Study on the Soil Microbial Diversity of Cymbidium goeringii and Cymbidium faberi in the Qinling Mountains after Introduction and Domestication
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Experimental Site
2.2. Methods
2.2.1. Soil Sampling Collection
2.2.2. Extraction of Soil Microbial DNA
2.2.3. High-Throughput Sequencing
2.2.4. Data Processing and Analysis
3. Results
3.1. Sequencing Results and Quality Analysis
3.1.1. Bacteria
3.1.2. Fungi
3.2. Diversity Analysis of Bacteria in Rhizosphere
3.2.1. Analysis of Alpha Diversity in Bacteria
3.2.2. Analysis of Bacterial Taxonomic Composition
3.3. Diversity Analysis of Fungi in Rhizosphere Soil
3.3.1. Analysis of Alpha Diversity in Fungi
3.3.2. Analysis of Fungi Taxonomic Composition
3.4. Analysis of Differences in Bacterial and Fungal Communities
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hitner, L. On new experiences and problems in the field of soil bacteriology, with special reference to the establishment and fallow. Arb. Der Deustchen Landwirtschaftsgesellesschaft 1904, 98, 59–78. (In German) [Google Scholar]
- Chaudhary, D.R.; Gautam, R.K.; Yousuf, B.; Mishra, A.; Jha, B. Nutrients, microbial community structure and functional gene abundance of rhizosphere and bulk soils of halophytes. Appl. Soil Ecol. 2015, 91, 16–26. [Google Scholar]
- Sørensen, J. The rhizosphere as a habitat for soil microorganisms. In Modern Soil Microbiology; Mercel Dekker: New York, NY, USA, 1997; pp. 21–45. [Google Scholar]
- Raaijmakers, J.M.; Paulitz, T.C.; Steinberg, C.; Alabouvette, C.; Moënne-Loccoz, Y. The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 2009, 321, 341–361. [Google Scholar] [CrossRef]
- Yuan, Y.; Tang, J.; Leng, D.; Hu, S.; Yong, J.W.H.; Chen, X. An Invasive Plant Promotes Its Arbuscular Mycorrhizal Symbioses and Competitiveness through Its Secondary Metabolites: Indirect Evidence from Activated Carbon. PLoS ONE 2014, 9, e97163. [Google Scholar] [CrossRef]
- Kozdrój, J.; van Elsas, J.D. Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches. Soil Biol. Biochem. 2000, 32, 1405–1417. [Google Scholar] [CrossRef]
- Zwetsloot, M.J.; Ucros, J.M.; Wickings, K.; Wilhelm, R.C.; Sparks, J.; Buckley, D.H.; Bauerle, T.L. Prevalent root-derived phenolics drive shifts in microbial community composition and prime decomposition in forest soil. Soil Biol. Biochem. 2020, 145, 107797. [Google Scholar] [CrossRef]
- Berg, G.; Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 2009, 68, 1–13. [Google Scholar] [CrossRef]
- Xu, H.; Shao, H.; Lu, Y. Arbuscular mycorrhiza fungi and related soil microbial activity drive carbon mineralization in the maize rhizosphere. Ecotoxicol. Environ. Saf. 2019, 182, 109476. [Google Scholar] [CrossRef]
- Cavaglieri, L.; Orlando, J.; Etcheverry, M. Rhizosphere microbial community structure at different maize plant growth stages and root locations. Microbiol. Res. 2009, 164, 391–399. [Google Scholar] [CrossRef]
- Qin, X.M.; Zheng, Y.; Tang, L.; Long, G.Q. Crop rhizospheric microbial community structure and functional diversity as affected by maize and potato intercropping. J. Plant Nutr. 2017, 40, 2402–2412. [Google Scholar] [CrossRef]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; van der Putten, W.H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; He, Y.; Ding, M.; Wang, Z.; Zhou, S. Influence of Rosaceous Species and Driving Factors on Differentiation of Rhizospheric Bacteria in a Deciduous Broad-Leaved Forest. Curr. Microbiol. 2022, 79, 368. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant–microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef]
- Wong, W.S.; Morald, T.K.; Whiteley, A.S.; Nevill, P.G.; Trengove, R.D.; Yong, J.W.H.; Dixon, K.W.; Valliere, J.M.; Stevens, J.C.; Veneklaas, E.J. Microbial inoculation to improve plant performance in mine-waste substrates: A test using pigeon pea (Cajanus cajan). Land Degrad. Dev. 2022, 33, 497–511. [Google Scholar] [CrossRef]
- Zhang, R.; Vivanco, J.M.; Shen, Q. The unseen rhizosphere root–soil–microbe interactions for crop production. Curr. Opin. Microbiol. 2017, 37, 8–14. [Google Scholar] [CrossRef]
