Ancient Ecological Disaster Site Is Now a Refuge: Bryophyte Diversity in Volcanic Lava Caves of Jingpo Lake World Geopark
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Field Investigations
2.3. Species Identification
2.4. Data Analyses
3. Results
3.1. Species Richness and Species Composition of Bryophytes in Lava Caves of Jingpo Lake World Geopark
3.2. Evaluation of the α Diversity of Bryophytes in Lava Caves of Jingpo Lake World Geopark
3.3. Dominant Groups of Bryophytes in Lava Caves of Jingpo Lake World Geopark
3.3.1. Dominant Families
3.3.2. Dominant Genera
3.3.3. Dominant Species
3.4. Shared Species of Bryophytes among Volcanic Lava Caves in Jingpo Lake World Geopark
3.5. Similarities in Bryophyte Species among Lava Cave Habitats and Other Volcanic Habitats in Jingpo Lake World Geopark
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saran, S.; Chaudhary, S.K.; Singh, P.; Tiwari, A.; Kumar, V. A comprehensive review on biodiversity information portals. Biodivers. Conserv. 2022, 31, 1445–1468. [Google Scholar] [CrossRef]
- Maksimova, V.; Klavina, L.; Bikovens, O.; Zicmanis, A.; Purmalis, O. Structural characterization and chemical classification of some bryophytes found in Latvia. Chem. Biodivers. 2013, 10, 1284–1294. [Google Scholar] [CrossRef] [PubMed]
- Stefańska-Krzaczek, E.; Swacha, G.; Żarnowiec, J.; Raduła, M.W.; Kącki, Z.; Staniaszek-Kik, M. Central European forest floor bryophytes: Richness, species composition, coexistence and diagnostic significance across environmental gradients of forest habitats. Ecol. Indic. 2022, 139, 108954. [Google Scholar] [CrossRef]
- Chandra, S.; Chandrd, D.; Barh, A.; Pankaj; Pandey, R.K.; Sharma, I.P. Bryophytes: Hoard of remedies, an ethno-medicinal review. J. Tradit. Complement. Med. 2017, 7, 94–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dziwak, M.; Wróblewska, K.; Szumny, A.; Galek, R. Modern use of bryophytes as a source of secondary metabolites. Agronomy 2022, 12, 1456. [Google Scholar] [CrossRef]
- Kosznik-Kwaśnicka, K.; Golec, P.; Jaroszewicz, W.; Lubomska, D.; Piechowicz, L. Into the unknown: Microbial communities in caves, their role, and potential use. Microorganisms 2022, 10, 222. [Google Scholar] [CrossRef]
- Medellin, R.A.; Wiederholt, R.; Lopez-Hoffman, L. Conservation relevance of bat caves for biodiversity and ecosystem services. Biol. Conserv. 2017, 211, 45–50. [Google Scholar] [CrossRef]
- Jaroszewicz, W.; Bielańska, P.; Lubomska, D.; Kosznik-Kwaśnicka, K.; Golec, P.; Grabowski, Ł.; Wieczerzak, E.; Dróżdż, W.; Gaffke, L.; Pierzynowska, K.; et al. Antibacterial, antifungal and anticancer activities of compounds produced by newly isolated streptomyces strains from the Szczelina Chochołowska Cave (Tatra Mountains, Poland). Antibiotics 2021, 10, 1212. [Google Scholar] [CrossRef]
- Oromí, P.; Socorro, S. Biodiversity in the Cueva del Viento lava tube system (Tenerife, Canary Islands). Diversity 2021, 13, 226. [Google Scholar] [CrossRef]
- Riquelme, C.; Hathaway, J.J.M.; Dapkevicius, M.D.N.E.; Miller, A.Z.; Kooser, A.; Northup, D.E.; Jurado, V.; Fernandez, O.; Saiz-Jimenez, Z.; Cheeptham, N. Actinobacterial diversity in volcanic caves and associated geomicrobiological interactions. Front. Microbiol. 2015, 6, 1342. [Google Scholar] [CrossRef] [Green Version]
