Small Vessel Impact on the Whistle Parameters of Two Ecotypes of Common Bottlenose Dolphin (Tursiops truncatus) in La Paz Bay, Mexico
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erbe, C.; Marley, S.A.; Schoeman, R.P.; Smith, J.N.; Trigg, L.E.; Embling, C.B. The effects of ship noise on marine mammals—A review. Front. Mar. Sci. 2019, 6, 606. [Google Scholar] [CrossRef]
- Van der Graaf, A.; Ainslie, M.; André, M.; Brensing, K.; Dalen, J.; Dekeling, R.; Robinson, S.; Tasker, M.; Thomsen, F.; Werner, S. European Marine Strategy Framework Directive-Good Environmental Status (msfd ges): Report of the Technical Subgroup on Underwater Noise and Other Forms of Energy; TSG Noise & Milieu Ltd: Brussels, Belgium, 2012. [Google Scholar]
- Hildebrand, J.A. Anthropogenic and natural sources of ambient noise in the ocean. Mar. Ecol. Prog. Ser. 2009, 395, 5–20. [Google Scholar] [CrossRef]
- Andrew, R.K.; Howe, B.M.; Mercer, J.A.; Dzieciuch, M.A. Ocean ambient sound: Comparing the 1960s with the 1990s for a receiver off the California coast. Acoust. Res. Lett. Online 2002, 3, 65–70. [Google Scholar] [CrossRef]
- Hermannsen, L.; Mikkelsen, L.; Tougaard, J.; Beedholm, K.; Johnson, M.; Madsen, P.T. Recreational vessels without Automatic Identification System (AIS) dominate anthropogenic noise contributions to a shallow water soundscape. Sci. Rep. 2019, 9, 15477. [Google Scholar] [CrossRef] [PubMed]
- Erbe, C. Underwater noise of whale-watching boats and potential effects on killer whales (Orcinus orca), based on an acoustic impact model. Mar. Mammal Sci. 2002, 18, 394–418. [Google Scholar] [CrossRef]
- Gordon, J.; Tyack, P.L. Sound and cetaceans. In Marine Mammals; Springer: Berlin/Heidelberg, Germany, 2002; pp. 139–196. [Google Scholar]
- Janik, V.M.; Sayigh, L.S. Communication in bottlenose dolphins: 50 years of signature whistle research. J. Comp. Physiol. A 2013, 199, 479–489. [Google Scholar] [CrossRef]
- King, S.L.; Janik, V.M. Bottlenose dolphins can use learned vocal labels to address each other. Proc. Natl. Acad. Sci. USA 2013, 110, 13216–13221. [Google Scholar] [CrossRef]
- Heiler, J.; Elwen, S.H.; Kriesell, H.; Gridley, T. Changes in bottlenose dolphin whistle parameters related to vessel presence, surface behaviour and group composition. Anim. Behav. 2016, 117, 167–177. [Google Scholar] [CrossRef]
- May-Collado, L.J.; Wartzok, D. A comparison of bottlenose dolphin whistles in the Atlantic Ocean: Factors promoting whistle variation. J. Mammal. 2008, 89, 1229–1240. [Google Scholar] [CrossRef]
- Richardson, W.J.; Greene, C.R., Jr.; Malme, C.I.; Thomson, D.H. Marine Mammals and Noise; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Oswald, J.N.; Rankin, S.; Barlow, J. To whistle or not to whistle? Geographic variation in the whistling behavior of small odontocetes. Aquat. Mamm. 2008, 34, 288–302. [Google Scholar] [CrossRef]
- Rako, N.; Fortuna, C.M.; Holcer, D.; Mackelworth, P.; Nimak-Wood, M.; Pleslić, G.; Sebastianutto, L.; Vilibić, I.; Wiemann, A.; Picciulin, M. Leisure boating noise as a trigger for the displacement of the bottlenose dolphins of the Cres–Lošinj archipelago (northern Adriatic Sea, Croatia). Mar. Pollut. Bull. 2013, 68, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Fouda, L.; Wingfield, J.E.; Fandel, A.D.; Garrod, A.; Hodge, K.B.; Rice, A.N.; Bailey, H. Dolphins simplify their vocal calls in response to increased ambient noise. Biol. Lett. 2018, 14, 20180484. [Google Scholar] [CrossRef] [PubMed]