- Chen, X.Q.; Liu, Z.J.; Luo, Y.B. Handbook of Orchid Identification in China; China Forestry Press: Beijing, China, 2009; pp. 125–128. [Google Scholar]
- Zhang, Q.; Wang, H.C.; Cheng, Z.; Wang, M.N.; Li, L.Q.; Long, C.L. Current Status of Wild Orchid Resources in China, Focusing on Their Conservation and Utilization. China Biotechnol. 2022, 42, 59–72. [Google Scholar] [CrossRef]
- Chen, X.Q.; Ji, Z.H. Chinese Orchids; China Forestry Publishing House: Beijing, China, 2003; pp. 35–43. [Google Scholar]
- Wu, Y.X. Chinese Orchids; China Forestry Publishing House: Beijing, China, 1993; pp. 20–35. [Google Scholar]
- Collavino, M.M.; Tripp, H.J.; Frank, I.E.; Vidoz, M.L.; Calderoli, P.A.; Donato, M.; Zehr, J.P.; Aguilar, O.M. nifH pyrosequencing reveals the potential for location-specific soil chemistry to influence N2-fixing community dynamics. Environ. Microbiol. 2014, 16, 3211–3223. [Google Scholar] [CrossRef]
- Levy, A.; Salas Gonzalez, I.; Mittelviefhaus, M.; Clingenpeel, S.; Herrera Paredes, S.; Miao, J.; Wang, K.; Devescovi, G.; Stillman, K.; Monteiro, F.; et al. Genomic features of bacterial adaptation toplants. Nat. Genet. 2018, 50, 138–150. [Google Scholar] [CrossRef]
- Trivedi, P.; Anderson, I.C.; Singh, B.K. Microbial modulators of soil carbon storage: Integrating genomic and metabolic knowledge for global prediction. Trends Microbiol. 2013, 21, 641–651. [Google Scholar] [CrossRef]
- Hao, D.-c.; Xiao, P.-g. Rhizosphere Microbiota and Microbiome of Medicinal Plants: From Molecular Biology to Omics Approaches. Chin. Herb. Med. 2017, 9, 199–217. [Google Scholar] [CrossRef]
- Prashar, P.; Kapoor, N.; Sachdeva, S. Biocontrol of Plant Pathogens Using Plant Growth Promoting Bacteria. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer: Dordrecht, The Netherlands, 2013; Volume 12, pp. 319–360. [Google Scholar]
- Mhatre, P.H.; Karthik, C.; Kadirvelu, K.; Divya, K.L.; Venkatasalam, E.P.; Srinivasan, S.; Ramkumar, G.; Saranya, C.; Shanmuganathan, R. Plant growth promoting rhizobacteria (PGPR): A potential alternative tool for nematodes bio-control. Biocatal. Agric. Biotechnol. 2019, 17, 119–128. [Google Scholar] [CrossRef]
- Silva, A.; Boaventura, D.; Flores, A.; Ré, P.; Hawkins, S.J. Rare predation by the intertidal crab Pachygrapsus marmoratus on the limpet Patella depressa. J. Mar. Biol. Assoc. United Kingd. 2004, 84, 367–370. [Google Scholar] [CrossRef]
- Oros-Sichler, M.; Gomes, N.C.M.; Neuber, G.; Smalla, K. A new semi-nested PCR protocol to amplify large 18S rRNA gene fragments for PCR-DGGE analysis of soil fungal communities. J. Microbiol. Methods 2006, 65, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.-Y.; Fan, X.-L.; Zhou, L.-R.; Shao, S.-C.; Liu, Q.; Selosse, M.-A.; Gao, J.-Y. Symbiotic fungi undergo a taxonomic and functional bottleneck during orchid seeds germination: A case study on Dendrobium moniliforme. Symbiosis 2019, 79, 205–212. [Google Scholar] [CrossRef]
- Rasmussen, H.N.; Dixon, K.W.; Jersáková, J.; Těšitelová, T. Germination and seedling establishment in orchids: A complex of requirements. Ann. Bot. 2015, 116, 391–402. [Google Scholar] [CrossRef]
- Rafter, M.; Yokoya, K.; Schofield, E.J.; Zettler, L.W.; Sarasan, V. Non-specific symbiotic germination of Cynorkis purpurea (Thouars) Kraezl., a habitat-specific terrestrial orchid from the Central Highlands of Madagascar. Mycorrhiza 2016, 26, 541–552. [Google Scholar] [CrossRef]
- Suetsugu, K.; Yamato, M.; Miura, C.; Yamaguchi, K.; Takahashi, K.; Ida, Y.; Shigenobu, S.; Kaminaka, H. Comparison of green and albino individuals of the partially mycoheterotrophic orchid Epipactis helleborine on molecular identities of mycorrhizal fungi, nutritional modes and gene expression in mycorrhizal roots. Mol. Ecol. 2017, 26, 1652–1669. [Google Scholar] [CrossRef] [PubMed]
- Garbeva, P.; van Veen, J.A.; van Elsas, J.D. Microbial Diversity in Soil: Selection of Microbial Populations by Plant and Soil Type and Implications for Disease Suppressiveness. Annu. Rev. Phytopathol. 2004, 42, 243–270. [Google Scholar] [CrossRef]