- Scopoli, J.A. Plantae subterraneae descriptae et delineatae. Diss. Sci. Nat. 1772, 1, 84–120. [Google Scholar]
- Burney, D.A.; Burney, L.P. Monitoring results from a decade of native plant translocations at Makauwahi Cave Reserve, Kauái. Plant Ecol. 2016, 217, 139–153. [Google Scholar] [CrossRef]
- Morris, J.L.; Puttick, M.N.; Clark, J.W.; Edwards, D.; Kenrick, P.; Pressel, S.; Wellman, C.H.; Yang, Z.H.; Schneider, H.; Donoghue, P.C.J. The timescale of early land plant evolution. Proc. Natl. Acad. Sci. USA 2018, 115, E2274–E2283. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Liu, F.; Luo, Y.; Zhu, J.; Luo, X.; Liu, R. The pioneering role of bryophytes in ecological restoration of manganese waste residue areas, southwestern China. J. Chem. 2021, 2021, 9969253. [Google Scholar] [CrossRef]
- Ammons, N. Bryophytes of McKinney’s cave. Bryologist 1933, 36, 16–19. [Google Scholar] [CrossRef]
- Thatcher, E.P. Bryophytes of an artificially illuminated cave. Bryologist 1949, 52, 212–214. [Google Scholar] [CrossRef]
- Mason-Williams, M.; Benson-Evans, K. Summary of results obtained during a preliminary investigation into the bacterial and botanical flora of caves in south Wales. Int. J. Speleol. 1967, 2, 397–402. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Peng, T.; Li, X.; Zhao, C. A study on the bryophytes of karst cave threshhold at Kunming area in Yunnan province, P.R. China. Carsologica Sin. 2004, 23, 229–233. (In Chinese) [Google Scholar]
- Liu, R.; Zhang, Z.; Shen, J.; Wang, Z. Bryophyte diversity in karst sinkholes affected by different degrees of human disturbance. Acta Soc. Bot. Pol. 2019, 88, 3620. [Google Scholar] [CrossRef] [Green Version]
- Monro, A.K.; Bystriakova, N.; Fu, L.; Wen, F.; Wei, Y. Discovery of a diverse cave flora in China. PLoS ONE 2018, 13, e0190801. [Google Scholar] [CrossRef] [Green Version]
- Wei, F.; Pan, B.; Xu, J. Sr-Nd-Pb-Ca isotopes of Holocene basalts from Jingpohu, NE China: Implications for the origin of their enriched mantle signatures. Minerals 2021, 11, 790. [Google Scholar] [CrossRef]
- Cong, M.; Li, Y.; Yang, W.; Chen, P. Bryophyte diversity of underground forests in craters of Jingpo Lake World Geopark. Bull. Bot. Res. 2023, 43, 361–369. (In Chinese) [Google Scholar]
- Cong, M.; Xu, Y.; Tang, L. Analysis on diversity of bryophytes in volcanic lava platform of Jingpo Lake World Geopark. J. Plant Resour. Environ. 2020, 29, 57–65. (In Chinese) [Google Scholar]
- Zhang, Z.; Feng, C.; Li, Z.; Li, S.; Xin, Y.; Li, Z.; Wang, X. Petrochemical study of the Jingpohu Holocene alkali basaltic rocks, northeastern China. Geochem. J. 2002, 36, 133–153. [Google Scholar] [CrossRef]
- Zhang, J.T. Quantitative Ecology, 3rd ed.; Science and Technology Press: Beijing, China, 2018; p. 79. (In Chinese) [Google Scholar]
- Printarakul, N.; Meeinkuirt, W. The bryophyte community as bioindicator of heavy metals in a waterfall outflow. Sci. Rep. 2022, 12, 6942. [Google Scholar] [CrossRef]
- Mario, S.; Bitetti, D. The distribution of grooming among female primates: Testing hypotheses with the Shannon-Wiener diversity index. Behaviour 2000, 137, 1517–1540. [Google Scholar]
