- Háněl, L. Composition and seasonal changes of soil nematode comunity in a Central European oak forest. Acta Soc. Zool. Bohem. 1994, 58, 177–188. [Google Scholar]
- Keane, R.M.; Crawley, M.J. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 2020, 17, 164–170. [Google Scholar] [CrossRef]
- Najberek, K.; Solarz, W.; Chmura, D. Do local enemies attack alien and native Impatiens alike? Acta Soc. Bot. Pol. 2017, 86, 25–31. [Google Scholar] [CrossRef]
- Čerevková, A.; Miklisová, D.; Bobuľská, L.; Renčo, M. Impact of the invasive plant Solidago gigantea on soil nematodes in a semi-natural grassland and a temperate broadleaved mixed forest. J. Helminthol. 2019, 94, e51. [Google Scholar] [CrossRef] [PubMed]
- Shea, K.; Chesson, P. Community ecology theory as a framework for biological invasions. Trends Ecol. Evol. 2002, 17, 170–176. [Google Scholar] [CrossRef]
- Bezemer, T.M.; Fountain, M.T.; Barea, J.M.; Christensen, S.; Dekker, S.C.; Duyts, H.; Van der Putten, W.H. Divergent composition but similar function of soil food webs of individual plants: Plant species and community effects. Ecology 2010, 91, 3027–3036. [Google Scholar] [CrossRef]
- Millard, P.; Singh, B.K. Does grassland vegetation drive soil microbial diversity? Nutr. Cycl. Agroecosystems 2010, 88, 147–158. [Google Scholar] [CrossRef]
- Wardle, D.A.; Yeates, G.W.; Williamson, W.; Bonner, K.I. The response of a three trophic level soil food web to the identity and diversity of plant species and functional groups. Oikos 2003, 102, 45–56. [Google Scholar] [CrossRef]
- Aguilera, A.G.; Alpert, P.; Dukes, J.S.; Harrington, R. Impacts of the invasive plant Fallopia japonica (Houtt.) on plant communities and ecosystem processes. Biol. Invasions 2010, 12, 1243–1252. [Google Scholar] [CrossRef]
- Te Beest, M.; Esler, K.J.; Richardson, D.M. Linking functional traits to impacts of invasive plant species: A case study. Plant Ecol. 2015, 216, 293–305. [Google Scholar] [CrossRef]
- Liang, W.J.; Li, F.P.; Li, Q.; Zhang, W.D. Temporal dynamics of soil nematode community structure under invasive Ambrosia trifida and native Chenopodium serotinum. Helminthologia 2007, 44, 29–33. [Google Scholar] [CrossRef]
V/2017 | VII/2017 | IX/2017 | V/2018 | VII/2018 | IX/2018 | ||
---|---|---|---|---|---|---|---|
pH (KCl) | INV | 4.84 ± 0.27 | 4.60 ± 0.39 | 4.12 ± 0.56 | 3.82 ± 0.59 | 3.91 ± 0.19 | 4.43 ± 0.28 |
