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Abstract: Genetic conservation is key to maintaining forests for the future; however, these face several
threats. Mexico is an example of the degradation of forest genetic resources during the past three
decades due to its deforestation rates. This country is considered a center of pine diversity but its
genetic conservation efforts are not enough. To define genetic conservation units (GCUs) and propose
measures for the conservation and sustainable use of 18 Mexican pine species, we analyzed the
distribution of the species at the national level and in germplasm transfer zones, and evaluated the
species with a set of minimum requirements for conservation and indicators from the EUFORGEN
program. We determined that 13 to 15 genetic zones harbored the target species, in which Pinus
teocote, Pinus cembroides, Pinus devoniana, Pinus maximinoi, Pinus douglasiana, and Pinus leiophylla were
the most widely distributed. We defined 173 areas for establishing GCUs for the total of the species
studied; 50% of them were selected from areas with genetic information, 5% were selected from seed
stands, and 45% from natural forests. We detected that most of the forest reproductive material used
is collected from seed stands, and the use of seeds from breeding trials is scarce.

Keywords: conservation efforts; dynamic conservation; forest genetic diversity; genetic conservation
units; genetic variation; Pinus

1. Introduction

Facing continuous environmental changes, genetic conservation is a key to maintaining
forest resources for the future. The main objective of genetic conservation is to preserve the
genetic integrity and natural levels of genetic diversity [1]. However, conservation activities
are limited by the financial, temporal, and technical resources available [2]. For this reason,
activities must be selected by keeping in mind the species with ecological, economic, and
social potential uses by country based on current conservation status, potential economic
use, threat of genetic erosion, genetic distinction, ecogeographic distinction, national or
conservation agency priorities, biological importance, cultural importance, relative cost of
conservation, conservation sustainability, and ethical and aesthetic considerations [3].

Forest genetic resources have been used for testing of tree species and provenance
for different uses and under different environmental conditions [4]. The purpose of a
provenance test is to establish the most healthy and fastest growing population among
many others of the same tree species, in order to select such a population as a seed source
for planting at appropriate sites [5]. This is a tool for improving forest genetics. In com-
mon garden experiments, also known as provenance trials, it is possible to test which
provenances have adapted to expected climate conditions [6] because tree species possess
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numerous local adaptations which represent valuable genetic resources for the long-term
survival of the species and for coping with climate change [7].

Forest genetic resources face several threats, such as habitat destruction, fragmentation,
pollution, poor silvicultural practices, and the use of low-quality or poorly adapted forest
reproductive material [8]. Mexico is an example of the degradation of forest genetic
resources for the past three decades due to its deforestation rates which have varied
from 260,000 to 1,600,000 ha/year [9]. This country possesses from 43 to 51 pine species
(depending on the author) and is considered a center of pine diversity; it also accounts for
almost half of the total number of pine species in the world [10]. On the other hand, Mexican
pines are very important because they supply 85% of the national timber production and
are the main support for the forest industry [11].

For Mexico, some research has been carried out to define the genetic variation of
the genus Pinus. In the past, provenance and progeny tests have been the most widely
used [12–14], but recently, molecular characterization has been the main objective of several
studies to define genetic diversity [15]. Although there is genetic information for most Pinus
species, their conservation efforts are limited, and the proposals to conserve them are few.
For Pinus arizonica (Engelm.) Shaw, Pinus ayacahuite Ehrenb. ex Schltdl., P. cembroides Zucc.,
Pinus chiapensis (Martínez) Andresen, P. douglasiana Martínez, Pinus durangensis Martínez,
Pinus engelmannii Carrière, Pinus greggii Engelm. ex Parl., Pinus hartwegii Lindl., P. leiophylla
Schiede ex Schltdl. et Cham., Pinus montezumae Lamb., Pinus oocarpa Schiede ex Schltdl.,
Pinus patula Schiede ex Schltdl. & Cham., Pinus pseudostrobus Lindl., and Pinus strobiformis
Engelm., some research analyzes genetic diversity [16–29] and discusses options for in
situ or ex situ conservation [24–26,30]; however, these studies did not define any zone for
genetic conservation, except for P. douglasiana.

