Contrasting Phylogeographic Patterns of Mitochondrial and Genome-Wide Variation in the Groundwater Amphipod Crangonyx islandicus That Survived the Ice Age in Iceland
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Molecular Techniques
2.3. Bioinformatic Pipeline
2.3.1. Single Nucleotide Polymorphisms, Haplotypes and Sequence Datasets Base-Called with pyRAD
2.3.2. Genotype Likelihood Datasets with ANGSD
Dataset Name | Data Type | Min. Cov. | Cl. Data | Nb. Mark. |
---|---|---|---|---|
C2SNPr_br | SNP (random SNP) | 2 | br | 326 |
C2SNPb_br | SNP (best SNP) | 2 | br | 326 |
C2SNPr_cl | SNP (random SNP) | 2 | cl | 230 |
C2SNPb_cl | SNP (best SNP) | 2 | cl | 196 |
C2Hmiss_br | Haplotype (indel missing) | 2 | br | 295 |
C2H5th_br | Haplotype (indel 5th state) | 2 | br | 313 |
C2Hmiss_cl | Haplotype (indel missing) | 2 | cl | 202 |
C2H5th_cl | Haplotype (indel 5th state) | 2 | cl | 228 |
C3SNPr_br | SNP (random SNP) | 3 | br | 108 |
C3SNPb_br | SNP (best SNP) | 3 | br | 108 |
C3SNPr_cl | SNP (random SNP) | 3 | cl | 90 |
C3SNPb_cl | SNP (best SNP) | 3 | cl | 73 |
C3Hmiss_br | Haplotype (indel missing) | 3 | br | 103 |
C3H5th_br | Haplotype (indel 5th state) | 3 | br | 109 |
C3Hmiss_cl | Haplotype (indel missing) | 3 | cl | 71 |
C3H5th_cl | Haplotype (indel 5th state) | 3 | cl | 83 |
C2Seqmiss_br | Sequences the same as C2Hmiss_br | 2 | br | 295 |
C2Seqmiss_cl | Sequences the same as C2Hmiss_cl | 2 | cl | 202 |
C2Seq5th_br | Sequences the same as C2H5th_br | 2 | br | 313 |
C2Seq5th_cl | Sequences the same as C2H5th_cl | 2 | cl | 228 |
C3Seqmiss_br | Sequences the same as C3Hmiss_br | 3 | br | 103 |
C3Seqmiss_cl | Sequences the same as C3Hmiss_cl | 3 | cl | 71 |
C3Seq5th_br | Sequences the same as C3H5th_br | 3 | br | 109 |
C3Seq5th_cl | Sequences the same as C3H5th_cl | 3 | cl | 83 |
C2GLr_br | Genotype likelihood | 2 | br | 310 b |
C2GLr_cl | Genotype likelihood | 2 | Cl a | 300 b |
C3GLr_br | Genotype likelihood | 3 | br | 103 b |
C3GLr_cl | Genotype likelihood | 3 | Cl a | 103 b |
2.4. Mitochondrial Analysis
2.5. Restriction-Site-Associated DNA Sequencing Analysis
2.5.1. Population Differentiation Estimates among Sampling Locations
2.5.2. Congruence Tests among Loci
2.5.3. Population Structure and Relationship among Groups
2.5.4. Introgression Analysis
3. Results
3.1. Mitochondrial Results
3.2. Restriction-Site-Associated DNA Sequencing Results
3.2.1. Description of the Datasets
3.2.2. Differentiation among Populations
3.2.3. Congruence Tests among Loci
3.2.4. Population Structure and Relationship among Groups Using SNP and Haplotype Frequencies
3.2.5. Introgression Tests
4. Discussion
4.1. Methodological Uncertainties with RADseq Data
4.2. The Phylogeographic Pattern of Crangonyx islandicus
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zink, R.M.; Barrowclough, G.F. Mitochondrial DNA under siege in avian phylogeography. Mol. Ecol. 2008, 17, 2107–2121. [Google Scholar] [CrossRef] [PubMed]
- Avise, J.C. Phylogeography: Retrospect and prospect. J. Biogeogr. 2009, 36, 3–15. [Google Scholar] [CrossRef]
- Galtier, N.; Nabholz, B.; Glémin, S.; Hurst, G.D.D. Mitochondrial DNA as a marker of molecular diversity: A reappraisal. Mol. Ecol. 2009, 18, 4541–4550. [Google Scholar] [CrossRef] [PubMed]