- Kragh, I.M.; McHugh, K.; Wells, R.S.; Sayigh, L.S.; Janik, V.M.; Tyack, P.L.; Jensen, F.H. Signal-specific amplitude adjustment to noise in common bottlenose dolphins (Tursiops truncatus). J. Exp. Biol. 2019, 222, jeb216606. [Google Scholar] [CrossRef] [PubMed]
- Perez-Ortega, B.; Daw, R.; Paradee, B.; Gimbrere, E.; May-Collado, L.J. Dolphin-Watching Boats Affect Whistle Frequency Modulation in Bottlenose Dolphins. Front. Mar. Sci. 2021, 8, 102. [Google Scholar] [CrossRef]
- Williams, R.; Lusseau, D.; Hammond, P.S. Estimating relative energetic costs of human disturbance to killer whales (Orcinus orca). Biol. Conserv. 2006, 133, 301–311. [Google Scholar] [CrossRef]
- Aguilar Soto, N.; Johnson, M.; Madsen, P.T.; Tyack, P.L.; Bocconcelli, A.; Fabrizio Borsani, J. Does intense ship noise disrupt foraging in deep-diving Cuvier’s beaked whales (Ziphius cavirostris)? Mar. Mammal Sci. 2006, 22, 690–699. [Google Scholar] [CrossRef]
- Wisniewska, D.M.; Johnson, M.; Teilmann, J.; Siebert, U.; Galatius, A.; Dietz, R.; Madsen, P.T. High rates of vessel noise disrupt foraging in wild harbour porpoises (Phocoena phocoena). Proc. R. Soc. B Biol. Sci. 2018, 285, 20172314. [Google Scholar] [CrossRef]
- Wright, A.J.; Soto, N.A.; Baldwin, A.L.; Bateson, M.; Beale, C.M.; Clark, C.; Deak, T.; Edwards, E.F.; Fernández, A.; Godinho, A. Do marine mammals experience stress related to anthropogenic noise? Int. J. Comp. Psychol. 2007, 20, 274–316. [Google Scholar]
- Segura, I.; Rocha-Olivares, A.; Flores-Ramírez, S.; Rojas-Bracho, L. Conservation implications of the genetic and ecological distinction of Tursiops truncatus ecotypes in the Gulf of California. Biol. Conserv. 2006, 133, 336–346. [Google Scholar] [CrossRef]
- Bearzi, M.; Saylan, C.A.; Hwang, A. Ecology and comparison of coastal and offshore bottlenose dolphins (Tursiops truncatus) in California. Mar. Freshw. Res. 2009, 60, 584–593. [Google Scholar] [CrossRef]
- Viloria-Gómora, L.; Medrano-González, L. Population ecological traits of Tursiops truncatus putative morphotypes in the transitional region of the Mexican Pacific Ocean. Therya 2015, 6, 351–369. [Google Scholar] [CrossRef][Green Version]
- Gao, A.; Zhou, K.; Wang, Y. Geographical variation in morphology of bottlenosed dolphins (Tursiops sp.) in Chinese waters. Aquat. Mamm. 1995, 21, 121. [Google Scholar]
- Díaz-Gamboa, R. Diferenciación Entre Tursiones Tursiops Truncatus Costeros y Oceánicos en el Golfo de California por Medio de Análisis de Isótopos Estables de Carbono Y Nitrógeno. Master’s Thesis, Centro Interdisciplinario de Ciencias Marinas, La Paz, Mexico, 2003. [Google Scholar]
- Lowther-Thieleking, J.L.; Archer, F.I.; Lang, A.R.; Weller, D.W. Genetic differentiation among coastal and offshore common bottlenose dolphins, Tursiops truncatus, in the eastern North Pacific Ocean. Mar. Mammal Sci. 2015, 31, 1–20. [Google Scholar] [CrossRef]
- Peters, C.H. Context-Specific Signal Plasticity of Two Common Bottlenose Dolphin Ecotypes (Tursiops truncatus) in Far North Waters. Ph.D. Thesis, Massey University, Albany, New Zealand, 2018. [Google Scholar]
- Salinas Zacarías, M.A. Ecología de los Tursiones, Tursiops truncatus, en la Bahía de La Paz, BCS; Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas: La Paz, Mexico, 2005. [Google Scholar]
- Wells, R.; Natoli, A.; Braulik, G. Tursiops truncatus (Errata Version Published in 2019). The IUCN Red List of Threatened Species: E. T22563A156932432. 2019. Available online: https://www.iucnredlist.org/species/22563/156932432 (accessed on 10 August 2022).