CON | 4.45 ± 0.37 | 4.29 ± 0.15 | 3.74 ± 0.31 | 4.00 ± 0.18 | 3.79 ± 0.39 | 3.96 ± 0.38 | |
SM | INV | 32.02 ± 4.78 | 46.34 ± 6.02 * | 21.94 ± 6.10 | 18.33 ± 1.50 | 30.70 ± 4.46 | 14.06 ± 0.98 |
CON | 26.78 ± 3.21 | 28.83 ± 4.24 | 14.89 ± 3.13 | 13.37 ± 2.81 | 24.40 ± 7.19 | 12.32 ± 1.95 | |
N | INV | 0.408 ± 0.06 * | 0.412 ± 0.32 * | 0.477 ± 0.09 * | 0.413 ± 0.07 * | 0.425 ± 0.03 * | 0.493 ± 0.09 * |
CON | 0.313 ± 0.07 | 0.266 ± 0.02 | 0.285 ± 0.05 | 0.319 ± 0.05 | 0.260 ± 0.13 | 0.280 ± 0.05 | |
C | INV | 4.583 ± 0.76 * | 4.609 ± 0.46 * | 5.809 ± 1.02 * | 4.703 ± 0.59 * | 4.671 ± 0.48 * | 5.882 ± 0.95 * |
CON | 3.383 ± 0.96 | 2.092 ± 0.16 | 3.234 ± 0.66 | 3.202 ± 0.58 | 1.951 ± 0.44 | 3.261 ± 0.57 | |
C/N | INV | 11.28 ± 1.32 | 11.18 ± 0.64 * | 12.19 ± 0.73 | 11.16 ± 1.17 | 12.07 ± 0.95 * | 12.45 ± 0.79 |
CON | 10.66 ± 0.87 | 7.87 ± 0.34 | 11.31 ± 0.56 | 9.54 ± 1.14 | 7.50 ± 0.41 | 10.294 ± 0.49 |
INV | CON | INV | CON | INV | CON | INV | CON | INV | CON | INV | CON | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
V/2017 | VII/2017 | IX/2017 | V/2018 | VII/2018 | IX/2018 | |||||||
Abundance | 390.6 ± 205.1 | 637.4 ± 560.7 | 206.0 ± 43.2 | 679.4 ± 56.0 | 291.2 ± 211.4 | 196.9 ± 65.2 | 183.0 ± 75.1 | 119.4 ± 35.4 | 430.80 ± 60.3 | 469.6 ± 174.3 | 77.4 ± 42.1 | 341.2 ± 156.4 |
Nematode species number | 27.2 ± 3.6 | 26.8 ± 3.4 | 22.1 ± 2.7 | 25.6 ± 1.8 | 27.6 ± 0.9 * | 31.3 ± 0.8 | 23.2 ± 2.9 | 22.4 ± 2.4 | 27.5 ± 1.9 | 25.2 ± 3.6 | 18.6 ± 6.3 | 23.2 ± 3.0 |
Bacterivores (B) | 42.3 ± 7.4 | 33.3 ± 7.0 | 59.6 ± 4.8 * | 34.4 ± 10.8 | 39.8 ± 5.6 | 36.8 ± 3.3 | 57.1 ± 14.1 * | 32.7 ± 9.9 | 50.6 ± 6.6 * | 30.1 ± 13.1 | 43.4 ± 17.8 | 30.5 ± 13.9 |
Fungivores (F) | 8.6 ± 7.1 | 12.4 ± 2.2 | 9.0 ± 4.1 | 11.0 ± 7.9 | 13.6 ± 4.9 | 8.4 ± 3.4 | 6.7 ± 2.8 | 18.7 ± 10.7 | 6.6 ± 5.8 | 12.4 ± 4.0 | 7.0 ± 7.4 | 18.2 ± 9.8 |
Omnivores (O) | 27.7 ± 12.5 | 22.8 ± 8.0 | 16.0 ± 3.4 | 15.0 ± 6.5 | 21.3 ± 7.6 | 22.4 ± 3.0 | 18.9 ± 6.8 | 28.0 ± 16.6 | 18.4 ± 3.1 | 16.6 ± 7.5 | 6.9 ± 4.6 | 10.2 ± 6.5 |
Predators (P) | 5.2 ± 4.1 | 7.6 ± 5.3 | 4.8 ± 3.9 | 3.8 ± 2.8 | 5.8 ± 4.8 | 8.6 ± 3.3 | 3.2 ± 1.9 | 1.7 ± 1.6 | 3.8 ± 1.9 | 1.4 ± 1.5 | 3.0 ± 4.2 | 1.0 ± 1.1 |
Plant parasites (PP) | 7.8 ± 8.1 | 5.0 ± 3.4 | 2.2 ± 2.2 * | 24.1 ± 5.2 | 8.7 ± 3.4 | 15.8 ± 3.1 | 1.8 ± 1.9 | 0.8 ± 1.01 | 1.4 ± 2.1 | 3.0 ± 3.1 | 8.7 ± 16.2 | 9.2 ± 6.5 |