In this sense, the authors of [31] prioritized the genetic conservation of four pine
species (P. greggii Engelm. ex Parl., P. oocarpa Schiede ex Schltdl., P. patula Schiede ex
Schltdl. & Cham., and P. pseudostrobus Lindl.) based on establishing a network with genetic
conservation units (GCUs), but no other work has been recorded. The gene conservation
network is a tool to evaluate the plasticity, adaptation, and migration potential of tree
species that face environmental changes [8]. For this reason, it is imperative to define
more GCU for other pine species in order to start their genetic conservation. On the other
hand, Mexican legislation establishes: “Conserve and protect the country’s forest genetic
resources”, but the way to implement it has not yet been defined.

Based on the above and due to the need to establish a genetic conservation network
for pine species, the objectives of this work were to define genetic conservation units
and propose measures for the conservation and sustainable use of 18 Mexican pines.
The distribution of the species was defined at the national level and in the germplasm
transfer zones, the gene conservation units were determined based on a set of minimum
requirements, and finally, the use and importance of genetic resources were analyzed.

2. Materials and Methods
2.1. Species and Distribution

Eighteen Mexican pine species were chosen for this study: P. arizonica (Engelm.) Shaw,
P. ayacahuite Ehrenb. ex Schltdl., P. cembroides Zucc., P. chiapensis (Martínez) Andresen,
P. devoniana Lindl., P. douglasiana Martínez, P. durangensis Martínez, P. engelmannii Carrière,
P. hartwegii Lindl., Pinus jeffreyi Balf., Pinus lawsonii Roezl ex Gordon, P. leiophylla Schiede
ex Schltdl. et Cham., Pinus maximartinezii Rzed., P. maximinoi H. E. Moore, P. montezumae
Lamb., Pinus quadrifolia Parl. ex Sudw., P. strobiformis Engelm., and Pinus teocote Schiede ex
Schltdl. et Cham. These species are distributed across the country, and some of them are
found in more than one of the temperate mountain ranges (Sierra Madre Occidental, Sierra
Made Oriental, Eje Neovolcánico Transversal, Sierra Madre del Sur, and Sierra Madre Cen-
troamericana and Altos de Chiapas) which occupy diverse habitats [32,33](Supplementary
Materials Table S1).
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The species distributions were determined based on geographic data (latitude and lon-
gitude) using the plots of the National Forest and Land Inventory (NFLI, 2004 to 2007 [34]),
which covers Mexico in a systematic stratified random sampling with a grid of 5 km (Sup-
plementary Materials Figure S1). Plots which considered forest plantations were removed.
The geographic data were presented using QGIS software 3.28.2. [35].

2.2. Genetic Zones

The germplasm transfer zones (equivalent to seed zones) were used as a proxy because
genetic zones are still undefined for the country. Seed zones are homogeneous areas in
terms of climate and latitudinal or longitudinal distribution [36] for regulating seeds,
fruits, and vegetative material. These seed transfer zones were previously defined by
the Mexican National Forest Commission (CONAFOR by its Spanish acronym), and are
available at https://www.gob.mx/conafor (accessed on 8 August 2022). The genetic zones
were obtained for the 18 Mexican pines species by overlapping their distribution with
the germplasm transfer zones. All genetic zones with less than 20 trees for each species
reported in the NFLI were excluded from subsequent analysis. For the geographic data,
QGIS software 3.28.2. was used [35].

2.3. Conservation Units

Genetic conservation units (GCU) were defined as an in situ conservation strategy. It
was followed a set of minimum requirements for defining the units based on population
size, management, monitoring, and ownership [37] (Supplementary Materials Table S2).
We selected at least one GCU per genetic zone and species, but in fragmented distribution,
one unit was selected from each patch. During the selection, it was prioritized extensive
and centered populations in the genetic zone or patch. For each genetic zone, first, we
chose the populations characterized in previous genetic studies or provenance or progeny
trials [12,17,18,22–29,38–89] (Table S3), which were selected for possessing representative
trees within the zones. The previous studies and trials were obtained from an exhaustive
documentary review from printed and digital scientific journals. Secondly, they were cho-
sen populations located in seed stands defined by the Mexican National Forest Commission
(CONAFOR, information available for 2021 at https://www.gob.mx/conafor, accessed on
5 September 2022). Thirdly, we selected populations from protected areas for biodiversity
conservation established by the Mexican Commission for Biodiversity (CONABIO, infor-
mation for 2016 available at http://www.gob.mx/conabio, accessed on 7 September 2022),
instead private ownership. Finally, we selected populations situated in private forests. The
geographic data were represented using QGIS software 3.28.2 [35].