- Bittencourt, L.; Barbosa, M.; Santos-Neto, E.B.; Bisi, T.L.; Lailson-Brito, J.; Azevedo, A.F. Whistles of Atlantic spotted dolphin from a coastal area in the southwestern Atlantic Ocean. J. Acoust. Soc. Am. 2020, 148, EL420–EL426. [Google Scholar] [CrossRef]
- Kelly, C.; Glegg, G.; Speedie, C. Management of marine wildlife disturbance. Ocean. Coast. Manag. 2004, 47, 1–19. [Google Scholar] [CrossRef]
- Nowacek, S.M.; Wells, R.S.; Solow, A.R. Short-term effects of boat traffic on bottlenose dolphins, Tursiops truncatus, in Sarasota Bay, Florida. Mar. Mammal Sci. 2001, 17, 673–688. [Google Scholar] [CrossRef]
- Marley, S.A.; Kent, C.P.S.; Erbe, C.; Parnum, I.M. Effects of vessel traffic and underwater noise on the movement, behaviour and vocalisations of bottlenose dolphins in an urbanised estuary. Sci. Rep. 2017, 7, 13437. [Google Scholar] [CrossRef]
- Acevedo, A. Interactions between boats and bottlenose dolphins, Tursiops truneatus, in the entrance to Ensenada De La Paz, Mexico. Aquat. Mamm. 1991, 17, 120–124. [Google Scholar]
- Gregory, P.R.; Rowden, A.A. Behaviour patterns of bottlenose dolphins (Tursiops truncatus) relative to tidal state, time-of-day, and boat traffic in Cardigan Bay, West Wales. Aquat. Mamm. 2001, 27, 105–113. [Google Scholar]
- Mann, J. Behavioral sampling methods for cetaceans: A review and critique. Mar. Mammal Sci. 1999, 15, 102–122. [Google Scholar] [CrossRef]
- Lachlan, R.F. Luscinia: A bioacoustics Analysis Computer Program. Version 1.0 [Computer Program]. Available online: www.lusciniasound.org (accessed on 30 June 2007).
- Quick, N.J.; Janik, V.M. Whistle rates of wild bottlenose dolphins (Tursiops truncatus): Influences of group size and behavior. J. Comp. Psychol. 2008, 122, 305. [Google Scholar] [CrossRef] [PubMed]
- Buckstaff, K.C. Effects of watercraft noise on the acoustic behavior of bottlenose dolphins, Tursiops truncatus, in Sarasota Bay, Florida. Mar. Mammal Sci. 2004, 20, 709–725. [Google Scholar] [CrossRef]
- Merchant, N.D.; Fristrup, K.M.; Johnson, M.P.; Tyack, P.L.; Witt, M.J.; Blondel, P.; Parks, S.E. Measuring acoustic habitats. Methods Ecol. Evol. 2015, 6, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Barlett, M.L.; Wilson, G.R. Characteristics of small boat signatures. J. Acoust. Soc. Am. 2002, 112, 2221. [Google Scholar] [CrossRef]
- Amoser, S.; Wysocki, L.E.; Ladich, F. Noise emission during the first powerboat race in an Alpine lake and potential impact on fish communities. J. Acoust. Soc. Am. 2004, 116, 3789–3797. [Google Scholar] [CrossRef]
- Picciulin, M.; Sebastianutto, L.; Codarin, A.; Farina, A.; Ferrero, E.A. In situ behavioural responses to boat noise exposure of Gobius cruentatus (Gmelin, 1789; fam. Gobiidae) and Chromis chromis (Linnaeus, 1758; fam. Pomacentridae) living in a Marine Protected Area. J. Exp. Mar. Biol. Ecol. 2010, 386, 125–132. [Google Scholar] [CrossRef]
- Mensinger, A.F.; Putland, R.L.; Radford, C.A. The effect of motorboat sound on Australian snapper Pagrus auratus inside and outside a marine reserve. Ecol. Evol. 2018, 8, 6438–6448. [Google Scholar] [CrossRef]