Root-fungal feeders (RFF) | 6.8 ± 8.5 | 14.2 ± 4.9 | 4.8 ± 0.8 * | 11.8 ± 3.1 | 3.5 ± 4.3 | 7.2 ± 2.7 | 12.2 ± 11.4 | 16.2 ± 6.7 | 15.2 ± 4.7 * | 30.6 ± 7.5 | 29.5 ± 17.2 | 27.8 ± 7.9 |
Insect parasite (IP) | 1.6 ± 2.6 | 5.0 ± 1.3 | 3.6 ± 3.0 | 0.0 ± 0.0 | 0.3 ± 0.5 | 0.8 ± 1.1 | 0.0 ± 0.0 | 1.8 ± 3.5 | 4.0 ± 2.9 | 6.6 ± 7.5 | 1.5 ± 1.7 | 3.6 ± 2.5 |
Species diversity index | 2.67 ± 0.15 | 3.05 ± 0.09 | 2.82 ± 0.09 | 3.00 ± 0.06 | 3.03 ± 0.12 | 3.22 ± 0.11 | 2.62 ± 0.32 | 2.66 ± 0.09 | 2.97 ± 0.08 | 2.88 ± 0.15 | 2.39 ± 0.34 | 2.52 ± 0.27 |
Maturity index | 2.80 ± 0.48 | 3.06 ± 0.23 | 2.61 ± 0.11 | 2.76 ± 0.28 | 2.88 ± 0.15 | 2.96 ± 0.16 | 2.30 ± 0.31 | 2.84 ± 0.40 | 2.60 ± 0.19 | 2.46 ± 0.26 | 2.15 ± 0.19 | 2.13 ± 0.18 |
Maturity index (2–5) | 3.25 ± 0.42 | 3.38 ± 0.19 | 2.98 ± 0.13 | 2.98 ± 0.24 | 3.30 ± 0.15 | 3.31 ± 0.23 | 2.73 ± 0.19 | 3.10 ± 0.29 | 2.84 ± 0.17 | 2.70 ± 0.24 | 2.38 ± 0.29 | 2.47 ± 0.28 |
Sum maturity index | 2.80 ± 0.48 | 2.99 ± 0.21 | 2.62 ± 0.11 | 2.83 ± 0.24 | 2.89 ± 0.15 | 2.97 ± 0.12 | 2.31 ± 0.31 | 2.84 ± 0.39 | 2.60 ± 0.19 | 2.46 ± 0.24 | 2.18 ± 0.26 | 2.18 ± 0.17 |
Plant parasitic index | 2.74 ± 0.42 | 2.56 ± 0.31 | 2.88 ± 0.63 | 3.06 ± 0.23 | 3.06 ± 0.12 | 3.02 ± 0.13 | 2.97 ± 0.22 | 2.38 ± 0.75 | 2.71 ± 1.06 | 2.41 ± 0.64 | 2.28 ± 0.40 | 2.41 ± 0.36 |
Channel index | 8.32 ± 11.16 | 16.80 ± 7.72 | 13.10 ± 4.83 | 32.79 ± 14.83 | 13.53 ± 10.27 | 17.62 ± 11.57 | 15.58 ± 14.63 | 31.30 ± 17.35 | 29.57 ± 11.65 | 42.31 ± 20.52 | 33.64 ± 17.92 | 34.57 ± 20.50 |
Enrichment index | 70.12 ± 19.62 | 70.76 ± 7.89 | 65.01 ± 5.33 | 59.01 ± 70.08 | 73.76 ± 8.60 | 67.93 ± 10.47 | 70.92 ± 7.41 | 63.31 ± 10.78 | 58.59 ± 6.65 | 62.63 ± 7.80 | 60.11 ± 9.03 | 69.78 ± 8.08 |
Structure index | 84.49 ± 13.83 | 90.09 ± 3.17 | 78.06 ± 3.28 | 79.26 ± 7.44 | 88.59 ± 2.73 | 87.35 ± 4.46 | 69.11 ± 10.21 | 82.37 ± 7.86 | 74.86 ± 6.44 | 67.16 ± 11.84 | 45.82 ± 21.45 | 58.85 ± 20.89 |
F/(F + B) | 0.23 ± 0.14 * | 0.35 ± 0.05 | 0.18 ± 0.05 * | 0.39 ± 0.15 | 0.29 ± 0.09 | 0.24 ± 0.09 | 0.25 ± 0.15 * | 0.51 ± 0.11 | 0.28 ± 0.8 * | 0.54 ± 0.14 | 0.39 ± 0.19 | 0.55 ± 0.18 |
Total nematode biomass | 2.32 ± 1.33 | 4.55 ± 4.38 | 0.96 ± 0.37 | 1.31 ± 0.39 | 1.24 ± 1.41 | 0.79 ± 0.35 | 0.76 ± 0.29 | 0.76 ± 0.26 | 2.39 ± 0.69 | 3.83 ± 2.95 | 0.25 ± 0.22 | 1.51 ± 0.50 |