- Garrick, R.C.; Bonatelli, I.A.S.; Hyseni, C.; Morales, A.; Pelletier, T.A.; Perez, M.F.; Rice, E.; Satler, J.D.; Symula, R.E.; Thomé, M.T.C.; et al. The evolution of phylogeographic data sets. Mol. Ecol. 2015, 24, 1164–1171. [Google Scholar] [CrossRef] [PubMed]
- Avise, J.C.; Arnold, J.; Ball, R.M.; Bermingham, E.; Lamb, T.; Neigel, J.E.; Reeb, C.A.; Saunders, N.C. Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Evol. Syst. 1987, 18, 489–522. [Google Scholar] [CrossRef]
- Toews, D.P.L.; Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 2012, 21, 3907–3930. [Google Scholar] [CrossRef]
- Bonnet, T.; Leblois, R.; Rousset, F.; Crochet, P.A. A reassessment of explanations for discordant introgressions of mitochondrial and nuclear genomes. Evolution 2017, 71, 2140–2158. [Google Scholar] [CrossRef]
- Kornobis, E.; Pálsson, S.; Kristjánsson, B.K.; Svavarsson, J. Molecular evidence of the survival of subterranean amphipods (Arthropoda) during Ice Age underneath glaciers in Iceland. Mol. Ecol. 2010, 19, 2516–2530. [Google Scholar] [CrossRef]
- Kornobis, E.; Pálsson, S. Discordance in variation of the ITS region and the mitochondrial COI gene in the subterranean amphipod Crangonyx islandicus. J. Mol. Evol. 2011, 73, 34–44. [Google Scholar] [CrossRef]
- Funk, D.J.; Omland, K.E. Species-level paraphyly and polyphyly: Frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 397–423. [Google Scholar] [CrossRef]
- McCracken, K.G.; Sorenson, M.D. Is homoplasy or lineage sorting the source of incongruent mtDNA and nuclear gene trees in the stiff-tailed ducks (Nomonyx-Oxyura)? Syst. Biol. 2005, 54, 35–55. [Google Scholar] [CrossRef] [PubMed]
- Petit, R.J.; Excoffier, L. Gene flow and species delimitation. Trends Ecol. Evol. 2009, 24, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Pease, J.B.; Hahn, M.W. Detection and polarization of introgression in a five-taxon phylogeny. Syst. Biol. 2015, 64, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Charlesworth, B.; Jensen, J.D. Effects of selection at linked sites on patterns of genetic variability. Annu. Rev. Ecol. Evol. Syst. 2021, 52, 177–197. [Google Scholar] [CrossRef]
- Palsson, S.; Pamilo, P. The effects of deleterious mutations on linked neutral variation in small populations. Genetics 1999, 153, 475–483. [Google Scholar] [CrossRef]
- Moritz, C.; Potter, S. The importance of an evolutionary perspective in conservation policy planning. Mol. Ecol. 2013, 22, 5969–5971. [Google Scholar] [CrossRef]
- Davey, J.W.; Hohenlohe, P.A.; Etter, P.D.; Boone, J.Q.; Catchen, J.M.; Blaxter, M.L. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 2011, 12, 499–510. [Google Scholar] [CrossRef]
- Andrews, K.; Good, J.; Miller, M.R.; Luikart, G.; Hohenloe, P.A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 2016, 17, 81–92. [Google Scholar] [CrossRef]
- Benestan, L.; Gosselin, T.; Perrier, C.; Sainte-Marie, B.; Rochette, R.; Bernatchez, L. RAD genotyping reveals fine-scale genetic structuring and provides powerful population assignment in a widely distributed marine species, the American lobster (Homarus americanus). Mol. Ecol. 2015, 24, 3299–3315. [Google Scholar] [CrossRef]
- Pavey, S.A.; Gaudin, J.; Normandeau, E.; Dionne, M.; Castonguay, M.; Audet, C.; Bernatchez, L. RAD sequencing highlights polygenic discrimination of habitat ecotypes in the panmictic American eel. Curr. Biol. 2015, 25, 1666–1671. [Google Scholar] [CrossRef]