2.4. Use of Genetic Resources

For each genetic zone, the presence of germplasm production units (seed stands or
seed orchards) were used in order to define the use and importance of genetic resources.
We assumed that the effort and investment during the establishment and maintenance
of those units was an economic indicator of the species in the area. Then, genetic trials
established by different institutions, that is, provenance and progeny trials, were used,
as they report information about populations identified for choosing forest reproductive
material with well-known genetic backgrounds.

2.5. Importance of Genetic Zones for Conservation and Sustainable Use

Based on the previous information, six species indicators were collected in all genetic
zones: the number of trees sampled by the NFLI (ni), the number of populations with
molecular data (nmk), the number of populations with seed stands (seed stand plus seed
area) (nst), the number of individuals selected for progeny tests (nis), the number of popu-
lations present in provenance tests (npt), and the number of seed orchards (nso). Finally,
we estimated the number of GCUs (ng). For each species, their status was calculated by
applying indicators assigned and adapted from the EUFORGEN program [90] (Table 1).

https://www.gob.mx/conafor
https://www.gob.mx/conafor
http://www.gob.mx/conabio
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Table 1. Indicators of the genetic zones in conservation and management of genetic resources.

Indicator 1 Description

I1 Number of genetic zones Number of genetic zones with the presence of the species

I2 Molecular characterization effort 2
% of genetic zones with at least 1 sample in molecular studies = Number of

genetic zones with the presence of molecular studies of the
species/Number of genetic zones with the presence of the species

I3 Provenance characterization effort
% of genetic zones with at least 1 population in provenance test = Number

of genetic zones with the presence of provenance studies of the
species/Number of genetic zones with the presence of the species

I4 Progeny characterization effort
% of genetic zones with plus trees in progeny tests = Number of genetic
zones with the presence of progeny studies of the species/Number of

genetic zones with the presence of the species

I5 Seed stands index
% of genetic zones with at least 1 forest seed production unit = Number of
genetic zones with the presence of seed stands of the species/Number of

genetic zones with the presence of the species

I6 Seed orchard index
% of genetic zones with at least 1 seed orchard = Number of genetic zones
with the presence of seed orchards of the species/Number of genetic zones

with the presence of the species

I7 Genetic conservation index
% of genetic zones with at least 1 conservation unit identified = Number of

genetic zones with the presence of genetic conservation units of the
species/Number of genetic zones with the presence of the species

1 I2, I3, I4, and I6 indicators used data from previous studies recorded in scientific journals, and the I5 indicator
was estimated from CONAFOR information. 2 One sample was defined by stand/population.

The importance of the genetic zones was calculated using the previous information
published by studies [91–93], which defined their reforestation and restoration potential,
and timber production by genetic zone. In these studies, a proportional assignment to
each genetic zone was made using as a basis the distribution of the 18 species and those
harbored in genetic zones. We also determined a value for conservation and a value for
breeding for the different genetic zones of the species in a subjective scale from 1 to 4 [31],
with 4 being the highest priority. For this, the expert knowledge and the recommendations
established by the papers or reports previously analyzed were considered.

3. Results
3.1. Species in Genetic Zones

Twenty-three genetic zones were detected and harbored at least one population of
the studied species. Particularly, eight zones included 11–13 species, 5 zones included
1–3 species, and 10 zones included 5–9 species (Figure 1). Pinus teocote, P. cembroides,
P. devoniana, P. maximinoi, P. douglasiana, and P. leiophylla were the most widely distributed
(18, 16, 16, 13, 12, and 12 genetic zones, respectively), P. arizonica var. cooperi, P. quadrifolia,
and P. jeffreyi had a more restricted distribution (4, 4, and 1 genetic zones, respectively),
and P. durangensis, P. engelmannii, P. hartwegii, P. montezumae, P. arizonica, P. ayacahuite,
P. chiapensis, P. lawsonii, P. maximartinezii, and P. strobiformis had a medium distribution (9, 9,
9, 9, 7, 7, 7, 7, 7, and 7 genetic zones, respectively).
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Figure 1. Natural populations of target species distributed in the genetic zones from Mexico.