SM | pH (KCl) | N | C | C/N | |
---|---|---|---|---|---|
Nematode abundance | ns | −0.298 * | ns | ns | ns |
Nematode species number | ns | ns | ns | ns | ns |
Bacterivores (B) | ns | ns | −0.489 ** | −0.569 ** | ns |
Fungivores (F) | 0.266 * | ns | 0.447 ** | ns | ns |
Omnivores (O) | ns | ns | ns | 0.355 * | ns |
Predators (P) | ns | ns | ns | ns | ns |
Plant parasites (PP) | −0.322 * | −0.281 * | ns | ns | ns |
Root-fungal feeders (RFF) | ns | −0.223 * | 0.256 * | ns | ns |
Insect parasites (IP) | ns | ns | ns | ns | ns |
Species diversity index | ns | ns | ns | 0.234 * | ns |
Maturity index | ns | ns | 0.415 ** | 0.239 * | ns |
Maturity index (2–5) | ns | ns | ns | ns | ns |
Sum maturity index | ns | ns | ns | ns | ns |
Plant parasite index | ns | ns | ns | ns | ns |
Enrichment index | 0.251 * | ns | 0.359 * | ns | ns |
Structure index | ns | ns | ns | ns | ns |
Channel index | −0.239 * | ns | 0.263 * | 0.258 * | ns |
F/F + B | ns | ns | ns | ns | ns |
Total nematode biomass | ns | ns | 0.525 ** | 0.271 * | ns |
c–p | INV | CON | INV | CON | INV | CON | INV | CON | INV | CON | INV | CON | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V/2017 | VII/2017 | IX/2017 | V/2018 | VII/2018 | IX/2018 | ||||||||
Bacterivores | |||||||||||||
Acrobeloides nanus | 2 | 10 | 45 | 72 | 137 | 17 | 26 | 88 | 55 | 137 | 137 | 6 | 66 |
Acrolobus emarginatus | 2 | 4 | 5 | 14 | 6 | 4 | 8 | 8 | |||||
Alaimus parvus | 4 | 65 | 126 | 10 | 5 | 16 | 14 | 5 | 127 | 30 | 6 | 5 | |
Alaimus primitivus | 4 | 63 | 120 | 89 | 119 | 70 | 29 | 3 | 16 | 65 | 92 | 1 | 3 |
Anaplectus granulosus | 2 | 30 | 37 | 31 | 5 | ||||||||
Bastiania gracilis | 3 | 11 | 49 | 4 | 20 | 4 | 59 | 32 | 2 | 5 | |||
Cephalobus parvus | 2 | 104 | 20 | 57 | 12 | 10 | 9 | 7 | 9 | ||||
Cephalobus persegnis | 2 | 14 | 4 | 25 | 83 | 34 | 20 | 24 | 1 | 18 | 5 | 0 | |
Cervidellus vexilliger | 2 | 4 | 3 | 74 | 6 | 7 | 10 | ||||||
Ereptonema arcticum | 2 | 31 | 6 | 6 | |||||||||
Eucephalobus mucronatus | 2 | 11 | 4 | 9 | 4 | 12 | 12 | 24 | 7 | 0 | |||
Eucephalobus oxyuroides | 2 | 21 | 54 | 68 | 75 | 87 | 43 | 24 | 7 | 150 | 64 | 33 | 44 |
Eucephalobus striatus | 2 | 8 | 9 | 7 | |||||||||
Heterocephalobus eurystoma | 2 | 2 | 20 | 13 | 26 | 1 | 24 | 18 | |||||
Chiloplacus propinquus | 2 | 2 | 18 | 90 | 2 | 2 | 17 | 4 | 5 | 9 | |||