- Emerson, K.J.; Merz, C.R.; Catchen, J.M.; Hohenlohe, P.A.; Cresko, W.A.; Bradshaw, W.E.; Holzapfel, C.M. Resolving postglacial phylogeography using high-throughput sequencing. Proc. Natl. Acad. Sci. USA 2010, 107, 16196–16200. [Google Scholar] [CrossRef]
- Catchen, J.; Bassham, S.; Wilson, T.; Currey, M.; O’Brien, C.; Yeates, Q.; Cresko, W.A. The population structure and recent colonization history of Oregon threespine stickleback determined using restriction-site associated DNA-sequencing. Mol. Ecol. 2013, 22, 2864–2883. [Google Scholar] [CrossRef] [PubMed]
- Eaton, D.A.R.; Ree, R.H. Inferring phylogeny and introgression using RADseq data: An example from flowering plants (Pedicularis: Orobanchaceae). Syst. Biol. 2013, 62, 689–706. [Google Scholar] [CrossRef] [PubMed]
- Hipp, A.L.; Eaton, D.A.R.; Cavender-Bares, J.; Fitzek, E.; Nipper, R.; Manos, P.S. A framework phylogeny of the American oak clade based on sequenced RAD data. PLoS ONE 2014, 9, e93975. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Nagata, N.; Sota, T. Application of RAD-based phylogenetics to complex relationships among variously related taxa in a species flock. Mol. Phylogenet. Evol. 2014, 80, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Eaton, D.A.R.; Hipp, A.L.; González-Rodríguez, A.; Cavender-Bares, J. Historical introgression among the American live oaks and the comparative nature of tests for introgression. Evolution 2015, 69, 2587–2601. [Google Scholar] [CrossRef]
- Nevado, B.; Ramos-Onsins, S.E.; Perez-Enciso, M. Resequencing studies of non-model organisms using closely related reference genomes: Optimal experimental designs and bioinformatics approaches for population genomics. Mol. Ecol. 2014, 23, 1764–1779. [Google Scholar] [CrossRef]
- Hedrick, P.W. A standardized genetic differentiation measure. Evolution 2005, 59, 1633–1638. [Google Scholar]
- Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 2008, 17, 4015–4026. [Google Scholar] [CrossRef]
- Meirmans, P.G.; Hedrick, P.W. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 2011, 11, 5–18. [Google Scholar] [CrossRef]
- Verity, R.; Nichols, R.A. What is genetic differentiation, and how should we measure it—GST, D, neither or both? Mol. Ecol. 2014, 23, 4216–4225. [Google Scholar] [CrossRef] [PubMed]
- Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar] [PubMed]
- Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 1973, 70, 3321–3323. [Google Scholar] [CrossRef] [PubMed]
- Whitlock, M.C. GST and D do not replace FST. Mol. Ecol. 2011, 20, 1083–1091. [Google Scholar] [CrossRef]
- Crawford, J.E.; Lazzaro, B.P. Assessing the accuracy and power of population genetic inference from low-pass next-generation sequencing data. Front. Genet. 2012, 3, 66. [Google Scholar] [CrossRef]
- Buerkle, C.A.; Gompert, Z. Population genomics based on low coverage sequencing: How low should we go? Mol. Ecol. 2013, 22, 3028–3035. [Google Scholar] [CrossRef]
- Fumagalli, M. Assessing the effect of sequencing depth and sample size in population genetics inferences. PLoS ONE 2013, 8, e79667. [Google Scholar] [CrossRef]
- Nielsen, R.; Korneliussen, T.; Albrechtsen, A.; Li, Y.; Wang, J. SNP calling, genotype calling, and sample allele frequency estimation from new-generation sequencing data. PLoS ONE 2012, 7, e37558. [Google Scholar] [CrossRef]