3.2. Genetic Conservation Units

For the studied species, 173 areas for established GCUs were detected (Figure 2 and
Supplementary Materials Table S4). Specifically, 13–20 areas for P. leiophylla, Pinus teocote,
P. cembroides (with two subspecies: bicolor and cembroides), P. devoniana, and P. douglasiana;
7–12 for P. maximinoi, P. engelmannii, P. montezumae, P. durangensis, P. strobiformis, P. hartwegii,
P. arizonica, and P. lawsonii, and 1–2 for P. arizonica var. cooperi, P. ayacahuite var. ayacahuite,
P. cembroides subsp. cembroides, P. ayacahuite var. veitchii, P. cembroides subsp. bicolor, P. jeffreyi,
P. quadrifolia, P. cembroides subsp. lagunae, P. cembroides subsp. orizabensis, P. chiapensis, and
P. maximartinezii. With respect to the selection criteria, 50% of the GCU were selected from
areas with genetic information reported in previous research. In the absence of genetic
information, 5% of GCU were selected from seed stands defined by CONAFOR and the
other 45% in natural forests recorded for NFLI. Additionally, 38% of the GCU were chosen
from protected areas.
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3.3. Use of Genetic Resources

For the target species, the conservation efforts and use of genetic resources by genetic
zone were quite contrasting (Supplementary Materials Tables S5–S9). The genetic charac-
terization was null or narrow for some species and regions, that is, P. jeffreyi, P. lawsonii,
P. maximartinezii, P. quadrifolia, and P. cembroides subsp. orizabensis, but broader for others,
that is, P. arizonica. The efforts to use forest reproductive material were reduced and concen-
trated on selecting seed stands (Table S7), for example, P. arizonica and P. durangensis had
more seed stands than other species (26 and 20, respectively), but few or no seed orchards
(2 and 0, respectively) or provenance/progeny trials (0 for both species). We detected many
gaps in different regions for all of the species, but some zones had no efforts to use forest
reproductive material; that is, I.2, IV.1, V.2, VIII.1, VIII.3, VIII.4, IX.2, XII.1, XII.2, XII.5, XIII.1,
XIV.1, XIV.2, and XIV.3 did not record use of any genetic resources.

3.4. Conservation and Management of Genetic Resources

The conservation efforts, characterization, and use of forest genetic resources for
the 18 species were incomplete (Table 2). Most of the genetic zones had gaps for the
characterization of forest genetic resources or even seed production. Molecular studies
were null for P. jeffreyi, P. lawsonii, P. maximartinezii, P. quadrifolia, and low for P. devoniana;
the rest of the species ranged from 100 to 22.22% where P. strobiformis and P. ayacahuite
possessed the higher values (100 and 85.71%, respectively). P. arizonica and P. leiophylla
were the only species that had seen seed orchards established (I6 > 0). Provenance and
progeny trials had been stablished for a few species, in which their efforts were limited
(I3 and I4 > 0). P. arizonica and P. durangensis had more forest reproductive units, covered
several states, and were used for reforestation and restoration of degraded lands and
timber production.

3.5. Importance of Genetic Zones for Conservation and Use of Genetic Resources

For reforestation and restoration areas, XII.4, XII.5, X.3, X.2, XII.1, V.3, XII.2, and
XV.1 zones were the most important due to having the potential of seedling production,
germplasm production units, and seed conservation banks (see [91]); whereas for timber
production, X.3, V.3, XII.5, XII.3, X.1, XII.2, III.1, and III.2 were the best zones due to their
amount of timber harvested and used for the industry (see Tables 1 and 2 from [93]). Based
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on this information, it was defined that V.3, X.2, X.3, XII.1, XII.2, XII.4, XII.5, and XV.1
were the most suitable areas of germplasm for the target species studied (Figure 3), which
presented the highest potential for conservation and breeding. Although they were not the
genetic zones with the greatest number of trees inventoried, they were the most diverse in
the number of species and the ones where the actions dedicated to the conservation and
use of genetic resources were more intensive (Table 3).
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Table 2. Indicators of the conservation and management of genetic resources.

