Genetic Conservation and Use of Genetic Resources of 18 Mexican Pine Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Species and Distribution
2.2. Genetic Zones
2.3. Conservation Units
2.4. Use of Genetic Resources
2.5. Importance of Genetic Zones for Conservation and Sustainable Use
3. Results
3.1. Species in Genetic Zones
3.2. Genetic Conservation Units
3.3. Use of Genetic Resources
3.4. Conservation and Management of Genetic Resources
3.5. Importance of Genetic Zones for Conservation and Use of Genetic Resources
Code | Indicator 1 | AR 2 | AY | CE | CH | DE | DO | DU | EN | HA | JE | LA | LE | MM | MA | MO | QU | ST | TE | Media |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I1 | Number of genetic zones | 8 | 7 | 16 | 7 | 16 | 12 | 9 | 9 | 9 | 1 | 7 | 12 | 7 | 13 | 9 | 4 | 7 | 18 | 10 |
I2 | Molecular characterization effort 3 | 27.27 | 85.71 | 50.00 | 71.43 | 6.25 | 33.33 | 44.44 | 44.44 | 66.67 | 0.00 | 0.00 | 66.67 | 0.00 | 53.85 | 44.44 | 0.00 | 100.00 | 22.22 | 39.82 |
I3 | Provenance characterization effort | 0.00 | 14.29 | 12.50 | 0.00 | 0.00 | 0.00 | 0.00 | 11.11 | 11.11 | 0.00 | 0.00 | 8.33 | 0.00 | 15.38 | 11.11 | 0.00 | 0.00 | 5.56 | 4.97 |
I4 | Progeny characterization effort | 0.00 | 14.29 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8.33 | 0.00 | 7.69 | 0.00 | 0.00 | 0.00 | 5.56 | 1.99 |
I5 | Seed stands index | 27.27 | 14.29 | 0.00 | 14.29 | 25.00 | 25.00 | 33.33 | 44.44 | 22.22 | 100.00 | 14.29 | 16.67 | 0.00 | 15.38 | 33.33 | 25.00 | 0.00 | 11.11 | 23.42 |
I6 | Seed orchard index | 18.18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.47 |
I7 | Genetic conservation index | 54.55 | 57.14 | 75.00 | 14.29 | 68.75 | 83.33 | 55.56 | 77.78 | 66.67 | 100.00 | 100.00 | 91.67 | 14.29 | 84.62 | 88.89 | 25.00 | 85.71 | 66.67 | 67.22 |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rajora, O.P.; Mosseler, A. Challenges and opportunities for conservation of forest genetic resources. Euphytica 2001, 118, 197–212. [Google Scholar] [CrossRef]
- Maxted, N. In situ, ex situ conservation. Encycl. Biodivers. 2013, 4, 313–323. [Google Scholar] [CrossRef]
- Maxted, N.; Hawkes, J.G.; Guarino, L.; Sawkins, M. Towards the selection of taxa for plant genetic conservation. Genet. Resour. Crop Evol. 1997, 44, 337–348. [Google Scholar] [CrossRef]
- Koskela, J.; Vinceti, B.; Dvorak, W.; Bush, D.; Dawson, I.K.; Loo, J.; Kjaer, E.D.; Navarro, C.; Padolina, C.; Bordács, S.; et al. Utilization and transfer of forest genetic resources: A global review. For. Ecol. Manage. 2014, 333, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Hosius, B.; Leinemann, L.; Konnert, M.; Bergmann, F. genetic aspects of forestry in the Central Europe. Eur. J. For. Res. 2006, 125, 407–417. [Google Scholar] [CrossRef]
- Wang, H.; Sun, J.; Duan, A.; Zhu, A.; Wu, H.; Zhang, J. Dendroclimatological analysis of chinese fir using a long-term provenance trial in Southern China. Forests 2022, 13, 1348. [Google Scholar] [CrossRef]
- Schueler, S.; Falk, W.; Koskela, J.; Lefèvre, F.; Bozzano, M.; Hubert, J.; Kraigher, H.; Longauer, R.; Olrik, D.C.; Ev, O.I.S.L.E.F. Vulnerability of dynamic genetic conservation units of forest trees in Europe to climate change. Glob. Chang. Biol. 2014, 20, 1498–1511. [Google Scholar] [CrossRef]
- Koskela, J.; Buck, A.; Teissier du Cros, E. Climate Change and Forest Genetic Diversity: Implications for Sustainable Forest Management in Europe; Bioversity International: Rome, Italy, 2007; ISBN 978-92-9043-749-9. [Google Scholar]
- Couturier, S.; Manuel, J.; Kolb, M. Measuring tropical deforestation with error margins: A method for REDD monitoring in South-Eastern Mexico. In Tropical Forests; Sudarshana, P., Nageswara-Rao, M., Soneji, J.R., Eds.; InTech: London, UK, 2012; pp. 269–296. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-García, S.; Pinero, D. Pines: A mexican gift to the world. Voices Mex. 2018, 55, 99–103. [Google Scholar]
- Moctezuma López, G.; Flores, A. Economic importance of pine (Pinus spp.) as a natural resource in Mexico. Rev. Mex. Ciencias For. 2020, 11, 161–185. [Google Scholar] [CrossRef]
- Darrow, W.K.; Coetzee, H. Potentially valuable Mexican pines for the summer rainfall region of southern Africa. South Afr. For. J. 1983, 124, 23–35. [Google Scholar] [CrossRef]
- Cambrón-Sandoval, V.H.; Sánchez-Vargas, N.M.; Sáenz-Romero, C.; Vargas-Hernández, J.J.; España-Boquera, M.L.; Herrerías-Diego, Y. Genetic parameters for seedling growth in Pinus pseudostrobus families under different competitive environments. New For. 2013, 44, 219–232. [Google Scholar] [CrossRef]