- Fumagalli, M.; Vieira, F.G.; Korneliussen, T.S.; Linderoth, T.; Huerta-Sánchez, E.; Albrechtsen, A.; Nielsen, R. Quantifying population genetic differentiation from next-generation sequencing data. Genetics 2013, 195, 979–992. [Google Scholar] [CrossRef]
- Han, E.; Sinsheimer, J.S.; Novembre, J. Characterizing bias in population genetic inferences from low-coverage sequencing data. Mol. Biol. Evol. 2014, 31, 723–735. [Google Scholar] [CrossRef]
- Fumagalli, M.; Vieira, F.G.; Linderoth, T.; Nielsen, R. NgsTools: Methods for population genetics analyses from next-generation sequencing data. Bioinformatics 2014, 30, 1486–1487. [Google Scholar] [CrossRef] [PubMed]
- Korneliussen, T.S.; Moltke, I.; Albrechtsen, A.; Nielsen, R. Calculation of Tajima’s D and other neutrality test statistics from low depth next-generation sequencing data. BMC Bioinform. 2013, 14, 289. [Google Scholar] [CrossRef] [PubMed]
- Korneliussen, T.S.; Albrechtsen, A.; Nielsen, R. OpenaAccess ANGSD: Analysis of next generation sequencing data. BMC Bioinform. 2014, 15, 356. [Google Scholar] [CrossRef] [PubMed]
- Vieira, F.G.; Lassalle, F.; Korneliussen, T.S.; Fumagalli, M. Improving the estimation of genetic distances from next-generation sequencing data. Biol. J. Linn. Soc. 2016, 117, 139–149. [Google Scholar] [CrossRef]
- Svavarsson, J.; Kristjánsson, B.K. Crangonyx islandicus sp. nov., a subterranean freshwater amphipod (Crustacea, Amphipoda, Crangonyctidae) from springs in lava fields in Iceland. Zootaxa 2006, 1365, 1–17. [Google Scholar] [CrossRef][Green Version]
- Kristjánsson, B.K.; Svavarsson, J. Subglacial refugia in Iceland enabled groundwater amphipods to survive glaciations. Am. Nat. 2007, 170, 292–296. [Google Scholar] [CrossRef]
- Vaughan, T.G.; Kühnert, D.; Popinga, A.; Welch, D.; Drummond, A.J. Efficient Bayesian inference under the structured coalescent. Bioinformatics 2014, 30, 2272–2279. [Google Scholar] [CrossRef]
- Hillis, D.M.; Moritz, C.; Mable, B.K. Molecular Systematics; Sinauer Associates: Sunderland, MA, USA, 1996. [Google Scholar]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef]
- Peterson, B.K.; Weber, J.N.; Kay, E.H.; Fisher, H.S.; Hoekstra, H.E. Double Digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 2012, 7, e37135. [Google Scholar] [CrossRef]
- Catchen, J.M.; Amores, A.; Hohenlohe, P.; Cresko, W.; Postlethwait, J.H. Stacks: Building and genotyping loci de novo from short-read sequences. G3 Genes Genomes Genet. 2011, 1, 171–182. [Google Scholar] [CrossRef]
- Eaton, D.A.R. PyRAD: Assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics 2014, 30, 1844–1849. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M. Estimation of nucleotide diversity, disequilibrium coefficients, and mutation rates from high-coverage genome-sequencing projects. Mol. Biol. Evol. 2008, 25, 2409–2419. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015; Available online: https://www.R-project.org/ (accessed on 1 November 2015).
- Aktas, C. Haplotypes: Haplotype Inference and Statistical Analysis of Genetic Variation. R Package Version 1.0. 2015. Available online: https://CRAN.R-project.org/package=haplotypes (accessed on 1 November 2015).
