Abstract
The present research aims to explore the occurrence and diversity of entomopathogenic fungi (EPF) in cultivated and uncultivated lands from different provinces of China and to search for EPF against Phyllotreta striolata. In this study, first, the EPF biodiversity from the soil of four provinces (Hunan, Hubei, Henan and Hebei) was surveyed. There were 302 fungal isolates obtained from 226 soil samples collected from croplands (114), arbor (79), grasslands (97) and fallow land (12); 188 EPF isolates were identified as 11 genera. The data indicate that Hubei Province has the greatest EPF diversity, with a Shannon Evenness Index (SHEI) value of 0.88. Here, the grassland, arbor and cropland had an EPF diversity with SHEI values of 0.81, 0.86 and 0.76, respectively, while the fallow land had the highest SHEI value of 1.00, which suggests that cultivation by humans affected the count and richness of soil fungi: the less human activity, the more kinds of fungi found. Finally, the pathogenicity of 47 fungal strains against the adult P. striolata was determined. Isaria javanica (IsjaHN3002) had the highest mortality. In conclusion, this study reports the EPF distribution and biodiversity in the soil from four provinces in China, showing that the amount and type of fungi in the soil varied by region and vegetation and that soil was one of the resources for acquiring EPF. The potential of I. javanica as a biocontrol must be studied further.
1. Introduction
Entomopathogenic fungi (EPFs) are ubiquitous in nature. Biological plant protection with EPFs plays a key role in sustainable pest management programs []. In addition to absorbing nutrients for their own growth, some EPFs can control insect populations at low levels for long periods []. Fungi-based insecticides have great potential as a form of pest control []. Not only are EPFs are harmless to human beings, animals and crops, but they also have the advantages of long-term validity, non-resistance, no residue, no pollution, no damage to natural enemies, high epidemic potential and ease of production [,]. Therefore, using EPFs to control agricultural and forestry pests has become a new trend in pest control. EPFs are the largest group of insect-pathogenic microorganisms. According to incomplete statistics, about 100 genera and 1000 species of EPFs have been recorded around the world [], and more than 40 genera and more than 400 species have been found in China [], including Beauveria, Metarhizium, Penicillium and Fusarium. Beauveria bassiana and Metarhizium anisopliae have been extensively developed as mycoinsecticides []. These species are naturally present in agricultural soils, but the spore numbers in nature are often too low to result in the effective control of pest population outbreaks [].
Through in-depth studies on the physiology, ecology and molecular biology of EPFs, the effect of applying EPFs to control insects has been significantly improved. Under the premise that pests generally develop resistance, more and more attention has been paid to sustainable development and pollution-free pest management, and researchers prefer the development and utilization of EPFs []. Some fungi have a unique method of infection (they can infect pests through the main body wall), which cannot be replicated by other microbial insecticides. The process of EPFs infecting insects mainly includes host recognition, mechanical destruction, toxin secretion and metabolism interference. The combined effect of various factors leads to the death of the host insects []. The host species of EPFs are highly specific, and the host spectrum and virulence of different strains are also quite different. Therefore, the isolation and identification of more strains will help us to enrich the resources of EPF and provide more materials for the development of biological control pesticides using EPF [].
Phyllotreta striolata (Coleoptera: Chrysomelidae) is a prominent pest of Brassicaceae, Solanaceae, Cucurbitaceae and Leguminosae vegetables [,,,]. Brassicaceae are important crops in south China []. Their management is based on synthetic chemical pesticides, leading to insect resistance [,]. Few registered varieties of biopesticides can meet the needs of green prevention and control. EPFs represent the most promising candidates in the integrated pest management (IPM) program approach [].
Popular EPFs, such as Beauveria bassiana, Metarhizium anisopliae, Purpureocillium lilacinum and Isaria (=Cordyceps) javanica, have been developed as mycopesticides to control agricultural, forest and disease vector pests such as locusts, grubs, aphids, whiteflies, moths, mosquitoes and phytopathogenic nematodes [,]. It was found that B. bassiana and M. anisopliae can infect the larvae and adults of P. striolata [,], but this research is still at the laboratory stage. Because most EPFs are soil-dwelling microbes, investigating soil fungi will be beneficial for exploring new species of EPF resources [,,].
The Hebei, Henan, Hubei and Hunan provinces have complex and diverse landforms, with a variety of plateaus, mountains, hills, basins and plains, as well as a large latitude span in the Yellow River and Yangtze River basins, which have sufficient water and diverse climate types and are suitable for farming. They are the main agricultural production areas in China and have rich agricultural ecological landscapes. However, the distributions of soil EPFs in these regions are not clear. Therefore, this research aims to investigate the distribution and abundance of EPFs in different soil habits of these Chinese provinces. Moreover, the impacts of human activities and changes in the environment on EPFs are analyzed and discussed. The study of EPFs in the soil of the four areas is beneficial for the exploration of new strains to enrich the diversity of EPFs and for mining highly pathogenic strains.
2. Materials and Methods
2.1. Soil Sample Collection
The soil samples were collected from different sites (cropland, fallow land, arbor and grassland). The longitude and latitude of each site were recorded by ICEGPS 100C (Shenzhen, China). From each site, approximately 200 g of soil (10~15 cm depth) from three points was collected, mixed and stored in a plastic bag at 4 °C until further use. In total, 226 samples were collected from these sites (Table A1, Appendix A).