Mesorhabditis irregularis | 1 | 48 | 18 | 178 | 35 | 54 | 16 | 6 | 29 | 27 | 5 | ||
Plectus acuminatus | 2 | 225 | 184 | 56 | 20 | 33 | 40 | 15 | 12 | 71 | 39 | 20 | |
Plectus longicaudatus | 2 | 40 | 12 | 3 | 3 | 13 | 9 | ||||||
Plectus parietinus | 2 | 67 | 36 | 90 | 3 | 21 | 60 | 8 | 45 | ||||
Prismatolaimus intermedius | 3 | 12 | 55 | 19 | 125 | 63 | 18 | 11 | 7 | 35 | 1 | 11 | |
Protorhabditis xylocola | 1 | 6 | 27 | ||||||||||
Rhabditis spp. | 1 | 284 | 228 | 130 | 119 | 171 | 59 | 190 | 65 | 166 | 155 | 40 | 245 |
Seleborca complexa | 2 | 14 | 8 | 11 | 5 | 3 | 1 | 21 | 11 | 1 | |||
Teratocephalus terrestris | 3 | 18 | 38 | 11 | 2 | 6 | |||||||
Wilsonema schuurmansstekhoveni | 2 | 9 | 1 | 9 | |||||||||
Fungivores | |||||||||||||
Aphelenchoides limberi | 2 | 30 | 54 | 13 | 88 | ||||||||
Aphelenchoides parietinus | 2 | 28 | 36 | 61 | 25 | 20 | 22 | 11 | 14 | 4 | 25 | ||
Aphelenchus avenae | 2 | 4 | 20 | 7 | 87 | 22 | 33 | 2 | 32 | 3 | |||
Ditylenchus intermedius | 2 | 3 | 14 | 7 | 4 | 16 | 20 | 34 | 62 | 10 | 167 | ||
Tylencholaimellus striatus | 4 | 4 | 83 | 27 | 7 | 2 | 15 | 14 | 20 | 2 | 2 | ||
Tylencholaimus mirabilis | 4 | 15 | 106 | 20 | 61 | 47 | 14 | 12 | 21 | 17 | 43 | 11 | |
Tylencholaimus stecki | 4 | 78 | 90 | 8 | 81 | 23 | 2 | 16 | 21 | ||||
Tylolaimophorus typicus | 3 | 27 | 72 | 5 | 73 | 36 | 9 | 4 | 42 | 19 | 53 | 5 | 51 |
Insect parasites | |||||||||||||
Steinernema spp. | 14 | 159 | 34 | 7 | 6 | 12 | 87 | 175 | 8 | 53 | |||
Omnivores | |||||||||||||
Aporcelaimellus obtusicaudatus | 5 | 127 | 251 | 89 | 175 | 128 | 66 | 29 | 40 | 92 | 70 | 2 | 17 |
Aporcelaimus superbus | 5 | 8 | 2 | 5 | 2 | 9 | 26 | 1 | |||||
Crassolabium ettersbergense | 4 | 6 | 4 | 27 | 125 | 44 | 36 | 4 | 4 | ||||
Dorylaimus spp. juvs. | 4 | 145 | 128 | 54 | 25 | 40 | 44 | 72 | 118 | 7 | 38 | ||
Enchodelus macrodorus | 4 | 2 | 44 | 3 | 51 | 6 | 4 | 13 | 17 | 14 | 33 | ||
Epidorylaimus lugdunensis | 4 | 18 | 20 | 23 | 9 | 15 | 83 | 110 | 3 | ||||
Eudorylaimus carteri | 4 | 135 | 153 | 42 | 82 | 68 | 26 | 35 | 29 | 40 | 31 | 1 | 31 |
Eudorylaimus similis | 4 | 87 | 27 | 18 | 6 | 5 | 7 | ||||||
Mesodorylaimus myeli | 5 | 25 | 32 | 39 | 14 | 7 | 4 | 6 | |||||
Microdorylaimus parvus | 4 | 134 | 40 | 12 | 13 | 3 | 51 | 9 | 77 | 25 | 11 | 2 | |
Prodorylaimus brigdamensis | 5 | 16 | 6 | 4 | 7 | ||||||||
Pungentus silvestris | 5 | 15 | 52 | 41 | 4 | 4 | 1 | 2 | 3 | ||||
