The Effect of Floods on Nest Survival Probability of Common Sandpiper Actitis hypoleucos Breeding in the Riverbed of a Large Lowland European River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Study
2.3. Water Level Assessment for Each Nest Site
2.4. Estimating the Probability of Avoiding Flooding of the Nest
2.5. Assessing the Effect of the FED on the Probability of Avoiding Flooding of the Nest
2.6. Assessing the Effect of RNH on the Probability of Avoiding Flooding of the Nest
3. Results
3.1. Characteristics of Found Nests
3.2. Assessment of the Probability of Avoiding Flooding of the Nest during a 36-Year Period
3.3. Effect of FED on Probability of Avoiding Flooding of the Nest
3.4. Effect of RNH on Probability of Avoiding Flooding of the Nest
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Model No. | Model Structure | BIC | ΔBIC |
---|---|---|---|
1 | spline(h) + FED + FED2 | −7333.18 | 0.00 |
2 | spline(h) + FED + FED2 + FED3 | −7331.06 | 2.12 |
3 | spline(h) + FED + FED2 + FED3 + FED4 | −7329.69 | 3.48 |
3 | spline(h) + FED + FED2 + FED3 + FED4 | −7329.69 | 3.48 |
Model No. | Model Structure | BIC | ΔBIC |
---|---|---|---|
1 | Ln(RNH) + RNH | −129.55 | 0.00 |
2 | Linear splines, 1 knot | −129.25 | 0.30 |
3 | Ln(RNH) | −126.94 | 2.61 |
3 | 3rd degree polynomial | −126.29 | 3.26 |
References
- Ward, J.V.; Tockner, K.; Schiemer, F. Biodiversity of floodplain river ecosystems: Ecotones and connectivity. Regul. Rivers Res. Manag. 1999, 15, 125–139. [Google Scholar] [CrossRef]
- Tockner, K.; Malard, F.; Ward, J.V. An extension of the flood pulse concept. Hydrol. Process. 2000, 14, 2861–2883. [Google Scholar] [CrossRef]
- Sofi, M.S.; Bhat, S.U.; Rashid, I.; Kuniyal, J.C. The natural flow regime: A master variable for maintaining river ecosystem health. Ecohydrology 2020, 13, e2247. [Google Scholar] [CrossRef]
- Bayley, P. Understanding large river-floodplain ecosystems. BioScience 1995, 45, 153–158. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The natural flow regime: A paradigm for river conservation and restoration. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Ballinger, A.A.; Lake, P.S. Energy and nutrient fluxes from rivers and streams into terrestrial food webs. Mar. Freshw. Res. 2006, 57, 15–28. [Google Scholar] [CrossRef]
- Ward, J.V.; Tockner, K.; Arscott, D.; Claret, C. Riverine landscape diversity. Freshw. Biol. 2002, 47, 517–539. [Google Scholar] [CrossRef] [Green Version]
- Zeiringer, B.; Seliger, C.; Greimel, F.; Schmutz, S. River hydrology, flow alteration, and environmental flow. In Riverine Ecosystem Management; Schmutz, S., Sendzimir, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 67–89. [Google Scholar] [CrossRef]
- Figarski, T.; Kajtoch, Ł. Alterations of riverine ecosystems adversely affect bird assemblages. Hydrobiologia 2015, 744, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Božič, L.; Denac, D. Population dynamics of five riverbed breeding bird species on the lower Drava River, NE Slovenia. Acrocephalus 2017, 38, 85–126. [Google Scholar] [CrossRef]
- Keller, M.; Kot, H.; Dombrowski, A.; Rowiński, P.; Chmielewski, S.; Bukaciński, D. Birds of the Middle Vistula River; Mazowiecko-Świętokrzyskie Towarzystwo Ornitologiczne: Pionki, Poland, 2017; (In Polish with English summary). [Google Scholar]
- Poff, N.L.R. Beyond the natural flow regime? Broadening the hydro-ecological foundation to meet environmental flows challenges in a non-stationary world. Freshw. Biol. 2018, 63, 1011–1021. [Google Scholar] [CrossRef]
- Belmar, O.; Ibáñez, C.; Forner, A.; Caiola, N. The influence of flow regime on ecological quality, bird diversity, and shellfish fisheries in a lowland Mediterranean river and its coastal area. Water 2019, 11, 918. [Google Scholar] [CrossRef] [Green Version]