- Fabián-Plesníková, I.; Sáenz-Romero, C.; de León, J.C.; Martínez-Trujillo, M.; Sánchez-Vargas, N.M. Growth trait genetic parameters in a progeny trial of Pinus oocarpa. Madera Bosques 2020, 26, 1–14. [Google Scholar] [CrossRef]
- Wehenkel, C.; Mariscal-Lucero, S.D.R.; Jaramillo-Correa, J.P.; López-Sánchez, C.A.; Vargas-Hernández, J.J.; Sáenz-Romero, C. Genetic diversity and conservation of Mexican forest trees. In Biodiversity and Conservation of Woody Plants; Ahuja, M., Jain, S., Eds.; Sustainable Development and Biodiversity; Springer International Publishing: Cham, Switzerland, 2017; pp. 37–67. ISBN 9783642209246. [Google Scholar]
- Parraguirre Lezama, C.; Vargas-Hernández, J.J.; Ramírez Vallejo, P.; Azpíroz Rivero, H.S.; Jasso Mata, J. Estructura de la diversidad genética en poblaciones naturales de Pinus greggii Engelm. Rev. Fitotec. Mex. 2002, 25, 279–287. [Google Scholar] [CrossRef]
- Hernández-Velasco, M.R.; de Almeida-Souza, M.; Hernández-Díaz, J.C.; Escobar-Flores, J.G.; López-Sánchez, C.A.; Wehenkel, C.A. Diversidad genética en catorce poblaciones de Pinus arizonica y su relación con variables ambientales. Rev. Mex. Agrosistemas 2019, 6, 67–77. [Google Scholar]
- Delgado, P.; Piñero, D. Sistemática filogeográfica y sus aplicaciones a la evolución y conservación de los bosques de coníferas en México: El caso de Pinus montezumae y P. pseudostrobus. Acta Univ. 2003, 13, 47–52. [Google Scholar] [CrossRef]
- Dvorak, W.S.; Potter, K.M.; Hipkins, V.D.; Hodge, G.R. Genetic diversity and gene exchange in Pinus oocarpa, a mesoamerican pine with resistance to the pitch canker fungus (Fusarium circinatum). Int. J. Plant Sci. 2009, 170, 609–626. [Google Scholar] [CrossRef] [Green Version]
- Alfonso-Corrado, C.; Campos-Contreras, J.; Sánchez-García, G.; Monsalvo-Reyes, A.; Clark-Tapia, R. Manejo forestal y diversidad genética de Pinus patula Schiede ex Schltdl, & Cham, en Sierra Juárez, Oaxaca. Madera Bosques 2014, 20, 11–22. [Google Scholar]
- Castro-Félix, P.; Sierra, J.S.; Pérez-de la Rosa, J.A.; Aguirre-Gutiérrez, J.; Barragán, D.M.; Villalobos-Arámbula, A.R. Genetic diversity and structure of morphologically characterized populations Pinus ayacahuite and Pinus strobiformis through the analysis of neutral nuclear markers. e-CUCBA 2019, 6, 34–45. [Google Scholar] [CrossRef]
- Morales-Nieto, C.R.; Siqueiros-Candia, M.; Álvarez-Holguín, A.; Gil-Vega, K.D.C.; Corrales-Lerma, R.; Martínez-Salvador, M. Diversidad, estructura genética e hibridación en poblaciones de Pinus arizonica y P. durangensis. Madera y Bosques 2021, 27, 1–14. [Google Scholar] [CrossRef]
- Castro-Félix, P.; Ramos Navarro, C.; Pérez de la Rosa, J.A.; Vargas Amado, G.; Villalobos-Arámbula, A.R. Diversidad genética de Pinus ayacahuite utilizando marcadores RAPDs en genoma diploide y haploide. Scentia-CUCBA 2006, 8, 193–202. [Google Scholar]
- Ledig, F.T.; Capó-Arteaga, M.A.; Hodgskiss, P.D.; Sbay, H.; Flores-López, C.; Conkle, M.T.; Bermejo-Velázquez, B. Genetic diversity and the mating system of a rare Mexican piñon, Pinus pinceana, and a comparison with Pinus maximartinezii (Pinaceae). Am. J. Bot. 2001, 88, 1977–1987. [Google Scholar] [CrossRef]
- Molina-Freaner, F.; Delgado, P.; Piñero, D.; Perez-Nasser, N.; Alvarez-Buylla, E. Do rare pines need different conservation strategies? evidence from three Mexican species. Can. J. Bot. 2001, 79, 131–138. [Google Scholar] [CrossRef]
- Ramírez Enríquez, E.; Delgado Valerio, P.; García Magaña, J.J.; Molina Sánchez, A. Diversidad genética y conservación de pinos nativos de la cuenca del Río Cupatitzio, en Michoacán. Rev. Mex. Ciencias For. 2019, 10, 4–32. [Google Scholar] [CrossRef] [Green Version]
- Morales-Nieto, C.R.; Siqueiros-Candia, M.; Álvarez-Holguín, A.; Corrales-Lerma, R.; Alarcón-Bustamante, M.; Martínez-Salvador, M. Estructura y diversidad genética en poblaciones de Pinus engelmannii Carr. en Chihuahua, México. Rev. Fitotec. Mex. 2020, 43, 197–204. [Google Scholar] [CrossRef]
- Heredia-Bobadilla, R.L.; Gutiérrez-González, G.; Arzate-Fernández, A.-M.; Franco-Maass, S. Genetic variability of mountain pine (Pinus hartwegii Lindl) in the protection of flora and fauna area Nevado de Toluca. In Genetic Diversity in Plant Species: Characterization and Conservation; El-Esawi, M., Ed.; IntechOpen: London, UK, 2018; pp. 71–85. [Google Scholar]