- Roesti, M.; Hendry, A.P.; Salzburger, W.; Berner, D. Genome divergence during evolutionary diversification as revealed in replicate lake-stream stickleback population pairs. Mol. Ecol. 2012, 21, 2852–2862. [Google Scholar] [CrossRef] [PubMed]
- Hohenlohe, P.A.; Amish, S.J.; Catchen, J.M.; Allendorf, F.W.; Luikart, G. Next-generation RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout. Mol. Ecol. Resour. 2011, 11, 117–122. [Google Scholar] [CrossRef]
- Foll, M.; Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 2008, 180, 977–993. [Google Scholar] [CrossRef]
- De Mita, S.; Thuillet, A.C.; Gay, L.; Ahmadi, N.; Manel, S.; Ronfort, J.; Vigouroux, Y. Detecting selection along environmental gradients: Analysis of eight methods and their effectiveness for outbreeding and selfing populations. Mol. Ecol. 2013, 22, 1383–1399. [Google Scholar] [CrossRef]
- Lotterhos, K.E.; Whitlock, M.C. Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests. Mol. Ecol. 2014, 23, 2178–2192. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S. Fast gapped-read alignment with Bowtie 2. Nat. Meth. 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 2011, 27, 2987–2993. [Google Scholar] [CrossRef]
- Gouy, M.; Guindon, S.; Gascuel, O. Sea view version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 2010, 27, 221–224. [Google Scholar] [CrossRef]
- Bouckaert, R.; Heled, J.; Kühnert, D.; Vaughan, T.; Wu, C.H.; Xie, D.; Suchard, M.A.; Rambaut, A.; Drummond, A.J. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2014, 10, e1003537. [Google Scholar] [CrossRef] [PubMed]
- Nylander, J.A.A. MrAIC. pl. Program Distributed by the Author; Evolutionary Biology Centre, Uppsala University: Uppsala, Sweden, 2004. [Google Scholar]
- Rambaut, A.; Suchard, M.A.; Xie, D.; Drummond, A.J. Tracer, version 1.6; 2014. Available online: http://tree.bio.ed.ac.uk/software/tracer/ (accessed on 26 March 2016).
- Winter, D.J. MMOD: An R library for the calculation of population differentiation statistics. Mol. Ecol. Resour. 2012, 12, 1158–1160. [Google Scholar] [CrossRef]
- Sokal, R.R.; Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research; W.H. Freeman: San Francisco, CA, USA, 1994; 880p. [Google Scholar]
- Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar]
- Paradis, E. Pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics 2010, 26, 419–420. [Google Scholar] [CrossRef] [PubMed]
- Jombart, T.; Devillard, S.; Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 2010, 11, 94. [Google Scholar] [CrossRef] [PubMed]
- Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef]
- Bryant, D.; Bouckaert, R.; Felsenstein, J.; Rosenberg, N.A.; Roychoudhury, A. Inferring species trees directly from biallelic genetic markers: Bypassing gene trees in a full coalescent analysis. Mol. Biol. Evol. 2012, 29, 1917–1932. [Google Scholar] [CrossRef]
- Grummer, J.A.; Bryson, R.W.; Reeder, T.W. Species delimitation using Bayes factors: Simulations and application to the Sceloporus scalaris species group (Squamata: Phrynosomatidae). Syst. Biol. 2014, 63, 119–133. [Google Scholar] [CrossRef]
- Leache, A.D.; Fujita, M.K.; Minin, V.N.; Bouckaert, R.R. Species delimitation using genome-wide SNP data. Syst. Biol. 2014, 63, 534–542. [Google Scholar] [CrossRef]
- Kass, R.E.; Raftery, A.E. Bayes Factors. J. Am. Stat. Assoc. 1995, 90, 773–795. [Google Scholar] [CrossRef]
- Green, R.E.; Krause, J.; Briggs, A.W.; Maricic, T.; Stenzel, U.; Kircher, M.; Patterson, N.; Li, H.; Zhai, W.; Fritz, M.H.; et al. A draft sequence of the Neandertal genome. Science 2010, 328, 710–722. [Google Scholar] [CrossRef] [PubMed]