Code Indicator 1 AR 2 AY CE CH DE DO DU EN HA JE LA LE MM MA MO QU ST TE Media

I1 Number of genetic zones 8 7 16 7 16 12 9 9 9 1 7 12 7 13 9 4 7 18 10
I2 Molecular characterization effort 3 27.27 85.71 50.00 71.43 6.25 33.33 44.44 44.44 66.67 0.00 0.00 66.67 0.00 53.85 44.44 0.00 100.00 22.22 39.82
I3 Provenance characterization effort 0.00 14.29 12.50 0.00 0.00 0.00 0.00 11.11 11.11 0.00 0.00 8.33 0.00 15.38 11.11 0.00 0.00 5.56 4.97
I4 Progeny characterization effort 0.00 14.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.33 0.00 7.69 0.00 0.00 0.00 5.56 1.99
I5 Seed stands index 27.27 14.29 0.00 14.29 25.00 25.00 33.33 44.44 22.22 100.00 14.29 16.67 0.00 15.38 33.33 25.00 0.00 11.11 23.42
I6 Seed orchard index 18.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.33 0.00 0.00 0.00 0.00 0.00 0.00 1.47
I7 Genetic conservation index 54.55 57.14 75.00 14.29 68.75 83.33 55.56 77.78 66.67 100.00 100.00 91.67 14.29 84.62 88.89 25.00 85.71 66.67 67.22

1 I2, I3, I4, and I6 indicators used data from previous studies recorded in scientific journals, and the I5 indicator was estimated from CONAFOR information. 2 AR—Pinus arizonica,
AY—P. ayacahuite, CE—P. cembroides, CH—P. chiapensis, DE—P. devoniana, DO—P. douglasiana, DU—P. durangensis, EN—P. engelmannii, HA—P. hartwegii, JE—P. jeffreyi, LA—P. lawsonii,
LE—P. leiophylla, MM—P. maximartinezii, MA—P. maximinoi, MO—P. montezumae, QU—P. quadrifolia, ST—P. strobiformis, TE—P. teocote. 3 Based on 1 sample by stand/population.

Table 3. Importance for conservation and use of forest genetic resources of pines by genetic zone.

Genetic Zone Trees: National Forest Inventory
Value for Conservation (1 to 4)

AR AY CE CH DE DO DU EN HA JE LA LE MM MA MO QU ST TE

I.1 606 - - 1 - - - - - - 4 - - - - - 4 - -
I.2 25 - - 1 - - - - - - - - - - - - - - -

III.1 20192 2 - 4 - - 1 1 4 - - - 2 - - - - 2 1
III.2 28994 4 - 3 1 1 2 4 4 - - - 2 - 1 - - 4 1
III.3 30663 3 - 3 1 1 1 2 4 - - - 3 - 1 - 1 4 4
III.4 5869 1 - 2 - 2 3 1 2 - - - 2 1 2 - - 1 1
IV.1 56 - - 1 - - - 1 - - - - - - - - - - -
V.1 340 1 - 1 - - - - 1 - - - 1 - - - 1 - 1
V.2 875 1 - 2 - - - - - - - - - - - - - - -
V.3 4476 1 4 4 1 1 - - 1 2 - - - - 2 1 1 1 1

VIII.4 8 - - - - - - - - - - - - - - - - - 1
IX.2 1499 - - 2 - 1 - 1 - - - - - - - - - 1 1
X.1 1812 - - 1 - 3 4 1 1 1 - - 1 - 3 - - - 1
X.2 1645 - - - - 3 - - - 3 - 4 2 - - 3 - - 1
X.3 3903 - 3 3 2 4 1 1 - 4 - 1 4 - 4 4 - - 4

XII.1 538 - - - - 2 1 - 3 1 - 1 1 - 1 1 - 1 -
XII.2 795 - 1 - 1 1 2 - - 1 - 1 - 1 2 - - - 1
XII.3 1480 - 2 1 1 2 1 1 - 1 - 2 1 1 3 1 - - 1
XII.4 2976 - 1 - - 2 1 - 1 1 - 4 1 1 4 1 - - 2
XII.5 1976 1 2 1 4 2 1 - - 1 - 2 1 4 1 1 - - 1
XIV.1 596 - 1 1 - 2 - - - - - - - - 2 1 - - 1
XIV.2 105 - - - - 1 - - - - - - - 1 1 1 - - 1
XV.1 111 - - - - 1 1 - - - - - - 1 3 - - - 1
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4. Discussion

The priority zones were defined to help the conservation and the use of forest genetic
resources in 18 Mexican pine species. Based on the germplasm transfer zones [36] as a
proxy for genetic zones, 173 areas have been identified for establishing conservation units
into 22 genetic zones. Additionally, it was considered that eight genetic zones could supply
the forest reproductive material in order to be used for the species’ afforestation, restoration,
and for establishing plantations.