- D’Amico, F.; Manel, S.; Mouchès, C.; Ormerod, S.J. River birds in regulated rivers: Cost or benefit? Verh. Internat. Verein. Limnol 2000, 27, 167–170. [Google Scholar] [CrossRef]
- Bolle, H.J.; Menenti, M.; Rasool, S.I. (Eds.) Second Assessment of Climatechange for the Baltic Sea Basin; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef] [Green Version]
- Starkel, L. Evolution of the Vistula River Valley since the Last Glaciation till Present; Polish Academy of Sciences: Warsaw, Poland, 2001; (In Polish with English summary). [Google Scholar]
- Romanowski, J.; Matuszkiewicz, J.; Kowalczyk, K.; Kowalska, A.; Kozlowska, A.; Solon, J.; Bouwma, I.M.; Middendorp, H.; Reijnen, R.; Roemeijer, R.; et al. Evaluation of Ecological Consequences of Development Scenarios for the Vistula River Valley; Vistula Econet Development and Implementation: Warsaw, Poland, 2005. [Google Scholar]
- Sosnowska, A. Dynamics of mid-channel bars in the Middle Vistula River in response to ferry crossing abutment construction. Open Geosci. 2020, 12, 290–298. [Google Scholar] [CrossRef]
- Wilk, T.; Chodkiewicz, T.; Sikora, A.; Chylarecki, P.; Kuczyński, L. Red List of the Birds of Poland; Polish Society for the Protection of Birds: Marki, Poland, 2020; (In Polish with English summary). [Google Scholar]
- Wilk, T.; Jujka, M.; Krogulec, J.; Chylarecki, P. (Eds.) Important Bird Areas of International Importance in Poland; Polish Society for the Protection of Birds: Marki, Poland, 2010. [Google Scholar]
- Cramp, S.; Simons, K.E.L. The Birds of the Western Palearctic; Waders to Gulls; Oxford University Press: Oxford, UK, 1983; Volume III. [Google Scholar]
- Van Gils, J.; Wiersma, P. Common Sandpiper (Actitis hypoleucos). In Handbook of the Birds of the World; Del Hoyo, J., Elliot, A., Sargatal, J., Eds.; Volume 3 (Hoatzin to Auks); Lynx Edicions: Barcelona, Spain, 1996; p. 513. [Google Scholar]
- Diez, F.; Peris, S.J. Habitat selection by the Common Sandpiper (Actitis hypoleucos) in west-central Spain. Ornis Fenn. 2001, 78, 127–134. [Google Scholar]
- Hammer, T.; Liker, A.; Szentirmai, I. Habitat preference of common sandpipers (Actitis hypoleucos) along the River Rába, Hungary. Ornis Hung. 2013, 21, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Wilk, T.; Bobrek, R.; Pępkowska-Król, A.; Neubauer, G.; Kosicki, J.Z. (Eds.) The Birds of the Polish Carpathians—Status, Threats, Conservation; Polish Society for the Protection of Birds: Marki, Poland, 2016; (In Polish with English summary). [Google Scholar]
- BirdLife. European Bird Populations, Trends and National Responsibilities; BirdLife International: Cambridge, UK, 2017. [Google Scholar]
- PECMBS. Trends Common Birds in Europe, 2021 Update. Available online: https://pecbms.info/trends-and-indicators/species-trends/ (accessed on 12 September 2022).
- Chodkiewicz, T.; Kuczyński, L.; Sikora, A.; Chylarecki, P.; Neubauer, G.; Ławicki, Ł.; Stawarczyk, T. Population estimates of breeding birds in Poland in 2008–2012. Ornis Pol. 2015, 56, 149–189, (In Polish with English summary). [Google Scholar]
- Chodkiewicz, T.; Neubauer, G.; Bobrek, R.; Chylarecki, P. The report under Article 12 of the Birds Directive in Poland for the period 2013–2018: Status, trends, threats. Biul. Monit. Przyr. 2019, 20, 46, (In Polish with English summary). [Google Scholar] [CrossRef]
- Bukaciński, D.; Keller, M.; Buczyński, A.; Bukacińska, M. Breeding avifauna of the Middle Vistula riverbed in 2009: The variation in species number and distribution in the last 36 years. In Birds of the Middle Vistula River; Keller, M., Kot, H., Dombrowski, A., Rowiński, P., Chmielewski, S., Bukaciński, D., Eds.; Mazowiecko-Świętokrzyskie Towarzystwo Ornitologiczne: Pionki, Poland, 2017; pp. 671–682, (In Polish with English summary). [Google Scholar]