- Rodríguez-Banderas, A.; Vargas-Mendoza, C.F.; Buonamici, A.; Vendramin, G.G. Genetic Diversity and phylogeographic analysis of Pinus leiophylla: A post-glacial range expansion. J. Biogeogr. 2009, 36, 1807–1820. [Google Scholar] [CrossRef]
- Ramírez-Herrera, C.; Vargas-Hernández, J.J.; López-Upton, J. Distribución y conservación de las poblaciones naturales de Pinus greggii. Acta Botánica Mex. 2005, 72, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Flores, A.; López-Upton, J.; Rullán-Silva, C.D.; Olthoff, A.E.; Alía, R.; Sáenz-Romero, C.; Garcia del Barrio, J.M. Priorities for conservation and sustainable use of forest genetic resources in four Mexican pines. Forests 2019, 10, 675. [Google Scholar] [CrossRef] [Green Version]
- Farjon, A. A handbook of the world’s conifers, 2nd ed.; Koninklijke Brill: Leiden, The Netherlands, 2017; ISBN 9781119130536. [Google Scholar]
- Perry, J.P. The pines of Mexico and Central America; Timber Press, Inc.: Portland, OR, USA, 1991; ISBN 9781604691108. [Google Scholar]
- CONAFOR. Inventario Nacional Forestal y de Suelos. Informe 2004-2009. Available online: http://www.ccmss.org.mx/descargas/Inventario_nacional_forestal_y_de_suelos_informe_2004_-_2009_pdf (accessed on 18 January 2018).
- QGIS Development Team. QGIS Geographic Information System; v 3.28.2; Open Source Geospatial Foundation Project. 2022. Available online: https://qgis.org/en/site/ (accessed on 1 February 2023).
- CONAFOR. Manual Para el Establecimiento de Unidades Productoras de Germoplasma Forestal; CONAFOR: Zapopan, México, 2016. [Google Scholar]
- Koskela, J.; Lefèvre, F.; Schueler, S.; Kraigher, H.; Olrik, D.C.; Hubert, J.; Longauer, R.; Bozzano, M.; Yrjänä, L.; Alizoti, P.; et al. Translating conservation genetics into management: Pan-European minimum requirements for dynamic conservation units of forest tree genetic diversity. Biol. Conserv. 2013, 157, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, S.C.; Hernández-Díaz, J.C.; Leinemann, L.; Prieto-Ruíz, J.A.; Wehenkel, C. Spatial genetic structure in seed stands of Pinus arizonica Engelm. and Pinus cooperi Blanco in the State of Durango, Mexico. For. Sci. 2018, 64, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Orozco, C.L.; Hernández-Díaz, J.C.; Carrillo-Parra, A.; Wehenkel, C.; Quiñones-Pérez, C.Z.; López-Sánchez, C.A.; Bailón-Soto, C.E. The centre–periphery model, a possible explanation for the distribution of some Pinus spp. in the Sierra Madre Occidental, Mexico. Forests 2022, 13, 215. [Google Scholar] [CrossRef]
- Simental-Rodríguez, S.L.; Pérez-Luna, A.; Hernández-Díaz, J.C.; Jaramillo-Correa, J.P.; López-Sánchez, C.A.; Flores-Rentería, L.; Carrillo-Parra, A.; Wehenkel, C. Modelling shifts and contraction of seed zones in two Mexican pine species by using molecular markers. Forests 2021, 12, 570. [Google Scholar] [CrossRef]
- Siqueiros Candia, I.E.M. Variabilidad Morfológica y Molecular en tres Especies Forestales de Importancia Económica en el Estado de Chihuahua. Master’s Thesis, Universidad Autónoma de Chihuahua, Chihuahua, México, 2017. [Google Scholar]
- Arvizu Franklin, L.E. Caracterización de Marcadores RAPDs en Pinus chiapensis y en el Complejo Pinus ayacahuite-P. strobiformis. Ph.D. Thesis, Universidad de Guadalajara, Jalisco, México, 2003. [Google Scholar]
- Castro-Félix, P.; Pérez de la Rosa, J.A.; Amado, G.V.; Magaña, S.V.; Santerre, A.; López-Dellamary Toral, F.; Villalobos-Arámbula, A.R. Genetic relationships among Mexican white pines (Pinus, Pinaceae) based on RAPD markers. Biochem. Syst. Ecol. 2008, 36, 523–530. [Google Scholar] [CrossRef]
- Hernández-León, S.; Little, D.P.; Acevedo-Sandoval, O.; Gernandt, D.S.; Rodríguez-Laguna, R.; Saucedo-García, M.; Arce-Cervantes, O.; Razo-Zárate, R.; Espitia-López, J. Plant core DNA barcode performance at a local scale: Identification of the conifers of the state of Hidalgo, Mexico. Syst. Biodivers. 2018, 16, 791–806. [Google Scholar] [CrossRef]
- Moreno-Letelier, A.; Piñero, D. Phylogeographic structure of Pinus strobiformis Engelm. across the Chihuahuan desert filter-barrier. J. Biogeogr. 2009, 36, 121–131. [Google Scholar] [CrossRef]
- Moreno-Letelier, A.; Barraclough, T.G. Mosaic genetic differentiation along environmental and geographic gradients indicate divergent selection in a white pine species complex. Evol. Ecol. 2015, 29, 733–748. [Google Scholar] [CrossRef]