- Sørensen, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analysis of the vegetation on Danish commons. Biol. Skr. 1948, 5, 1–34. [Google Scholar]
- Marta, P.; Maria, P.; Pietro, M.; Rosanna, C. Diversity and ecology of the bryophytes in the cave environment: A study on the volcanic and karstic caves of Sicily. Plant Biosyst. 2018, 153, 134–146. [Google Scholar]
- Salamah, Z.; Sasongko, H.; Zulianti, E. Diversity of bryophyte in the Selarong Cave Area, Bantul, Yogyakarta. Indones. J. Biol. Educ. 2019, 2, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, R.; Pereira, F.; Borges, P.A.V.; Constância, J.P. Indicators of conservation value of Azorean caves based on its bryophyte flora at the entrance. Proc. X XI XII Int. Symp. Vulcanospeleology 2008, 7, 114–118. [Google Scholar]
- Calderón-Gutiérrez, F.; Sánchez-Ortiz, C.A.; Huato-Soberanis, L. Ecological patterns in anchialine caves. PLoS ONE 2018, 13, e0202909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulec, J.; Kubešová, S. Diversity of bryophytes in show caves in Slovenia and relation to light intensities. Acta Carsologica 2010, 39, 587–596. [Google Scholar] [CrossRef]
- Sheue, C.R.; Sarafis, V.; Kiew, R.; Liu, H.Y.; Salino, A.; Kuo-Huang, L.L.; Yang, Y.P.; Tsai, C.C.; Lin, C.H.; Yong, J.W.H.; et al. Bizonoplast, a unique chloroplast in the epidermal cells of microphylls in the shade plant Selaginella erythropus (Selaginellaceae). Am. J. Bot. 2007, 94, 1922–1929. [Google Scholar] [CrossRef] [PubMed]
- Tojo, M.; West, P.N.; Hoshino, T.; Kida, K.; Fujii, H.; Hakoda, A.; Kawaguchi, Y.; Mühlhauser, H.A.; Van den Berg, A.H.; Kuepper, F.C.; et al. Pythium polare, a new heterothallic oomycete causing brown discolouration of Sanionia uncinata in the Arctic and Antarctic. Fungal Biol. 2012, 116, 756–768. [Google Scholar] [CrossRef]
- Mazina, S.E. Bryophytes and ferns as part of lamp flora caves. South Russ. Ecol. Dev. 2016, 11, 140–150. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Wang, F.; Ye, W.; Zhang, Q.; Han, T.; Huang, Y.; Chu, G.; Hui, D.; Guo, Q. Bryophyte diversity is related to vascular plant diversity and microhabitat under disturbance in karst caves. Ecol. Indic. 2021, 120, 106947. [Google Scholar] [CrossRef]
- Duan, Y.F.; Li, M.; Xu, K.W.; Zhang, L.; Zhang, L.B. Protect China’s karst cave habitats. Science 2021, 374, 699. [Google Scholar] [CrossRef] [PubMed]
- Fraser, C.I.; Connell, L.; Lee, C.K.; Cary, C. Evidence of plant and animal communities at exposed and subglacial (cave) geothermal sites in Antarctica. Polar Biol. 2018, 41, 417–421. [Google Scholar] [CrossRef]
- Wynne, J.J.; William, W.A. A new millipede, Austrotyla awishoshola n. sp. (Diplopoda, Chordeumatida, Conotylidae) from New Mexico, USA, and the importance of cave moss gardens as refugial habitats. Zootaxa 2016, 4084, 285–292. [Google Scholar] [CrossRef]
- During, H.J.; Van Tooren, B.F. Bryophyte interactions with other plants. Bot. J. Linn. Soc. 1990, 104, 79–98. [Google Scholar] [CrossRef]
No. | Caves | Location | Elevation/m | Number of Quadrats | Number of Specimens | Size/m | ||
---|---|---|---|---|---|---|---|---|
Length | Width | Height | ||||||