- Durand, E.Y.; Patterson, N.; Reich, D.; Slatkin, M. Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 2011, 28, 2239–2252. [Google Scholar] [CrossRef] [PubMed]
- Albers, C.A.; Lunter, G.; MacArthur, D.G.; McVean, G.; Ouwehand, W.H.; Durbin, R. Dindel: Accurate indel calls from short-read data. Genome Res. 2011, 21, 961–973. [Google Scholar] [CrossRef]
- Herrera, S.; Reyes-Herrera, P.H.; Shank, T.M. Predicting RAD-seq marker numbers across the eukaryotic tree of life. Genome Biol. Evol. 2015, 7, 3207–3225. [Google Scholar] [CrossRef]
- Alfsnes, K.; Leinaas, H.P.; Hessen, D.O. Genome size in arthropods; different roles of phylogeny, habitat and life history in insects and crustaceans. Ecol. Evol. 2017, 7, 5939–5947. [Google Scholar] [CrossRef]
- Rees, D.J.; Dufresne, F.; Glémet, H.; Belzile, C. Amphipod genome sizes: First estimates for Arctic species reveal genomic giants. Genome 2007, 50, 151–158. [Google Scholar] [CrossRef]
- Dufresne, F.; Jeffery, N. A guided tour of large genome size in animals: What we know and where we are heading. Chrom. Res. 2011, 19, 925–938. [Google Scholar] [CrossRef]
- Jeffery, N.W.; Yampolsky, L.; Gregory, T.R. Nuclear DNA content correlates with depth, body size, and diversification rate in amphipod crustaceans from ancient Lake Baikal, Russia. Genome 2017, 60, 303–309. [Google Scholar] [CrossRef]
- Lefébure, T.; Morvan, C.; Malard, F.; François, C.; Konecny-Dupré, L.; Guéguen, L.; Weiss-Gayet, M.; Seguin-Orlando, A.; Ermini, L.; Sarkissian, C.D.; et al. Less effective selection leads to larger genomes. Genome Res. 2017, 27, 1016–1028. [Google Scholar] [CrossRef]
- Fariello, M.I.; Boitard, S.; Naya, H.; San Cristobal, M.; Servin, B. Detecting signatures of selection through haplotype differentiation among hierarchically structured populations. Genetics 2013, 193, 929–941. [Google Scholar] [CrossRef]
- Leitwein, M.; Duranton, M.; Rougemont, Q.; Gagnaire, P.A.; Bernatchez, L. Using haplotype information for conservation genomics. Trends Ecol. Evol. 2020, 35, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Cannizzaro, A.G.; Balding, D.; Lazo-Wasem, E.A.; Sawicki, T.R. A new species rises from beneath Florida: Molecular phylogenetic analyses reveal cryptic diversity among the metapopulation of Crangonyx hobbsi Shoemaker, 1941 (Amphipoda: Crangonyctidae). Org. Div. Evol. 2020, 20, 387–404. [Google Scholar] [CrossRef]
- Geirsdottir, Á.; Miller, G.H.; Axford, Y.; Ólafsdóttir, S. Holocene and latest Pleistocene climate and glacier fluctuations in Iceland. Quat. Sci. Rev. 2009, 28, 2107–2118. [Google Scholar] [CrossRef]
- Allio, R.; Donega, S.; Galtier, N.; Nabholz, B. Large variation in the ratio of mitochondrial to nuclear mutation rate across animals: Implications for genetic diversity and the use of mitochondrial DNA as a molecular marker. Mol. Biol. Evol. 2017, 34, 2762–2772. [Google Scholar] [CrossRef] [PubMed]
- Saclier, N.; François, C.M.; Konecny-Dupré, L.; Lartillot, N.; Guéguen, L.; Duret, L.; Malard, F.; Douady, C.J.; Lefébure, T. Life history traits impact the nuclear rate of substitution but not the mitochondrial rate in isopods. Mol. Biol. Evol. 2018, 35, 2900–2912. [Google Scholar] [CrossRef] [PubMed]
- Hjartarson, Á. Víðáttumestu hraun Íslands (The largest lava of Iceland). Náttúrufræðingurinn 2011, 81, 37–48. [Google Scholar]
- Hewitt, G.M. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2004, 359, 183–195. [Google Scholar] [CrossRef]