- Herzing, D.L. Vocalizations and associated underwater behavior of free-ranging Atlantic spotted dolphins, Stenella frontalis and bottlenose dolphins, Tursiops truncatus. Aquat. Mamm. 1996, 22, 61–80. [Google Scholar]
- Gospić, N.R.; Picciulin, M. Changes in whistle structure of resident bottlenose dolphins in relation to underwater noise and boat traffic. Mar. Pollut. Bull. 2016, 105, 193–198. [Google Scholar] [CrossRef]
- Van Ginkel, C.; Becker, D.M.; Gowans, S.; Simard, P. Whistling in a noisy ocean: Bottlenose dolphins adjust whistle frequencies in response to real-time ambient noise levels. Bioacoustics 2018, 27, 391–405. [Google Scholar] [CrossRef]
- Kinsler, L.E.; Frey, A.R.; Coppens, A.B.; Sanders, J.V. Fundamentals of Acoustics; John Wiley & Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Fox, J.; Weisberg, S. An {R} Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Dinno, A. dunn. test: Dunn’s test of multiple comparisons using rank sums. R package version 2017, 1, 1. [Google Scholar]
- La Manna, G.; Manghi, M.; Pavan, G.; Lo Mascolo, F.; Sarà, G. Behavioural strategy of common bottlenose dolphins (Tursiops truncatus) in response to different kinds of boats in the waters of Lampedusa Island (Italy). Aquat. Conserv. Mar. Freshw. Ecosyst. 2013, 23, 745–757. [Google Scholar] [CrossRef]
- Morisaka, T.; Shinohara, M.; Nakahara, F.; Akamatsu, T. Effects of ambient noise on the whistles of Indo-Pacific bottlenose dolphin populations. J. Mammal. 2005, 86, 541–546. [Google Scholar] [CrossRef]
- Scarpaci, C.; Bigger, S.W.; Corkeron, P.J.; Nugegoda, D. Bottlenose dolphins (Tursiops truncatus) increase whistling in the presence ofswim-with-dolphin’tour operations. J. Cetacean Res. Manag. 2000, 2, 183–185. [Google Scholar]
- Urick, R.J. Principles of Underwater Sound, 2nd ed.; McGraw-Hill Book Company: New York, NY, USA, 1975. [Google Scholar]
- Leon-Lopez, B.; Romero-Vivas, E.; Viloria-Gomora, L. Reduction of roadway noise in a coastal city underwater soundscape during COVID-19 confinement. J. Acoust. Soc. Am. 2021, 149, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Richardson, W.J.; Würsig, B. Influences of man-made noise and other human actions on cetacean behaviour. Mar. Freshw. Behav. Phy. 1997, 29, 183–209. [Google Scholar] [CrossRef]
- Lusseau, D. The hidden cost of tourism: Detecting long-term effects of tourism using behavioral information. Ecol. Soc. 2004, 9. [Google Scholar] [CrossRef]
- Sini, M.; Canning, S.J.; Stockin, K.; Pierce, G.J. Bottlenose dolphins around Aberdeen harbour, north-east Scotland: A short study of habitat utilization and the potential effects of boat traffic. J. Mar. Biol. Assoc. United Kingd. 2005, 85, 1547–1554. [Google Scholar] [CrossRef]
- Buckingham, C.A.; Lefebvre, L.W.; Schaefer, J.M.; Kochman, H.I. Manatee response to boating activity in a thermal refuge. Wildl. Soc. Bull. 1999, 27, 514–522. [Google Scholar]