I | Underground Lava Fall Cave | 44°9′36″ N, 128°36′15″ E | 616 | 85 | 757 | 10 | 8 | 2 |
II | Foggy Cave | 44°9′19″ N, 128°36′19″ E | 603 | 11 | 103 | 200 | 18 | 6 |
III | Ice Cave | 44°9′17″ N, 128°36′20″ E | 600 | 42 | 354 | — | 20 | 8 |
IV | Fairy Cave | 44°9′17″ N, 128°36′20″ E | 612 | 28 | 313 | — | 12 | 6 |
V | Lava Cave | 44°6′32″ N, 128°37′39″ E | 522 | 10 | 80 | 200 | 10 | 1.15~3 |
VI | Weihuting Cave | 44°6′21″ N, 128°37′47″ E | 515 | 16 | 144 | — | 7 | 1.7~2 |
VII | Nested Cave | 44°5′15″ N, 128°39′59″ E | 462 | 8 | 82 | 60 | 7 | 2 |
VIII | Sheep Cave | 44°5′4″ N, 128°41′12″ E | 442 | 30 | 208 | 150 | 6 | 2 |
Lava Caves | Shannon-Wiener Diversity Index (H′) | Simpson Dominance Index (D) | Pielou Evenness Index (E) |
---|---|---|---|
I | 4.24 | 0.98 | 0.93 |
II | 2.21 | 0.87 | 0.92 |
III | 4.00 | 0.97 | 0.97 |
IV | 3.59 | 0.97 | 0.96 |
V | 3.49 | 0.96 | 0.95 |
VI | 3.79 | 0.97 | 0.93 |
VII | 3.57 | 0.96 | 0.89 |
VIII | 3.88 | 0.97 | 0.95 |
No. | Family Name | Genus Number | Percentage/% | Species Number | Percentage/% |
---|---|---|---|---|---|
1 | Mniaceae | 6 | 5.6 | 32 | 11.8 |
2 | Brachytheciaceae | 7 | 6.5 | 31 | 11.4 |
3 | Pottiaceae | 14 | 13.1 | 25 | 9.2 |
4 | Hypnaceae | 6 | 5.6 | 16 | 5.9 |
5 | Entodontaceae | 1 | 0.9 | 15 | 5.5 |
6 | Dicranaceae | 1 | 0.9 | 12 | 4.4 |
7 | Bryaceae | 2 | 1.9 | 11 | 4.0 |
8 | Plagiotheciaceae | 3 | 2.8 | 10 | 3.7 |
9 | Pylaisiaceae | 3 | 2.8 | 9 | 3.3 |
10 | Pylaisiadelphaceae | 5 | 4.7 | 9 | 3.3 |
11 | Thuidiaceae | 2 | 1.9 | 8 | 2.9 |
12 | Anomodontaceae | 4 | 3.7 | 7 | 2.6 |
13 | Neckeraceae | 4 | 3.7 | 7 | 2.6 |
14 | Hylocomiaceae | 4 | 3.7 | 6 | 2.2 |
15 | Leucobryaceae | 3 | 2.8 | 6 | 2.2 |
16 | Frullaniaceae | 1 | 0.9 | 5 | 1.8 |
17 | Dicranellaceae | 1 | 0.9 | 4 | 1.5 |
18 | Jungermanniaceae | 2 | 1.9 | 4 | 1.5 |
19 | Polytrichaceae | 3 | 2.8 | 4 | 1.5 |
20 | Porellaceae | 1 | 0.9 | 4 | 1.5 |
21 | Oncophoraceae | 2 | 1.9 | 4 | 1.5 |
22 | Amblystegiaceae | 3 | 2.8 | 3 | 1.1 |
23 | Leskeaceae | 2 | 1.9 | 3 | 1.1 |
24 | Metzgeriaceae | 2 | 1.9 | 3 | 1.1 |
25 | Plagiochilaceae | 1 | 0.9 | 3 | 1.1 |
26 | Sematophyllaceae | 2 | 1.9 | 3 | 1.1 |
27 | Aulacomniaceae | 1 | 0.9 | 2 | 0.7 |
28 | Bartramiaceae | 1 | 0.9 | 2 | 0.7 |
29 | Climaciaceae | 1 | 0.9 | 2 | 0.7 |
30 | Conocephalaceae | 1 | 0.9 | 2 | 0.7 |
31 | Fabroniaceae | 1 | 0.9 | 2 | 0.7 |
32 | Grimmiaceae | 2 | 1.9 | 2 | 0.7 |
33 | Leucodontaceae | 1 | 0.9 | 2 | 0.7 |
34 | Anastrophyllaceae | 1 | 0.9 | 1 | 0.4 |
35 | Calypogeiaceae | 1 | 0.9 | 1 | 0.4 |
36 | Ditrichaceae | 1 | 0.9 | 1 | 0.4 |
37 | Dumortieraceae | 1 | 0.9 | 1 | 0.4 |
38 | Fissidentaceae | 1 | 0.9 | 1 | 0.4 |
39 | Funariaceae | 1 | 0.9 | 1 | 0.4 |
40 | Hedwigiaceae | 1 | 0.9 | 1 | 0.4 |
41 | Lepidoziaceae | 1 | 0.9 | 1 | 0.4 |
42 | Marchantiaceae | 1 | 0.9 | 1 | 0.4 |
43 | Ptychomitriaceae | 1 | 0.9 | 1 | 0.4 |
44 | Rhytidiaceae | 1 | 0.9 | 1 | 0.4 |
45 | Scorpidiaceae | 1 | 0.9 | 1 | 0.4 |
46 | Sphagnaceae | 1 | 0.9 | 1 | 0.4 |
47 | Tetraphidaceae | 1 | 0.9 | 1 | 0.4 |
Total | 107 | 100.0 | 272 | 100.0 |
No. | Genus Name | Species Number | Percentage/% |
---|---|---|---|
1 | Plagiomnium | 16 | 5.9 |
2 | Entodon | 15 | 5.5 |
3 | Brachythecium | 14 | 5.1 |
4 | Dicranum | 12 | 4.4 |