- Ramos Navarro, C.L. Diversidad Genética de Pinus ayacahuite Ehrenberg Ex Schlechtenda: Reproductividad y Segregación de Marcadores RAPDs. Bachelor’s Thesis, Universidad de Guadalajara, Zapopan, México, 2005. [Google Scholar]
- Villalobos-Arámbula, A.R.; Pérez de la Rosa, J.A.; Arias, A.; Rajora, O.P. Cross-species transferability of eastern white pine (Pinus strobus) nuclear microsatellite markers to five Mexican white pines. Genet. Mol. Res. 2014, 13, 7571–7576. [Google Scholar] [CrossRef]
- Farfán Vázquez, E.d.G.; Jasso Mata, J.; López Upton, J.; Vargas Hernández, J.J.; Ramírez Herrera, C. Parámetros genéticos y eficiencia de la selección temprana en Pinus ayacahuite Ehren. var. ayacahuite. Rev. Fitotec. Mex. 2002, 25, 239–246. [Google Scholar] [CrossRef]
- Castilleja Sánchez, P. Éxito Reproductivo y Comportamiento de Caracteres Cuantitativos en dos Especies de pino Endémicas de México: Pinus rzedowskii Madrigal et Caballero y Pinus ayacahuite var. veitchii Shaw. Master’s Thesis, Universidad Michoacana de san Nicolás de Hidalgo, Michoacán, México, 2015. [Google Scholar]
- Flores-Rentería, L.; Wegier, A.; Ortega Del Vecchyo, D.; Ortíz-Medrano, A.; Piñero, D.; Whipple, A.V.; Molina-Freaner, F.; Domínguez, C.A. Genetic, morphological, geographical and ecological approaches reveal phylogenetic relationships in complex groups, an example of recently diverged pinyon pine species (Subsection Cembroides). Mol. Phylogenet. Evol. 2013, 69, 940–949. [Google Scholar] [CrossRef]
- Fuentes-Amaro, S.L.; Legaria-Solano, J.P.; Ramírez-Herrera, C. Estructura genética de poblaciones de Pinus cembroides de la región central de México. Rev. Fitotec. Mex. 2019, 42, 57–65. [Google Scholar] [CrossRef]
- García-Zubia, L.C.; Hernández-Velasco, J.; Hernández-Diáz, J.C.; Simental-Rodriguez, S.L.; López-Sánchez, C.A.; Quinõnes-Pérez, C.Z.; Carrillo-Parra, A.; Wehenkel, C. Spatial genetic structure in Pinus cembroides Zucc. at population and landscape levels in Central and Northern Mexico. PeerJ 2019, 7, e8002. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Velasco, J.; Hernández-Díaz, J.C.; Fladung, M.; Cañadas-López, Á.; Prieto-Ruíz, J.Á.; Wehenkel, C. Spatial genetic structure in four pinus species in the Sierra Madre Occidental, Durango, Mexico. Can. J. For. Res. 2017, 47, 73–80. [Google Scholar] [CrossRef]
- Alva-Rodríguez, S.; López-Upton, J.; Vargas-Hernández, J.J.; del Mar Ruiz-Posadas, L. Biomasa y crecimiento de Pinus cembroides Zucc. y Pinus orizabensis D. K. Bailey & Hawksworth en respuesta al déficit hídrico. Rev. Chapingo Ser. Ciencias For. y del Ambient. 2020, 26, 71–83. [Google Scholar] [CrossRef]
- González Avalos, J.; García Moya, E.; Cetina Alcalá, V.M.; Vargas-Hernández, J.J.; Trinidad-Santos, A.; Romero-Manzanares, A. Variación morfológica e índice de calidad en plantas de Pinus cembroides var. cembroides Zucc. Cienc. For. en Mex. 2005, 30, 29–44. [Google Scholar]
- Núñez Álvarez, E. Crecimiento y Estructura de copa en tres Procedencias de Pinus cembroides Zucc. en Los Lirios, Arteaga, Coahuila. Bachelor’s Thesis, Universidad Autónoma Agraria Antonio Narro, Saltillo, México, 2016. [Google Scholar]
- Del Castillo, R.F.; Trujillo Argueta, S.; Sáenz-Romero, C. Pinus chiapensis, a keystone species: Genetics, ecology, and conservation. For. Ecol. Manage. 2009, 257, 2201–2208. [Google Scholar] [CrossRef]
- Newton, A.C.; Allnutt, T.R.; Dvorak, W.S.; Del Castillo, R.F.; Ennos, R.A. Patterns of genetic variation in Pinus chiapensis, a threatened Mexican pine, detected by RAPD and mitochondrial DNA RFLP markers. Heredity (Edinb) 2002, 89, 191–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castellanos-Acuña, D.; Sáenz-Romero, C.; Lindig-Cisneros, R.A.; Sánchez-Vargas, N.M.; Lobbit, P.; Montero-Castro, J.C. Variación altitudinal entre especies y procedencias de Pinus pseudostrobus, P. devoniana y P. leiophylla. Ensayo de vivero. Rev. Chapingo Ser. Ciencias For. y del Ambient. 2013, 19, 399–411. [Google Scholar] [CrossRef]
- López-Reyes, A.; Pérez de la Rosa, J.; Ortiz, E.; Gernandt, D.S. Morphological, molecular, and ecological divergence in Pinus douglasiana and P. maximinoi. Syst. Bot. 2015, 40, 658–670. [Google Scholar] [CrossRef] [Green Version]
- Ávila-Flores, I.J.; Hernández-Díaz, J.C.; Gonzáez-Elizondo, M.S.; Prieto-Ruíz, J.Á.; Wehenkel, C. Degree of hybridization in seed stands of Pinus engelmannii Carr. in the Sierra Madre Occidental, Durango, Mexico. PLoS ONE 2016, 11, e0152651. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez Laguna, R.; Vargas Hernández, J.J.; Cetina Alcalá, V.M.; Ramírez Herrera, C.; Escalante Estrada, J.A. Variación en el patrón de alargamiento del brote terminal en diferentes procedencias de Pinus engelmannii Carr. Rev. Cienc. For. en México 2000, 25, 77–103. [Google Scholar]