- Elas, M.; Meissner, W. High density of breeding common sandpipers Actitis hypoleucos in the middle Vistula river, Poland. Wader Study 2019, 126, 67–68. [Google Scholar] [CrossRef]
- Holland, P.K.; Robson, J.E.; Yalden, D.W. The breeding biology of the Common Sandpiper Actitis hypoleucos in the Peak District. Bird Study 1982, 29, 99–110. [Google Scholar] [CrossRef]
- Holland, P.K.; Yalden, D.W. Population dynamics of common sandpipers Actitis hypoleucos breeding along an upland river system. Bird Study 1991, 38, 151–159. [Google Scholar] [CrossRef]
- Mee, A.; Whitfield, D.P.; Thompson, D.B.A.; Burke, T. Extrapair paternity in the Common Sandpiper, Actitis hypoleucos, revealed by DNA fingerprinting. Anim. Behav. 2004, 67, 333–342. [Google Scholar] [CrossRef]
- Kajtoch, Ł.; Figarski, T. Bird Study Short-term restoration of riverine bird assemblages after a severe flood. Bird Study 2013, 60, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Kajtoch, Ł.; Piestrzyńska-Kajtoch, A. An assessment of the impact of environmental changes on two riverine bird species. Acta Zoöl. Crac. 2017, 59, 163–175. [Google Scholar] [CrossRef]
- Claassen, A.H. Breeding Ecology and Conservation of Ground-Nesting Waterbirds in North America and Southeast Asia. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 2016. [Google Scholar]
- Claassen, A.H.; Forester, J.D.; Arnold, T.W.; Cuthbert, F.J. Consequences of multiscale habitat selection on reproductive success of riverine sandbar-nesting birds in Cambodia. Avian Biol. Res. 2018, 11, 108–122. [Google Scholar] [CrossRef]
- Espie, R.H.M.; James, P.C.; Brigham, R.M. The effects of flooding on piping plover Charadrius melodus reproductive success at Lake Diefenbaker, Saskatchewan, Canada. Biol. Conserv. 1998, 86, 215–222. [Google Scholar] [CrossRef]
- Dombrowski, A.; Kot, H.; Bukaciński, D. Threats to birds of the Middle Vistula River and their habitats. In Birds of the Middle Vistula River; Keller, M., Kot, H., Dombrowski, A., Rowiński, P., Chmielewski, S., Bukaciński, D., Eds.; Mazowiecko-Świętokrzyskie Towarzystwo Ornitologiczne: Pionki, Poland, 2017; pp. 671–682, (In Polish with English summary). [Google Scholar]
- Bukaciński, D.; Bukacińska, M.; Buczyński, A. Threats and the active protection of birds in a riverbed: Postulates for the strategy of the preservation of the middle Vistula River avifauna. Stud. Ecol. Bioethicae 2018, 16, 5–23. [Google Scholar] [CrossRef]
- Royan, A.; Prudhomme, C.; Hannah, D.M.; Reynolds, S.J.; Noble, D.G.; Sadler, J.P. Climate-induced changes in river flow regimes will alter future bird distributions. Ecosphere 2015, 6, 50. [Google Scholar] [CrossRef] [Green Version]
- Finch, D.M. House wrens adjust lying dates and clutch size in relation to annual flooding. Wilson Bull. 1991, 103, 25–43. [Google Scholar]
- Zhang, W.; Liu, T.; Cheng, K.; Rummy, P. Declining water depth delayed the breeding time of Fulica atra, not human disturbance. PLoS ONE 2018, 13, e0202684. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Zhang, J.; Liu, J.; Yang, C.; Liang, W.; Møller, A.P. Adaptation or ecological trap? Altered nest-site selection by Reed Parrotbills after an extreme flood. Avian Res. 2019, 10, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Plaschke, S.; Bulla, M.; Cruz-López, M.; del Ángel, S.G.; Küpper, C. Nest initiation and flooding in response to season and semi-lunar spring tides in a ground-nesting shorebird. Front. Zool. 2019, 16, 15. [Google Scholar] [CrossRef] [PubMed]
- Dankers, R.; Feyen, L. Climate change impact on flood hazard in Europe: An assessment based on high-resolution climate simulations. J. Geophys. Res. Atmos. 2008, 113, D19105. [Google Scholar] [CrossRef]