- Holt, M.M.; Noren, D.P.; Dunkin, R.C.; Williams, T.M. Vocal performance affects metabolic rate in dolphins: Implications for animals communicating in noisy environments. J. Exp. Biol. 2015, 218, 1647–1654. [Google Scholar] [CrossRef]
- Wartzok, D.; Poppper, A.; Gordon, J.; Merrill, J. Factors affecting the responses of marine mammals to acoustic disturbance. Mar. Technol. Soc. J. 2004, 37, 6–15. [Google Scholar] [CrossRef]
- Jensen, F.H.; Bejder, L.; Wahlberg, M.; Soto, N.A.; Johnson, M.; Madsen, P.T. Vessel noise effects on delphinid communication. Mar. Ecol. Prog. Ser. 2009, 395, 161–175. [Google Scholar] [CrossRef]
Vessel Type | Definition | Length (m) |
---|---|---|
Fishing panga | Panga * vessel used for fishing activities. | 5–10 |
Touristic panga | Panga vessel used for touristic activities. | 5–10 |
Passenger panga | Panga vessel used for carrying passengers from the shore to other vessels or vice versa. | 5–10 |
Ferry | Large-sized vessel used for carrying people and goods as a regular service from one port to another. | 150–200 |
Yacht | Vessel used for recreational activities. | 10–30 |
Sailing boat | Any vessel propelled entirely or partly by sails. | 5–30 |
Cargo | Merchant vessel carrying goods and materials from one port to another. | 150–200 |
Jet ski | Personal watercraft used for recreational activities | 2–4 |
Absence of Vessels | Presence of a Single Small Vessel | Total | |
---|---|---|---|
Oceanic ecotype | |||
N° groups recorded | 5 | 4 | 5 |
N° recordings | 17 | 5 | 22 |
Recording duration (min) | 167 | 55 | 222 |
N° whistles | 190 | 105 | 295 |
Coastal ecotype | |||
N° groups recorded | 13 | 10 | 16 |
N° recordings | 35 | 11 | 46 |
Recording duration (min) | 252 | 83 | 335 |
N° whistles | 185 | 78 | 263 |
Oceanic Ecotype | Absence of Vessels (n = 190) | Presence of a Single Small Vessel (n = 105) | ||||
Mean | sd | Median | Mean | sd | Median | |
Duration (s) | 1.13 | 0.60 | 1.08 | 1.07 | 0.56 | 0.92 |
Starting frequency (kHz) | 12.10 | 5.76 | 9.95 | 10.75 | 4.40 | 9.46 |
Ending frequency (kHz) | 8.97 | 3.72 | 7.82 | 9.31 | 4.55 | 8.29 |
Minimum frequency (kHz) | 7.32 | 2.14 | 7.01 | 7.07 | 1.96 | 6.71 |
Maximum frequency (kHz) * | 18.57 | 4.37 | 18.53 | 17.01 | 3.52 | 16.96 |
Frequency range (kHz) * | 11.26 | 4.33 | 11.12 | 9.93 | 3.07 | 9.79 |
Peak frequency (kHz) | 11.76 | 3.58 | 11.13 | 11.11 | 2.69 | 10.80 |
Whistle rate | 0.02 | 0.01 | 0.02 | 0.04 | 0.04 | 0.03 |
Coastal Ecotype | Absence of Vessels (n = 185) | Presence of a Single Small Vessel (n = 78) | ||||
Mean | sd | Median | Mean | sd | Median | |
Duration (s) | 1.08 | 0.70 | 0.99 | 1.23 | 0.80 | 1.12 |
Starting frequency (kHz) | 10.69 | 4.60 | 10.18 | 11.62 | 3.85 | 11.00 |
Ending frequency (kHz) * | 9.11 | 3.31 | 8.66 | 10.02 | 2.97 | 9.88 |
Minimum frequency (kHz) * | 6.95 | 2.03 | 6.65 | 7.89 | 2.00 | 7.95 |
Maximum frequency (kHz) | 15.28 | 3.90 | 14.95 | 16.07 | 3.32 | 15.46 |
Frequency range (kHz) | 8.33 | 3.82 | 7.86 | 8.17 | 3.06 | 8.17 |
Peak frequency (kHz) * | 10.00 | 2.75 | 9.68 | 10.82 | 2.63 | 9.95 |
Whistle rate | 0.05 | 0.08 | 0.03 | 0.04 | 0.05 | 0.02 |