- Provan, J.; Bennett, K.D. Phylogeographic insights into cryptic glacial refugia. Trends Ecol. Evol. 2008, 23, 564–571. [Google Scholar] [CrossRef]
- Bernardo, P.H.; Sánchez-Ramírez, S.; Sánchez-Pacheco, S.J.; Alvares-Castaneda, S.T.; Aguileira-Miller, E.F.; Mendez-de la Cruz, F.R.; Murphy, R.W. Extreme mito-nuclear discordance in a peninsular lizard: The role of drift, selection, and climate. Heredity 2019, 123, 359–370. [Google Scholar] [CrossRef]
- Stephens, M.; Smith, N.; Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Gen. 2001, 68, 978–989. [Google Scholar] [CrossRef] [PubMed]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML.3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Paradis, E.; Claude, J.; Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 2004, 20, 289–290. [Google Scholar] [CrossRef] [PubMed]
Dataset | Minimum Coverage | Number of Unlinked Bi-Allelic SNPs | Models | Averaged Marginal Likelihood among Runs (SD) | Test | BF |
---|---|---|---|---|---|---|
C3SNPr | 3 | 88 | 1 (4 populations) | −549.91 (0.09) | M1 vs. M2 | 9.84 |
2 (3 populations mitochondrial scenario) | −554.83 (0.20) | M2 vs. M3 | 71.54 | |||
3 (2 populations ITS scenario) | −590.61 (0.16) | M1 vs. M3 | 81.38 | |||
C2SNPr | 2 | 223 | 1 (4 populations) | −1245.15 (0.14) | M1 vs. M2 | 179.02 |
2 (3 populations mitochondrial scenario) | −1334.59 (0.09) | M2 vs. M3 | 332.53 | |||
3 (2 populations ITS scenario) | −1500.91 (0.02) | M1 vs. M3 | 511.55 |
Min Cov. | Test | P1 | P2 | P3 | O | Range Z | NSign/Ntot for Positive D | NSign/Ntot for Negative D | Range NbLoci |
---|---|---|---|---|---|---|---|---|---|
3 | Mito.1 | Sv | Sa | Th | Kl | 0–10.1 | 28/125 | 0/125 | 33–45 |
3 | Mito.2 | Sa | Sv | Th | Kl | 0–10.1 | 1/125 | 34/125 | 33–45 |
3 | ITS.1 | Sv | Sa | Kl | Th | 0–10.1 | 28/125 | 0/125 | 21–43 |
3 | ITS.2 | Sa | Sv | Kl | Th | 0–8.2 | 25/125 | 1/125 | 21–43 |
2 | Mito.1 | Sv | Sa | Th | Kl | 0–7.7 | 5/125 | 4/125 | 101–128 |
2 | Mito.2 | Sa | Sv | Th | Kl | 0–8.2 | 5/125 | 5/125 | 101–128 |
2 | ITS.1 | Sv | Sa | Kl | Th | 0–6.4 | 7/125 | 3/125 | 62–128 |
2 | ITS.2 | Sa | Sv | Kl | Th | 0–6.0 | 5/125 | 4/125 | 62–128 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eme, D.; Westfall, K.M.; Matthíasardóttir, B.; Kristjánsson, B.K.; Pálsson, S. Contrasting Phylogeographic Patterns of Mitochondrial and Genome-Wide Variation in the Groundwater Amphipod Crangonyx islandicus That Survived the Ice Age in Iceland. Diversity 2023, 15, 88. https://doi.org/10.3390/d15010088
Eme D, Westfall KM, Matthíasardóttir B, Kristjánsson BK, Pálsson S. Contrasting Phylogeographic Patterns of Mitochondrial and Genome-Wide Variation in the Groundwater Amphipod Crangonyx islandicus That Survived the Ice Age in Iceland. Diversity. 2023; 15(1):88. https://doi.org/10.3390/d15010088
Chicago/Turabian StyleEme, David, Kristen M. Westfall, Brynja Matthíasardóttir, Bjarni Kristófer Kristjánsson, and Snæbjörn Pálsson. 2023. "Contrasting Phylogeographic Patterns of Mitochondrial and Genome-Wide Variation in the Groundwater Amphipod Crangonyx islandicus That Survived the Ice Age in Iceland" Diversity 15, no. 1: 88. https://doi.org/10.3390/d15010088
APA StyleEme, D., Westfall, K. M., Matthíasardóttir, B., Kristjánsson, B. K., & Pálsson, S. (2023). Contrasting Phylogeographic Patterns of Mitochondrial and Genome-Wide Variation in the Groundwater Amphipod Crangonyx islandicus That Survived the Ice Age in Iceland. Diversity, 15(1), 88. https://doi.org/10.3390/d15010088