- Iglesias Andreu, L.G.; Tivo Fernández, Y. Polimorfismos proteico en Pinus hartwegii Lindl. del Cofre de Perote, Veracruz, México. Rev. Chapingo Ser. Ciencias For. y del Ambient. 2008, 14, 5–9. [Google Scholar]
- Obregón Molina, G. Estudio Filogeográfico de Pinus hartwegii Lindley (Pinaceae). Master’s Thesis, Instituto Politécnico Nacional, Distrito Federal, México, 2010. [Google Scholar]
- Solís Ramos, L.Y.; Iglesias Andreu, L.G. Variación en la composición isoenzimática en la población de Pinus hartwegii Lindl. del Pico de Orizaba, Veracruz. Cuad. Biodivers. 2001, 4–7. [Google Scholar] [CrossRef] [Green Version]
- Treviño Cuellar, K.L. Genómica del Paisaje para la Identificación de Hotspots Adaptativos en Coníferas de alta Montaña del Noreste de México. Master’s Thesis, Universidad de Nuevo León, Linares, México, 2021. [Google Scholar]
- Viveros-Viveros, H.; Tapia-Oivares, B.L.; Sáenz-Romero, C.; Vargas-HerNández, J.J.; López-Upton, J.; Santacruz-Valera, A.; Ramírez-Valverde, G. Variación isoenzimática de Pinus hartwegii Lindl. en un gradiente altitudinal en Michoacán, México. Agrociencia 2010, 44, 723–733. [Google Scholar]
- Viveros-Viveros, H.; Sáenz-Romero, C.; Vargas-Hernández, J.J.; Tapia-Olivares, B.L.; López-Upton, J.; Santacruz-Varela, A.; Beaulieu, J. Comparación de QST vs. FST en poblaciones naturales de Pinus hartwegii Lindl. Rev. Fitotec. Mex. 2014, 37, 117–127. [Google Scholar] [CrossRef]
- Ortega-Mata, A.; Mendizábal Hernández, L.; Alba-Landa, J.; Aparicio Rentería, A. Germinación y crecimiento inicial de Pinus hartwegii Lindl. de siete poblaciones del Estado de México. For. Veracruzana 2003, 5, 29–34. [Google Scholar]
- Sáenz-Romero, C.; Lamy, J.-B.; Loya-Rebollar, E.; Plaza-Aguilar, A.; Burlett, R.; Lobit, P.; Delzon, S. Genetic variation of drought-induced cavitation resistance among Pinus hartwegii populations from an altitudinal gradient. Acta Physiol. Plant. 2013, 35, 2905–2913. [Google Scholar] [CrossRef]
- Viveros-Viveros, H.; Sáenz-Romero, C.; López-Upton, J.; Vargas-Hernández, J.J. Growth and frost damage variation among Pinus pseudostrobus, P. montezumae and P. hartwegii tested in Michoacán, México. For. Ecol. Manage. 2007, 253, 81–88. [Google Scholar] [CrossRef]
- Castelán Muñoz, N. Fisiología de Plántulas de Pinus leiophylla Sometidas a estrés Hídrico. Master’s Thesis, Colegio de Postgraduados, Texcoco, México, 2014. Available online: http://colposdigital.colpos.mx:8080/xmlui/handle/10521/2429 (accessed on 1 March 2023).
- Dvorak, W.S.; Hodge, G.R.; Kietzka, J.E. Genetic variation in survival, growth, and stem form of Pinus leiophylla in Brazil and South Africa and provenance resistance to pitch canker. South. Hemisph. For. J. 2007, 69, 125–135. [Google Scholar] [CrossRef]
- Martínez-Trinidad, T.; Vargas-Hernández, J.J.; López-Upton, J.; Muñoz-Orozco, A. Respuesta al deficit hidrico en Pinus leiophylla: Acumulacion de biomasa, desarrollo de hojas secundarias y mortandad de plántulas. Terra 2002, 20, 291–301. [Google Scholar]
- Castelán-Muñoz, N.; Jiménez-Casas, M.; López-Delgado, H.A.; Campos-García, H.; Vargas-Hernández, J.J. Familial variation in Pinus leiophylla Schiede Ex Schltdl. & Cham. seedlings in response to drought: Water and osmotic potential. Rev. Chapingo Ser. Ciencias For. y del Ambient. 2015, XXI, 295–306. [Google Scholar] [CrossRef] [Green Version]
- Gapare, W.J.; Hodge, G.R.; Dvorak, W.S. Genetic parameters and provenance variation of Pinus maximinoi in Brazil, Colombia and South Africa. For. Genet. 2001, 8, 159–170. [Google Scholar]
- Hodge, G.R.; Dvorak, W.S. Differential responses of Central American and Mexican species and Pinus radiata to infection by the pitch canker fungus. New For. 2000, 19, 241–258. [Google Scholar] [CrossRef]
- Hodge, G.; Dvorak, W. Growth potential and genetic parameters of four mesoamerican pines planted in the Southern hemisphere. South. For. a J. For. Sci. 2012, 74, 27–49. [Google Scholar] [CrossRef]
- Lopez-Upton, J.; Donahue, J.K.; Plascencia-Escalante, F.O.; Ramírez-Herrera, C. Provenance variation in growth characters of four subtropical pine species planted in Mexico. New For. 2005, 29, 1–13. [Google Scholar] [CrossRef]