We detected that some species were distributed more than others, and have high
levels of genetic variation due to their biological characteristics; for example, P. cembroides
is one pine that harbors more than one temperate mountain range, and P. teocote is the most
abundant and widespread in Mexico, both having a high level of genetic diversity [15,51].
It is possible that the species’ distributions are influenced by the environment and their
ecological factors. This is in line with the authors of [39], who determined that elevation
is an important factor that drives the geographical location and genetic diversity of the
species. Additionally, they pointed out that P. cembroides possesses the ability to adapt to its
growth conditions. On the other hand, some species have a more restricted distribution
but possess high genetic variation as P. arizonica [15,52], which is according to the authors
of [22] who studied forests in Chihuahua state. Based on the results of study [38], this is
possible due to their populations having enough individuals and sufficient outcrossing to
prevent genetic drift.

Most of the species have potential for restoration of land; consequently, they are used
during reforestation or conservation programs, for example, seedlings of P. cembroides and
P. devoniana are the most produced in the nurseries for the reforestation of areas across the
country [91], while P. douglasiana, P. maximinoi, and P. teocote are species most harvested
and used in the forest industry [93]. P. cembroides is a tree to tolerate drought and is able
to grow in sites in poor soils [94], while P. devoniana is a pine to resist drought [95]. These
characteristics have been attractive for nurserymen during seedling production and for
planters in the restoration of semi-arid regions and dry zones. However, sometimes hard
conditions in the sites selected (hydric stress and low mineral nutrition) can strongly reduce
their survival [96]. For conservation, P. cembroides has been suggested to promote the
natural functions of forest dynamics in reforested areas [97].

Although there are efforts to conserve Mexican pine species, the preservation of their
genetic resources is limited because the current legislation only points out the use of forest
genetic resources [98,99] but does not define conservation strategies. The little conser-
vation actions made for governmental agencies depend on their budget, which is more
scarce each year. These conditions demand some activities during forest management
proposed by the authors of [100] that help to maintain the populations of target species as
(i) limiting livestock grazing, (ii) controlling forest fires, (iii) eliminating competing vege-
tation, (iv) expanding the present populations by reforestation outside the priority pop-
ulations’ boundaries using local reproductive material, (v) finding new and potentially
suitable locations and establishing new populations that are sufficiently large to be genet-
ically viable, (vi) establishing provenance trials and traditional progeny tests as genetic
archives, and (vii) storing seeds in gene banks.

The results showed that the information about genetic characterization for most species
is not enough; however, the results can help start a national conservation program for
the species most used in forest management. Some of the target species have been more
characterized than others which could be due to their economic importance, for example,
P. douglasiana or P. arizonica, which produce an average of 56 554 and 13 410 m3 year–1

timber, respectively [93]. The conservation of genetic diversity must be a priority because
it is the basis for the eventual adaptation and resilience of tree species studied regarding
environmental stress and change [101]. On the other hand, although there is a Mexican
network of Natural Protected Areas (NPA) that harbor some of the tree species and could
be used as genetic diversity reserves, this is insufficient for future conservation needs.
According to the authors of [102], the protection of pine species is inadequate because
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they possess a small percentage of the area of the total species, therefore, they suggest
directing this strategy (NPA) to species with limited distribution such as P. cembroides
subsp. cembroides.

The purpose of defining genetic conservation units is to generate a network in the
country in order to maintain the Mexican pines which are facing current environmental
changes in other parts of the world; for example, in Europe, the establishing of genetic
conservation units is a tool to assess, monitor, and support the conservation of forest
genetic resources [90,103]. This action can allow the future use of pines from Mexico in
three programs: breeding, production, and conservation.