- Broeckling Corey, D.; Broz Amanda, K.; Bergelson, J.; Manter Daniel, K.; Vivanco Jorge, M. Root Exudates Regulate Soil Fungal Community Composition and Diversity. Appl. Environ. Microbiol. 2008, 74, 738–744. [Google Scholar] [CrossRef]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The Role of Root Exudates In Rhizosphere Interactions with Plants and Other Organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef]
- Ladygina, N.; Hedlund, K. Plant species influence microbial diversity and carbon allocation in the rhizosphere. Soil Biol. Biochem. 2010, 42, 162–168. [Google Scholar] [CrossRef]
- Doornbos, R.F.; van Loon, L.C.; Bakker, P.A.H.M. Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron. Sustain. Dev. 2012, 32, 227–243. [Google Scholar] [CrossRef]
- Chiellini, C.; Maida, I.; Emiliani, G.; Mengoni, A.; Mocali, S.; Fabiani, A.; Biffi, S.; Maggini, V.; Gori, L.; Vannacci, A. Endophytic and rhizospheric bacterial communities isolated from the medicinal plants Echinacea purpurea and Echinacea angustifolia. Int. Microbiol. 2014, 17, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Jacquemyn, H.; Duffy, K.J.; Selosse, M.-A. Biogeography of Orchid Mycorrhizas. In Biogeography of Mycorrhizal Symbiosis; Tedersoo, L., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 159–177. [Google Scholar]
- Glick, B.R. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica 2012, 2012, 963401. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.-M.; Khan, A.L.; Hussain, J.; Ali, L.; Kamran, M.; Waqas, M.; Lee, I.-J. Rhizonin A from Burkholderia sp. KCTC11096 and Its Growth Promoting Role in Lettuce Seed Germination. Molecules 2012, 17, 7980–7988. [Google Scholar] [CrossRef] [PubMed]
- Walia, A.; Mehta, P.; Chauhan, A.; Shirkot, C.K. Effect of Bacillus subtilis Strain CKT1 as Inoculum on Growth of Tomato Seedlings Under Net House Conditions. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2014, 84, 145–155. [Google Scholar] [CrossRef]
- Li, T.; Yang, W.; Wu, S.; Selosse, M.-A.; Gao, J. Progress and Prospects of Mycorrhizal Fungal Diversity in Orchids. Front. Plant Sci. 2021, 12, 646325. [Google Scholar] [CrossRef]
- Li, T.; Wu, S.; Yang, W.; Selosse, M.-A.; Gao, J. How Mycorrhizal Associations Influence Orchid Distribution and Population Dynamics. Front. Plant Sci. 2021, 12, 647114. [Google Scholar] [CrossRef]
- Voyron, S.; Ercole, E.; Ghignone, S.; Perotto, S.; Girlanda, M. Fine-scale spatial distribution of orchid mycorrhizal fungi in the soil of host-rich grasslands. New Phytol. 2017, 213, 1428–1439. [Google Scholar] [CrossRef]
Samples | Shannon | Simpson | Ace | Chao |
---|---|---|---|---|
CL | 6.08 ± 0.06 a | 0.01 ± 0.00 a | 2025.78 ± 112.38 a | 2052.12 ± 74.68 a |
HL | 6.22 ± 0.09 a | 0.01 ± 0.00 a | 2021.15 ± 55.70 a | 2013.07 ± 94.42 a |
KB | 6.11 ± 0.22 a | 0.01 ± 0.01 a | 2081.12 ± 28.69 a | 2057.28 ± 29.12 a |
Samples | Shannon | Simpson | Ace | Chao |
---|---|---|---|---|
CL | 3.71 ± 0.32 a | 0.06 ± 0.01 a | 686.73 ± 57.62 a | 672.74 ± 51.85 a |
HL | 4.02 ± 0.24 a | 0.04 ± 0.02 a | 727.68 ± 2.47 a | 721.81 ± 3.36 a |
KB | 3.24 ± 0.60 a | 0.15 ± 0.10 a | 681.04 ± 61.81 a | 671.82 ± 60.32 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, R.; Zhang, J.; Liao, H.; Yong, J.W.H.; Song, J. Study on the Soil Microbial Diversity of Cymbidium goeringii and Cymbidium faberi in the Qinling Mountains after Introduction and Domestication. Diversity 2023, 15, 951. https://doi.org/10.3390/d15090951
Lv R, Zhang J, Liao H, Yong JWH, Song J. Study on the Soil Microbial Diversity of Cymbidium goeringii and Cymbidium faberi in the Qinling Mountains after Introduction and Domestication. Diversity. 2023; 15(9):951. https://doi.org/10.3390/d15090951
Chicago/Turabian StyleLv, Ruixue, Jing Zhang, Huimin Liao, Jean W. H. Yong, and Junyang Song. 2023. "Study on the Soil Microbial Diversity of Cymbidium goeringii and Cymbidium faberi in the Qinling Mountains after Introduction and Domestication" Diversity 15, no. 9: 951. https://doi.org/10.3390/d15090951
APA StyleLv, R., Zhang, J., Liao, H., Yong, J. W. H., & Song, J. (2023). Study on the Soil Microbial Diversity of Cymbidium goeringii and Cymbidium faberi in the Qinling Mountains after Introduction and Domestication. Diversity, 15(9), 951. https://doi.org/10.3390/d15090951