- Mendizábal-Hernández, L. del C.; Alba-Landa, J.; Márquez Ramírez, J.; Ramírez-García, E.O.; Cruz-Jiménez, H. Movimiento de especies. For. Veracruzana 2011, 13, 37–42. [Google Scholar]
- Salazar-García, J.G.; Vargas-Hernández, J.J.; Jasso-Mata, J.; Molina-Galán, J.D.; Ramírez-Herrera, C.; López-Upton, J. Variación en el patrón de crecimiento en altura de cuatro especies de Pinus en edades tempranas. Madera y Bosques 1999, 5, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Barrera Marías, S. Diversidad Genética en Rodales Semilleros de Pinus montazumae Lamb., Distribuidos en México. Bachelor’s Thesis, Universidad de Michoacán de San Nicolás de Hidalgo, Uruapán, México, 2014. [Google Scholar]
- Delgado, P.; Salas-Lizana, R.; Vazquez-Lobo, A.; Wegier, A.; Anzidei, M.; Alvarez-Buylla, E.R.; Vendramin, G.G.; Piñero, D. Introgressive hybridization in Pinus montezumae Lamb and Pinus pseudostrobus Lindl. (Pinaceae): Morphological and molecular (CpSSR) evidence. Int. J. Plant Sci. 2007, 168, 861–875. [Google Scholar] [CrossRef]
- Delgado Valerio, P.; Nunez Medrano, J.; Rocha Granados, M.C.; Munoz Flores, H.J. Variación genética en dos áreas semilleras de pino establecidas en el estado de Michoacán. Rev. Mex. Ciencias For. 2013, 4, 104–115. [Google Scholar]
- Molina Sánchez, A. Fragmentación del Hábitat y su Efecto en la Estructura Genética de dos Linajes del Género Pinus Distribuidos en la Meseta Purépecha. Master’s Thesis, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México, 2017. [Google Scholar]
- Barragán Reynaga, D.M. Diversidad y diferenciación genética con marcadores RAPDs en poblaciones naturales de Pinus strobiformis. Master’s Thesis, Universidad de Guadalajara, Zapopan, México, 2006. [Google Scholar]
- Simental-Rodríguez, S.L.; Quinones-Pérez, C.Z.; Moya, D.; Hernández-Tecles, E.; Lopez-Sanchez, C.A.; Wehenkel, C. The relationship between species diversity and genetic structure in the rare Picea chihuahuana tree species community, Mexico. PLoS ONE 2014, 9, e111623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García Ramírez, E.O.; Landa-Alba, J.; Mendizabal-Hernández, L.C. Evaluación en vivero de un ensayo de procedencias/progenies de Pinus teocote Schl & Cham. For. Veracruzana 2001, 3, 27–35. [Google Scholar]
- Lefèvre, F.; Alia, R.; Fjellstad, K.B.; Graudal, L.; Oggioni, S.D.; Rusanen, M.; Vendramin, G.G.; Bozzano, M. Dynamic Conservation and Utilization of Forest Tree Genetic Resources: Indicators for In Situ and Ex Situ Genetic Conservation and Forest Reproductive Material; European Forest Genetic Resources Programme (EUFORGEN), European Forest Institute: Barcelona, Spain, 2020; ISBN 9789525980813. [Google Scholar]
- Flores, A.; Romero-Sánchez, M.E.; Pérez-Miranda, R.; Pineda-Ojeda, T.; Moreno-Sánchez, F. Potential of restoration of coniferous forests from germplasm transfer zones in Mexico. Rev. Mex. Ciencias For. 2021, 12, 4–27. [Google Scholar] [CrossRef]
- Flores, A.; Méndez-González, J.; Muñoz-Flores, H.J. Degraded forest lands and pine plantations in homogeneous ecological areas. Agro Product. 2021, 14, 49–59. [Google Scholar] [CrossRef]
- Flores, A.; Moctezuma-López, G. Harvest of timber from 20 coniferous in germplasm movement zones. Rev. Mex. Ciencias For. 2021, 12, 122–140. [Google Scholar] [CrossRef]
- Herrera-Soto, G.; González-Cásares, M.; Pompa-García, M.; Camarero, J.J.; Solís-Moreno, R. Growth of Pinus cembroides Zucc. in response to hydroclimatic variability in four sites forming the species latitudinal and longitudinal distribution limits. Forests 2018, 9, 440. [Google Scholar] [CrossRef] [Green Version]
- Castellanos-Acuña, D.; Mota-Narváez, L.A.; López-Mondragón, T.; Lindig-Cisneros, R.A.; Sáenz-Romero, C. Pinus devoniana likely avoids drought stress by delaying shoot elongation. Rev. Fitotec. Mex. 2022, 45, 135–143. [Google Scholar] [CrossRef]
- Sandoval-García, R.; Jiménez-Pérez, J.; Yerena-Yamallel, J.I.; Aguirre-Calderón, O.A.; Alanís-Rodríguez, E.; Gómez-Meza, M.V. Ecological restoration strategies associated with reforestations of Pinus cembroides Zucc., in the Parque Nacional Cumbres de Monterrey. Madera Bosques 2022, 28, e2822298. [Google Scholar] [CrossRef]
- Bruhns, W. Measuring Reforestation Sucess in the Sierra Gorda Guanajuato Biosphere Reserve, Mexico. Master’s Thesis, Northern Arizona University, Flagstaff, AZ, USA, 2013. [Google Scholar]
- Secretaría de Economía. Ley General de Desarrollo Forestal Sustentable. Available online: https://www.diputados.gob.mx/LeyesBiblio/pdf/LGDFS.pdf (accessed on 1 March 2023).