Oceanic Ecotype | Before Approach (n = 45) | During Approach (n = 16) | After Approach (n = 44) | ||||||
Mean | sd | Median | Mean | sd | Median | Mean | sd | Median | |
Duration (s) | 1.06 | 0.62 | 0.81 | 1.22 | 0.65 | 1.05 | 1.03 | 0.44 | 0.96 |
Starting frequency (kHz) | 10.83 | 4.51 | 9.74 | 11.24 | 3.19 | 10.39 | 10.49 | 4.72 | 9.05 |
Ending frequency (kHz) * | 10.80 | 5.73 | 9.10 | 9.81 | 4.28 | 8.61 | 7.60 | 2.17 | 7.00 |
Minimum frequency (kHz) * | 7.31 | 2.08 | 7.11 | 8.22 | 1.90 | 7.97 | 6.42 | 1.62 | 6.29 |
Maximum frequency (kHz) | 16.90 | 4.29 | 16.81 | 18.00 | 3.33 | 17.06 | 16.76 | 2.61 | 16.91 |
Frequency range (kHz) | 9.59 | 3.37 | 8.69 | 9.79 | 3.66 | 9.68 | 10.34 | 2.51 | 10.71 |
Peak frequency (kHz) | 11.63 | 2.74 | 11.34 | 11.86 | 2.99 | 12.11 | 10.32 | 2.34 | 10.27 |
Whistle rate | 0.04 | 0.04 | 0.02 | 0.03 | 0.04 | 0.02 | 0.06 | 0.08 | 0.03 |
Coastal Ecotype | Before Approach (n = 23) | During Approach (n = 17) | After Approach (n = 38) | ||||||
Mean | sd | Median | Mean | sd | Median | Mean | sd | Median | |
Duration (s) | 1.07 | 0.75 | 0.91 | 1.51 | 1.04 | 1.26 | 1.20 | 0.69 | 1.17 |
Starting frequency (kHz) | 11.17 | 4.71 | 10.18 | 11.90 | 2.74 | 11.89 | 11.76 | 3.77 | 10.86 |
Ending frequency (kHz) | 9.99 | 3.69 | 10.98 | 9.93 | 2.58 | 9.68 | 10.08 | 2.71 | 9.88 |
Minimum frequency (kHz) | 7.38 | 2.93 | 7.01 | 7.74 | 1.06 | 7.90 | 8.00 | 1.64 | 8.27 |
Maximum frequency (kHz) | 16.24 | 3.85 | 15.58 | 15.88 | 3.03 | 15.53 | 16.04 | 3.17 | 15.06 |
Frequency range (kHz) | 8.41 | 3.17 | 7.91 | 8.14 | 3.15 | 8.92 | 8.04 | 3.03 | 8.17 |
Peak frequency (kHz) | 11.48 | 3.05 | 10.69 | 10.16 | 2.21 | 9.40 | 10.71 | 2.50 | 10.35 |
Whistle rate | 0.03 | 0.04 | 0.01 | 0.05 | 0.05 | 0.04 | 0.04 | 0.05 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antichi, S.; Jaramillo-Legorreta, A.M.; Urbán R., J.; Martínez-Aguilar, S.; Viloria-Gómora, L. Small Vessel Impact on the Whistle Parameters of Two Ecotypes of Common Bottlenose Dolphin (Tursiops truncatus) in La Paz Bay, Mexico. Diversity 2022, 14, 712. https://doi.org/10.3390/d14090712
Antichi S, Jaramillo-Legorreta AM, Urbán R. J, Martínez-Aguilar S, Viloria-Gómora L. Small Vessel Impact on the Whistle Parameters of Two Ecotypes of Common Bottlenose Dolphin (Tursiops truncatus) in La Paz Bay, Mexico. Diversity. 2022; 14(9):712. https://doi.org/10.3390/d14090712
Chicago/Turabian StyleAntichi, Simone, Armando M. Jaramillo-Legorreta, Jorge Urbán R., Sergio Martínez-Aguilar, and Lorena Viloria-Gómora. 2022. "Small Vessel Impact on the Whistle Parameters of Two Ecotypes of Common Bottlenose Dolphin (Tursiops truncatus) in La Paz Bay, Mexico" Diversity 14, no. 9: 712. https://doi.org/10.3390/d14090712
APA StyleAntichi, S., Jaramillo-Legorreta, A. M., Urbán R., J., Martínez-Aguilar, S., & Viloria-Gómora, L. (2022). Small Vessel Impact on the Whistle Parameters of Two Ecotypes of Common Bottlenose Dolphin (Tursiops truncatus) in La Paz Bay, Mexico. Diversity, 14(9), 712. https://doi.org/10.3390/d14090712