- UNDRR. The Human Cost of Disasters: An Overview of the Last 20 Years (2000–2019); UNDRR: Geneva, Switzerland, 2020. [Google Scholar]
- World Meteorological Organization. Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970–2019); World Meteorological Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Bailey, L.D.; Ens, B.J.; Both, C.; Heg, D.; Oosterbeek, K.; van de Pol, M. No phenotypic plasticity in nest-site selection in response to extreme flooding events. Philos. Trans. R Soc. B Biol. Sci. 2017, 372, 20160139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kajak, Z. The Vistula river and its riparian zones. Hydrobiologia 1993, 251, 149–157. [Google Scholar] [CrossRef]
- Wrzesinski, D.; Sobkowiak, L. Transformation of the flow regime of a large allochthonous river in central Europe-an example of the Vistula River in Poland. Water 2020, 12, 507. [Google Scholar] [CrossRef] [Green Version]
- Gacka-Grześkiewicz, E. Vistula as an Ecological Corridor. State-Functioning-Threats; Fundacja IUCN Poland: Warsaw, Poland, 1995; (In Polish with English summary). [Google Scholar]
- Matuszkiewicz, J.; Roo-Zielińska, E. (Eds.) Inter-Embankment of Vistula River as a Peculiar Natural System: Section Pilica—Narew; Polish Academy of Sciences: Warsaw: Poland, 2000; (In Polish with English summary). [Google Scholar]
- Bibby, C.J.; Burgess, N.D.; Hill, D.A.; Mustoe, S.H. Bird Census Techniques; Academic Press: London, UK, 2000. [Google Scholar]
- Elas, M.; Kajzer, K.; Grzębkowski, M.; Koliński, A.; Różycki, A.; Sikora, D.; Wardecki, Ł.; Węgrzynowicz, A. Assessment of the number of breeding pairs of the Common Sandpiper Actitis hypoleucos depending of the survey method. Ornis Pol. 2015, 56, 212–219, (In Polish with English summary). [Google Scholar]
- Colwell, M.A. Egg-laying Intervals in Shorebirds. Wader Study Group Bull. 2006, 111, 50–59. [Google Scholar]
- Liebezeit, J.R.; Smith, P.A.; Lanctot, R.B.; Schekkerman, H.; Tulp, I.; Kendall, S.J.; Tracy, D.M.; Rodrigues, R.J.; Meltofte, H.; Robinson, J.A.; et al. Assessing the development of shorebird eggs using the flotation method: Species-specific and generalized regression models. Condor 2007, 109, 32–47. [Google Scholar] [CrossRef]
- Mee, A. Reproductive strategies in the common sandpiper Actitis hypoleucos. Ph.D. Thesis, Department of Animal & Plant Sciences, University of Sheffield, Sheffield, UK, 2001. [Google Scholar]
- Holland, P.K.; Yalden, D.W. Population dynamics of common sandpipers Actitis hypoleucos in the Peak District of Derbyshire—A different decade. Bird Study 2002, 49, 131–138. [Google Scholar] [CrossRef]
- Quantum GIS Development Team. QGIS Geographic Information System. QGIS Association. 2020. Available online: https://www.qgis.org (accessed on 1 May 2021).
- Kochanek, K.; Karamuz, E.; Osuch, M. Distributed modelling of flow in the middle reach of the river Vistula. GeoPlanet Earth Planet Sci. 2015, 16, 83–107. [Google Scholar] [CrossRef]
- Bewick, V.; Cheek, L.; Ball, J. Statistics review 10: Further nonparametric methods. Crit. Care 2004, 8, 196–199. [Google Scholar] [CrossRef] [Green Version]
- Pohlert, T. Package PMCMRplus. 2022. Available online: https://CRAN.R-project.org/package=PMCMRplus (accessed on 30 April 2022).
- Kotu, V.; Deshpande, B. Clustering. In Data Science; Kotu, V., Deshpande, B., Eds.; Morgan Kaufmann: Burlington, MA, USA, 2019; pp. 221–261. [Google Scholar] [CrossRef]
- Whitley, E.; Ball, J. Statistics review 6: Nonparametric methods. Crit. Care 2002, 6, 509–513. [Google Scholar] [CrossRef]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2014. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org (accessed on 30 April 2022).