- Secretaría de Economía. Reglamento de la Ley General de Desarrollo Forestal Sustentable. Available online: https://www.diputados.gob.mx/LeyesBiblio/regley/Reg_LGDFS_091220.pdf (accessed on 1 March 2023).
- Sáenz-Romero, C.; Mendoza-Maya, E.; Gómez-Pineda, E.; Blanco-García, A.; Endara-Agramont, A.R.; Lindig-Cisneros, R.; López-Upton, J.; Trejo-Ramírez, O.; Wehenkel, C.; Cibrián-Tovar, D.; et al. Recent evidence of Mexican temperate forest decline and the need for ex situ conservation, assisted migration, and translocation of species ensembles as adaptive management to face projected climatic change impacts in a Megadiverse country. Can. J. For. Res. 2020, 50, 843–854. [Google Scholar] [CrossRef]
- Potter, K.M.; Jetton, R.M.; Bower, A.; Jacobs, D.F.; Man, G.; Hipkins, V.D.; Westwood, M. Banking on the future: Progress, challenges and opportunities for the genetic conservation of forest trees. New For. 2017, 48, 153–180. [Google Scholar] [CrossRef]
- Gutiérrez Aguirre, J.; Duivenvoorden, J.F. Can we expect to protect threatened species in protected areas? A case study of the genus Pinus in Mexico. Rev. Mex. Biodivers. 2010, 81, 875–882. [Google Scholar]
- Lefèvre, F.; Koskela, J.; Hubert, J.; Kraigher, H.; Longauer, R.; Olrik, D.C.; Schüler, S.; Bozzano, M.; Alizoti, P.; Bakys, R.; et al. Dynamic conservation of forest genetic resources in 33 European countries. Conserv. Biol. 2013, 27, 373–384. [Google Scholar] [CrossRef]
- Galicia, L.; Potvin, C.; Messier, C. Maintaining the high diversity of pine and oak species in Mexican temperate forests: A new management approach combining functional zoning and ecosystem adaptability. Can. J. For. Res. 2015, 45, 1358–1368. [Google Scholar] [CrossRef] [Green Version]
- Patiño Ayala, E.A. Mercado Potencial de Árboles de Navidad en Guadalajara, Jalisco. Master Thesis, Colegio de Postgraduados, Texcoco, Mexico, 2017. [Google Scholar]
- Esperón-Rodríguez, M.; Barradas, V.L. Ecophysiological vulnerability to climate change: Water stress responses in four tree species from the central mountain region of Veracruz, Mexico. Reg. Environ. Chang. 2015, 15, 93–108. [Google Scholar] [CrossRef]
- Kilgore, J.S.; Jacobsen, A.L.; Telewski, F.W. Hydraulics of Pinus (Subsection Ponderosae) populations across an elevation gradient in the Santa Catalina mountains of Southern Arizona. Madroño 2021, 67, 218–226. [Google Scholar] [CrossRef]
- De Ronde, C.; du Plessis, M. Determining the relative resistance of selected Pinus species to fire damage. In Forest Fire Research and Wildland Fire Safety; Millpress: Rotterdam, The Netherlands, 2002; pp. 1–9. [Google Scholar]
- Bannister, P.; Neuner, G. Frost resistance and the distribution of conifers. In Conifer Cold Hardiness; Bigras, F.J., Colombo, S.J., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 3–21. ISBN 9789048155873. [Google Scholar]
- Miyamoto, S.; Martinez, I.; Padilla, M.; Portillo, A.; Ornelas, D. Landscape plant lists for salt tolerance assessment. USDI Bureau Of Reclamation. Texas Agricultural Extension Station, El Paso. 2004. Available online: http://agrilife.org/elpaso/files/2011/10/Landscape-Plant-Lists-for-Salt-Tolerance-Assessment.pdf (accessed on 6 February 2023).