The target species have high genetic diversity. According to the authors of [104],
the Mexican pines possess high levels of genetic variation and relatively little genetic
differentiation among populations. However, there are other species with low levels of
diversity such as P. greggii Engelm. ex Parl., which is used in national or international
breeding programs [12,80]. P. ayacahuite, P. leiophylla, and P. teocote are some pines that
have provenance trials to define their potential for commercial plantations, for example,
P. ayacahuite is one of the species most used for Christmas tree producers [105] while
P. leiophylla and P. teocote are managed in natural forests for timber production [93]. Facing
climatic changes, adaptive trials have been tested in the studied species: P. ayacahuite,
P. arizonica (water availability and water stress) [106,107]; P. arizonica, P. leiphylla, and
P. teocote (fire damage) [108]; P. arizonica, P. ayacahuite, P. cembroides, P. chiapensis, P. devoniana,
P. durangensis, P. engelmannii, P. hartwegii, P. jeffreyi, P. lawsonii, P. maximartinezii, P. maximinoi,
P. montezumae, P. strobiformis, P. teocote (frost resistance) [109], and Pinus cembroides (salt
tolerance) [110].

Some of the areas selected could be affected by illegal extraction of timber [111] or other
factors that limit genetic conservation, for example, land use change for agriculture [112].
However, the establishing of GCUs in protected areas can help with maintaining them
in the long term because the rate of forest loss is lower [113]. In these areas, the financial
resources, human capacity, and appropriate equipment are the main aspects that have the
greatest effect on forest land loss [114]. For this reason, administration and finance must be
continually evaluated during the management of the protected areas in order to preserve
the UCGs selected.

On the other hand, the diversity of pines from Mexico across the mountain regions
promotes habitats that harbor local wildlife. This is an element to add more importance
to forest conservation. This is in line with the authors of [115], who defined that natural
forests dominated by P. montezumae and P. pseudostrobus conform to the best habitat to
comprise the highest bird species richness from Northeast Michoacán, Mexico, for exam-
ple, Hylocharis leucotis, Archilochus alexandri, Selasphorus platycercus, Trogon mexicanus, and
Melanerpes formicivorus.

Finally, we suggest incorporating these GCUs into a national management program
based on three steps. Firstly, the legislation must promote and pay for the conservation of
the forest resources to the forest owners as this action will motivate the society to protect
the GCUs against fires, illegal extraction, grazing, or changes in land use. Secondly, there
must be education provided for the communities regarding banning the extraction of
forest resources near and inside of GCUs, for example, wood, land, and resin. Thirdly,
government institutions, universities, and research institutes must work together to develop
a plan to establish the UCGs defined in this work, install common garden experiments in
order to evaluate the future effects of climatic changes and analyze adaptation strategies,
and promote the conservation ex situ of germplasm in seed banks, for example, in the
National Center for Genetic Resources (CNRG by its Spanish acronym). This plan must be
accompanied mainly by silvicultural guidelines, activities for the prevention and control
of pests and diseases, use of local seed sources for stand renewal, and control of the
germplasm movement.
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5. Conclusions

In this study, 173 genetic conservation units were defined for 18 pine species from Mex-
ico in their natural range of distribution and some actions determined for their conservation
and sustainable use. P. leiophylla, Pinus teocote, P. cembroides (with two subspecies: bicolor and
cembroides), P. devoniana, and P. douglasiana were the species with more genetic conservation
units due to their broad distribution. These harbored similar or different genetic zones due
to their adaptation to different ecological requirements (temperature, rainwater, soil). For
the number of areas detected for genetic conservation units, half of them contain genetic
information which was reported in journals, and almost 40% of them were proposed in
protected areas based on our selection. We found that most of the forest reproductive
material used currently is collected from seed stands, and the use of seeds from breeding
trials is scarce. The genetic characterization of the target species has gaps in the genetic
zones. Therefore, this demands, in the short term, future studies regarding those species
most used in the forest industry, breeding programs, and restoration of degraded lands.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/d15060735/s1, Table S1: climatic and edaphic patterns of
target species [32,33] are cited here, Table S2: minimum requirements for genetic conservation units,
Table S3: previous genetic studies or provenance or progeny trials reviewed [12,17,18,21–29,32,33,38–89]
are cited here, Table S4: proposed conservation units for the target species, Table S5: inventoried trees
by genetic zone and species, Table S6. genetic characterization by genetic zone and species, Table S7:
germplasm production units by genetic zone and species, Table S8: germplasm orchards by genetic zone
and species, Table S9: conservation units by genetic zone and species, Figure S1: Species distribution in
Mexico using data from the NFLI.
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