Predators | |||||||||||||
Clarkus papillatus | 4 | 25 | 125 | 31 | 14 | 4 | 18 | 4 | 1 | 4 | |||
Coomansus zschokkei | 4 | 5 | 7 | 1 | 4 | 3 | 5 | 7 | |||||
Discolaimus major | 5 | 46 | 11 | ||||||||||
Mylonchulus brachyuris | 4 | 39 | 57 | 5 | 4 | 2 | 5 | ||||||
Nygolaimus clavicaudatus | 5 | 26 | 14 | 6 | 21 | 12 | |||||||
Prionchulus muscorum | 4 | 7 | 4 | 14 | 1 | 14 | |||||||
Tripyla setifera | 3 | 47 | 98 | 6 | 61 | 23 | 24 | 26 | 1 | 61 | 28 | 11 | 9 |
Plant parasites | |||||||||||||
Criconema annuliferum | 3 | 38 | 23 | 2 | 71 | 25 | 22 | 1 | |||||
Gracilacus straeleni | 3 | 21 | 5 | 180 | 7 | 12 | 4 | 2 | 23 | 35 | 2 | 34 | |
Helicotylenchus digonicus | 3 | 35 | 33 | 8 | 375 | 56 | 82 | 11 | 25 | 32 | |||
Longidorus intermedius | 5 | 2 | 120 | 2 | 20 | 2 | |||||||
Pratylenchoides crenicauda | 3 | 8 | 62 | 3 | 10 | ||||||||
Trichodorus sparsus | 4 | 6 | 3 | 6 | 16 | 8 | 2 | 1 | 8 | 16 | 1 | ||
Xenocriconemella macrodora | 3 | 76 | 54 | 10 | 4 | 2 | 118 | ||||||
Root-fungal feeders | |||||||||||||
Coslenchus costatus | 2 | 8 | 3 | 3 | 10 | 15 | 38 | ||||||
Filenchus discrepans | 2 | 47 | 31 | 7 | 61 | 5 | 2 | 86 | 60 | 57 | 102 | 10 | 8 |
Filenchus vulgaris | 2 | 34 | 199 | 42 | 310 | 68 | 39 | 4 | 34 | 265 | 581 | 91 | 423 |
Lelenchus leptosoma | 2 | 2 | 4 | 1 | 2 | 11 | |||||||
Malenchus bryophilus | 2 | 110 | 34 | 12 | 1 | ||||||||
Psilenchus hilarulus | 2 | 4 | 14 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renčo, M.; Jurová, J.; Čerevková, A. Invasiveness of Impatiens parviflora in Carpathian Beech Forests: Insights from Soil Nematode Communities. Diversity 2024, 16, 393. https://doi.org/10.3390/d16070393
Renčo M, Jurová J, Čerevková A. Invasiveness of Impatiens parviflora in Carpathian Beech Forests: Insights from Soil Nematode Communities. Diversity. 2024; 16(7):393. https://doi.org/10.3390/d16070393
Chicago/Turabian StyleRenčo, Marek, Jana Jurová, and Andrea Čerevková. 2024. "Invasiveness of Impatiens parviflora in Carpathian Beech Forests: Insights from Soil Nematode Communities" Diversity 16, no. 7: 393. https://doi.org/10.3390/d16070393
APA StyleRenčo, M., Jurová, J., & Čerevková, A. (2024). Invasiveness of Impatiens parviflora in Carpathian Beech Forests: Insights from Soil Nematode Communities. Diversity, 16(7), 393. https://doi.org/10.3390/d16070393