- García-Jiménez, C.I.; Vargas-Rodriguez, Y.L. Passive government, organized crime, and massive deforestation: The case of western Mexico. Conserv. Sci. Pract. 2021, 3, e562. [Google Scholar] [CrossRef]
- Barsimantov, J.; Navia Antezana, J. Forest cover change and land tenure change in Mexico’s avocado region: Is community forestry related to reduced deforestation for high value crops. Appl. Geogr. 2012, 32, 844–853. [Google Scholar] [CrossRef]
- Rayn, D.; Sutherland, W.J. Impact of nature reserve establishment on deforestation: A test. Biodivers. Conserv. 2011, 20, 1625–1633. [Google Scholar] [CrossRef]
- Powlen, K.A.; Gavin, M.C.; Jones, K.W. Management effectiveness positively influences forest conservation outcomes in protected areas. Biol. Conserv. 2021, 260, 109192. [Google Scholar] [CrossRef]
- MacGregor-Fors, I.; Blanco-García, A.; Lindig-Cisneros, R. Bird community shifts related to different forest restoration efforts: A case study from a managed habitat matrix in Mexico. Ecol. Eng. 2010, 36, 1492–1496. [Google Scholar] [CrossRef]
Indicator 1 | Description | |
---|---|---|
I1 | Number of genetic zones | Number of genetic zones with the presence of the species |
I2 | Molecular characterization effort 2 | % of genetic zones with at least 1 sample in molecular studies = Number of genetic zones with the presence of molecular studies of the species/Number of genetic zones with the presence of the species |
I3 | Provenance characterization effort | % of genetic zones with at least 1 population in provenance test = Number of genetic zones with the presence of provenance studies of the species/Number of genetic zones with the presence of the species |
I4 | Progeny characterization effort | % of genetic zones with plus trees in progeny tests = Number of genetic zones with the presence of progeny studies of the species/Number of genetic zones with the presence of the species |
I5 | Seed stands index | % of genetic zones with at least 1 forest seed production unit = Number of genetic zones with the presence of seed stands of the species/Number of genetic zones with the presence of the species |
I6 | Seed orchard index | % of genetic zones with at least 1 seed orchard = Number of genetic zones with the presence of seed orchards of the species/Number of genetic zones with the presence of the species |
I7 | Genetic conservation index | % of genetic zones with at least 1 conservation unit identified = Number of genetic zones with the presence of genetic conservation units of the species/Number of genetic zones with the presence of the species |
Genetic Zone | Trees: National Forest Inventory | Value for Conservation (1 to 4) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AR | AY | CE | CH | DE | DO | DU | EN | HA | JE | LA | LE | MM | MA | MO | QU | ST | TE | ||
I.1 | 606 | - | - | 1 | - | - | - | - | - | - | 4 | - | - | - | - | - | 4 | - | - |
I.2 | 25 | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
III.1 | 20192 | 2 | - | 4 | - | - | 1 | 1 | 4 | - | - | - | 2 | - | - | - | - | 2 | 1 |
III.2 | 28994 | 4 | - | 3 | 1 | 1 | 2 | 4 | 4 | - | - | - | 2 | - | 1 | - | - | 4 | 1 |
III.3 | 30663 | 3 | - | 3 | 1 | 1 | 1 | 2 | 4 | - | - | - | 3 | - | 1 | - | 1 | 4 | 4 |
III.4 | 5869 | 1 | - | 2 | - | 2 | 3 | 1 | 2 | - | - | - | 2 | 1 | 2 | - | - | 1 | 1 |
IV.1 | 56 | - | - | 1 | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - |
V.1 | 340 | 1 | - | 1 | - | - | - | - | 1 | - | - | - | 1 | - | - | - | 1 | - | 1 |
V.2 | 875 | 1 | - | 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
V.3 | 4476 | 1 | 4 | 4 | 1 | 1 | - | - | 1 | 2 | - | - | - | - | 2 | 1 | 1 | 1 | 1 |
VIII.4 | 8 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 |
IX.2 | 1499 | - | - | 2 | - | 1 | - | 1 | - | - | - | - | - | - | - | - | - | 1 | 1 |
X.1 | 1812 | - | - | 1 | - | 3 | 4 | 1 | 1 | 1 | - | - | 1 | - | 3 | - | - | - | 1 |
X.2 | 1645 | - | - | - | - | 3 | - | - | - | 3 | - | 4 | 2 | - | - | 3 | - | - | 1 |
X.3 | 3903 | - | 3 | 3 | 2 | 4 | 1 | 1 | - | 4 | - | 1 | 4 | - | 4 | 4 | - | - | 4 |
XII.1 | 538 | - | - | - | - | 2 | 1 | - | 3 | 1 | - | 1 | 1 | - | 1 | 1 | - | 1 | - |
XII.2 | 795 | - | 1 | - | 1 | 1 | 2 | - | - | 1 | - | 1 | - | 1 | 2 | - | - | - | 1 |
XII.3 | 1480 | - | 2 | 1 | 1 | 2 | 1 | 1 | - | 1 | - | 2 | 1 | 1 | 3 | 1 | - | - | 1 |
XII.4 | 2976 | - | 1 | - | - | 2 | 1 | - | 1 | 1 | - | 4 | 1 | 1 | 4 | 1 | - | - | 2 |
XII.5 | 1976 | 1 | 2 | 1 | 4 | 2 | 1 | - | - | 1 | - | 2 | 1 | 4 | 1 | 1 | - | - | 1 |
XIV.1 | 596 | - | 1 | 1 | - | 2 | - | - | - | - | - | - | - | - | 2 | 1 | - | - | 1 |
XIV.2 | 105 | - | - | - | - | 1 | - | - | - | - | - | - | - | 1 | 1 | 1 | - | - | 1 |
XV.1 | 111 | - | - | - | - | 1 | 1 | - | - | - | - | - | - | 1 | 3 | - | - | - | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores, A.; Buendía Rodríguez, E.; Pineda Ojeda, T.; Flores Ayala, E.; Méndez-González, J. Genetic Conservation and Use of Genetic Resources of 18 Mexican Pine Species. Diversity 2023, 15, 735. https://doi.org/10.3390/d15060735
Flores A, Buendía Rodríguez E, Pineda Ojeda T, Flores Ayala E, Méndez-González J. Genetic Conservation and Use of Genetic Resources of 18 Mexican Pine Species. Diversity. 2023; 15(6):735. https://doi.org/10.3390/d15060735
Chicago/Turabian StyleFlores, Andrés, Enrique Buendía Rodríguez, Tomás Pineda Ojeda, Eulogio Flores Ayala, and Jorge Méndez-González. 2023. "Genetic Conservation and Use of Genetic Resources of 18 Mexican Pine Species" Diversity 15, no. 6: 735. https://doi.org/10.3390/d15060735
APA StyleFlores, A., Buendía Rodríguez, E., Pineda Ojeda, T., Flores Ayala, E., & Méndez-González, J. (2023). Genetic Conservation and Use of Genetic Resources of 18 Mexican Pine Species. Diversity, 15(6), 735. https://doi.org/10.3390/d15060735