5 | Bryum | 9 | 3.3 |
6 | Eurhynchium | 8 | 2.9 |
7 | Plagiothecium | 8 | 2.9 |
8 | Mnium | 7 | 2.6 |
9 | Claopodium | 6 | 2.2 |
10 | Hypnum | 6 | 2.2 |
11 | Frullania | 5 | 1.8 |
12 | Pohlia | 5 | 1.8 |
13 | Anomodon | 4 | 1.5 |
14 | Brotherella | 4 | 1.5 |
15 | Dicranella | 4 | 1.5 |
16 | Didymodon | 4 | 1.5 |
17 | Homomallium | 4 | 1.5 |
18 | Porella | 4 | 1.5 |
19 | Pylaisia | 4 | 1.5 |
20 | Trichostomum | 4 | 1.5 |
21 | Anoectangium | 3 | 1.1 |
22 | Ctenidium | 3 | 1.1 |
23 | Dicranodontium | 3 | 1.1 |
24 | Gollania | 3 | 1.1 |
25 | Neckera | 3 | 1.1 |
26 | Oncophorus | 3 | 1.1 |
27 | Plagiochila | 3 | 1.1 |
28 | Rhynchostegium | 3 | 1.1 |
29 | Taxiphyllum | 3 | 1.1 |
Species | Relative Frequency (Fr)/% | Relative Cover (Cr)/% | Importance Value (IV)/% |
---|---|---|---|
Sanionia uncinata (Hedw.) Loeske | 7.77 | 8.44 | 8.11 |
Myuroclada maximowiczii (G. G. Borshch.) Steere & W. B. Schofield | 2.79 | 7.77 | 5.28 |
Plagiomnium cuspidatum T. J. Kop. | 1.82 | 4.72 | 3.27 |
Entodon cladorrhizans (Hedw.) Müll. Hal. | 1.70 | 4.03 | 2.87 |
Rhytidiadelphus squarrosus (Hedw.) Warnst. | 1.70 | 4.03 | 2.86 |
Anomodon thraustus Müll. Hal. | 2.18 | 3.76 | 2.97 |
Thuidium piligerum Cardot | 1.58 | 3.61 | 2.60 |
Plagiothecium cavifolium var. cavifolium | 1.58 | 3.44 | 2.51 |
Plagiothecium laetum Bruch & Schimp. | 1.33 | 2.97 | 2.15 |
Entodon schleicheri (Schimp.) Demet. | 1.33 | 2.80 | 2.07 |
Mnium laevinerve Cardot | 1.33 | 2.41 | 1.87 |
Plagiomnium confertidens T. J. Kop. | 1.21 | 2.40 | 1.81 |
Conocephalum conicum (L.) Dumort. | 1.21 | 2.12 | 1.67 |
Dicranum nipponense Besch. | 1.09 | 2.04 | 1.57 |
Herpetineuron toccoae (Sull. & Lesq.) Cardot | 1.09 | 2.00 | 1.55 |
Pseudosymblepharis angustata (Mitt.) Hilp. | 1.09 | 1.89 | 1.49 |
Pylaisia brotheri Besch. | 0.97 | 1.86 | 1.41 |
Pylaisiadelpha yokohamae (Broth.) W. R. Buck | 0.97 | 1.80 | 1.39 |
Thuidium delicatulum (Hedw.) Mitt. | 0.97 | 1.79 | 1.38 |
Pohlia leucostoma (Bosch & Sande Lac.) M. Fleisch. | 0.97 | 1.56 | 1.26 |
Bartramia ithyphylla Brid. | 0.97 | 1.46 | 1.21 |
Plagiomnium maximoviczii (Lindb.) T. J. Kop. | 0.85 | 1.43 | 1.14 |
Plagiomnium medium T. J. Kop. | 0.85 | 1.14 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cong, M.; Zhu, T.; Li, Y.; Yang, W.; Wei, Y. Ancient Ecological Disaster Site Is Now a Refuge: Bryophyte Diversity in Volcanic Lava Caves of Jingpo Lake World Geopark. Diversity 2023, 15, 842. https://doi.org/10.3390/d15070842
Cong M, Zhu T, Li Y, Yang W, Wei Y. Ancient Ecological Disaster Site Is Now a Refuge: Bryophyte Diversity in Volcanic Lava Caves of Jingpo Lake World Geopark. Diversity. 2023; 15(7):842. https://doi.org/10.3390/d15070842
Chicago/Turabian StyleCong, Mingyang, Tingting Zhu, Yongkun Li, Wenjing Yang, and Yuan Wei. 2023. "Ancient Ecological Disaster Site Is Now a Refuge: Bryophyte Diversity in Volcanic Lava Caves of Jingpo Lake World Geopark" Diversity 15, no. 7: 842. https://doi.org/10.3390/d15070842
APA StyleCong, M., Zhu, T., Li, Y., Yang, W., & Wei, Y. (2023). Ancient Ecological Disaster Site Is Now a Refuge: Bryophyte Diversity in Volcanic Lava Caves of Jingpo Lake World Geopark. Diversity, 15(7), 842. https://doi.org/10.3390/d15070842