- Byrd, R.H.; Lu, P.; Nocedal, J.; Zhu, C. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 1995, 16, 1190–1208. [Google Scholar] [CrossRef]
- Quinn, G.P.; Keough, M.J. Experimental Design and Data Analysis for Biologists; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Burnham, K.; Anderson, D. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach; Springer: New York, NY, USA, 2002. [Google Scholar]
- Bissolli, P.; Friedrich, K.; Rapp, J.; Ziese, M. Flooding in eastern central Europe in May 2010—Reasons, evolution and climatological assessment. Weather 2011, 66, 147–153. [Google Scholar] [CrossRef]
- Nilsson, C.; Reidy, C.A.; Dynesius, M.; Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belletti, B.; Garcia de Leaniz, C.; Jones, J.; Bizzi, S.; Börger, L.; Segura, G.; Castelletti, A.; Van de Bund, W.; Aarestrup, K.; Barry, J.; et al. More than one million barriers fragment Europe’s rivers. Nature 2020, 588, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, C.; Berggren, K. Alterations of riparian ecosystems caused by river regulation. BioScience 2000, 50, 571–584. [Google Scholar] [CrossRef]
- Tonkin, J.D.; Merritt, D.M.; Olden, J.D.; Reynolds, L.V.; Lytle, D.A. Flow regime alteration degrades ecological networks in riparian ecosystems. Nat. Ecol. Evol. 2018, 2, 86–93. [Google Scholar] [CrossRef]
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Magnuszewski, A.; Gutry-Korycka, M. Flood waters flow in the contemporary Vistula River channel. Pr. Stud. Geogr. 2009, 43, 153–162, (In Polish with English summary). [Google Scholar]
- Matuszkiewicz, J.; Chojnacki, J.; Kozłowska, A.; Plitt, J.; Roo-Zielińska, E. The Typological, Spatial and Dynamic Differentiation of the Area between the Floodbanks along the Warsaw Stretch of the Vistula In Inter-Embankment of Vistula River as a Peculiar Natural System: (Section Pilica—Narew); Matuszkiewicz, J., Roo-Zielińska, E., Eds.; Polish Academy of Sciences: Warsaw, Poland, 2000; pp. 31–78, (In Polish with English summary). [Google Scholar]
- Spurr, E.B.; Ledgard, N.J. Population trends of braided river birds on the Ashley River. Nothornis 2016, 63, 73–86. [Google Scholar]
- Knutson, M.G.; Klaas, E.E. Declines in abundance and species richness of birds following a major flood on the Upper Mississippi River. Auk 1997, 114, 367–380. [Google Scholar] [CrossRef]
- Reiley, B.M.; Benson, T.J.; Everitts, J.; Bednarz, J.C. Does flooding effect the apparent survival and body condition of a ground foraging migrant passerine. PLoS ONE 2017, 12, e0175179. [Google Scholar] [CrossRef] [Green Version]
- Royan, A.; Hannah, D.M.; Reynolds, S.J.; Noble, D.G.; Sadler, J.P. River birds’ response to hydrological extremes: New vulnerability index and conservation implications. Biol. Conserv. 2014, 177, 64–73. [Google Scholar] [CrossRef]
- Kozik, R.; Meissner, W.; Listewnik, B.; Nowicki, J.; Lasecki, R. Differences in foraging behaviour of a migrating shorebird at stopover sites on regulated and unregulated sections of a large European lowland river. J. Ornithol. 2022, 163, 791–802. [Google Scholar] [CrossRef]
- Kaznowska, E.; Hejduk, A.; Kempiński, C. The Vistula River low flows in Warsaw in the 21st century. Acta Sci. Pol. 2018, 17, 33–43. [Google Scholar] [CrossRef]
- Kokko, H. Competition for early arrival in migratory birds. J. Anim. Ecol. 1999, 68, 940–950. [Google Scholar] [CrossRef] [Green Version]
- Morrison, C.A.; Alves, J.A.; Gunnarsson, T.G.; Þórisson, B.; Gill, J.A. Why do earlier-arriving migratory birds have better breeding success? Ecol. Evol. 2019, 9, 8856–8864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, M.; Wallander, J.; Oring, L.; Akst, E.; Reed, J.M.; Fleischer, R.C. Adaptive seasonal trend in brood sex ratio: Test in two sister species with contrasting breeding systems. J. Evol. Biol. 2003, 16, 510–515. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elas, M.; Rosendal, E.; Meissner, W. The Effect of Floods on Nest Survival Probability of Common Sandpiper Actitis hypoleucos Breeding in the Riverbed of a Large Lowland European River. Diversity 2023, 15, 90. https://doi.org/10.3390/d15010090
Elas M, Rosendal E, Meissner W. The Effect of Floods on Nest Survival Probability of Common Sandpiper Actitis hypoleucos Breeding in the Riverbed of a Large Lowland European River. Diversity. 2023; 15(1):90. https://doi.org/10.3390/d15010090
Chicago/Turabian StyleElas, Marek, Erik Rosendal, and Włodzimierz Meissner. 2023. "The Effect of Floods on Nest Survival Probability of Common Sandpiper Actitis hypoleucos Breeding in the Riverbed of a Large Lowland European River" Diversity 15, no. 1: 90. https://doi.org/10.3390/d15010090
APA StyleElas, M., Rosendal, E., & Meissner, W. (2023). The Effect of Floods on Nest Survival Probability of Common Sandpiper Actitis hypoleucos Breeding in the Riverbed of a Large Lowland European River. Diversity, 15(1), 90. https://doi.org/10.3390/d15010090