2.2. Isolation of Fungi from the Soil Samples
The method from our previous work was used to isolate fungal strains from the soil samples []. Soil suspensions of 0.02 g/mL were prepared with 0.1% Tween-80 solution; then, 0.1 mL of the suspension was inoculated onto a selective medium (PDA, 0.2 g/L cycloheximide, 0.2 g/L chloramphenicol and 0.013 g/L Bengal red) and cultured at 25 ± 1 °C. When the fungi grew out, a single colony was transferred onto the PDA plate and cultured at 25 ± 1 °C, purified and cultured until a new colony was formed [].
2.3. Identification of Fungal Species and Analysis of Genetic Homology
The identification of fungal isolates was based on the morphological characteristics and similarity of the rDNA-ITS sequences. DNA extraction kits (DP3112, Bio-Teke, Beijing) were used to extract the total DNA from fungal isolates. The primers ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) were used to amplify the ITS region on a T100TM Thermal Cycler (BIO-RAD, Hercules, CA, USA) via a standard PCR cycling protocol (94 °C for 3 min, 94 °C for 30 s, 55 °C for 30 s and 72 °C for 1 min for 33 cycles, then 72 °C for 10 min). The obtained ITS rDNA sequences were submitted to GenBank and compared with similar sequences through the BLAST tool of NCBI. The phylogenetic trees of the fungi were constructed by MEGA X via the statistical method of maximum likelihood, a bootstrap test of 500 replications and the Jukes–Cantor model []. The fungal strains are listed in Table 1.
Table 1.
The information of referred fungal strains.
2.4. Evaluation of the Shannon Evenness Index
The biodiversity of fungi and EPFs in different soils was evaluated using the Shannon Evenness Index (SHEI). The SHEI was calculated via the formula SHEI = −/lnS, where s is the total number of species in the sample, i is the total number of individuals in one species, Pi is the proportion of species in the sample, lnPi is the value of the natural logarithm of Pi and S is the total number of species.
2.5. Bioassay of the Fungal Strains against P. striolata
The isolates of fungal species were subject to a bioassay against P. striolata based on the work of []. In summary, fungal conidia suspensions of 1.0 × 108 spores/mL were prepared with 0.02% Tween-80 solution. Spore suspension concentrations of 1.0 × 104, 1.0 × 105, 1.0 × 106, 1.0 × 107 and 1.0 × 108 spores/mL were prepared by culturing with a light cycle of 12:12 at 25 °C for 7 days. The population of P. striolata was fed with radish lumps, which changed every day. Adults were paralyzed with carbon dioxide and dipped into the conidial suspension for 20 s. The pest populations were surveyed every 24 h after treatment. The 0.02% Tween-80 solution was used as a control group. The experiment was replicated thrice, and 20 adults were used for each treatment.
2.6. Scanning Electron Microscopy
The samples were placed in a 2 mL centrifuge tube, fixed with 2.5% glutaraldehyde overnight, washed with physiological saline and dehydrated using a graded series of ethanol; isoamyl acetate was replaced overnight. They were vacuum-dried, fixed onto the platform and then coated with platinum with an ion coater before being observed using a scanning electron microscope.
2.7. Statistical Analysis
Analyses of the bioassay data were carried out using IBM SPSS Statistics version 20.0 (IBM Corp., Armonk, NY, USA). The data were expressed as mean ± SD and were subjected to one-way ANOVA, followed by Duncan’s multiple range test (DMRT). Significant differences were accepted at p < 0.05.
3. Results
3.1. EPF Species Diversity in the Soils of China
In total, 302 fungal isolates were purified. Among these, 188 EPF isolates were identified as belonging to 11 genera according to the morphological and molecular analyses. Purpureocillium lavendulum, with 69 isolates, was the dominant species, and the congeneric species Purpureocillium lilacinum had only 13 isolates (Figure 1, Table A1). The genus Metarhizium had three species—M. anisopliae, M. marquandii and M. sp.—for which 49, 33 and 17 isolates, respectively, were obtained (Figure 1, Table A1). Penicillium had six species—Penicillium subrubescens, Penicillium guttulosum, Penicillium rubens, Penicillium chrysogenum, Penicillium citrinum and Penicillium mirabile—with 12, 2, 3, 1, 11 and 6 isolates found, respectively (Figure 2, Table A1). Aspergillus had 12 species (Figure 2, Table A1). Talaromyces had four species (Figure 3, Table A1), and both Beauveria and Isaria had three species each (Figure 3, Table A1). Both Lecanicillium and Simplicillium had four species each (Figure 4, Table A1). Fusarium, Coniochaeta and Clonostachys each had six species (Figure 4, Table A1). Other species with one to four isolates were identified as Tolypocladium album, Acremonium exuviarum, Acrophialophora nainiana, Nectria mauritiicola, Hawksworthiomyces taylorii, Chloridium aseptatum, Trichurus terrophilus, Chrysosporium lobatum, Arthropsis hispanica, Malbranchea aurantiaca, Auxarthron alboluteum, Arthrographis kalrae, Melanoctona tectonae, Phialophora livistonae, Xenopolyscytalum pinea, Oidiodendron fuscum, Cutaneotrichosporon dermatis, Apiotrichum cacaoliposimilis, Mucor ellipsoideus, Gongronella butleri and Cunninghamella elegans. (Figure 5, Table A1). The other 73 isolates have not been classified yet. Obviously, Purpureocillium lavendulum, M. anisopliae, M. marquandii, Purpureocillium lilacinum and B. bassiana were the most abundant EPF species.
Figure 1.
Phylogenetic tree of Purpureocillium spp. (A) and Metarhizium spp. (B) isolates.
Figure 2.
Phylogenetic tree of Penicillium spp. (A) and Aspergillus spp. (B) isolates.
Figure 3.
Phylogenetic tree of Talaromyces spp. (A) and Beauveria/Isaria (B) isolates.
Figure 4.
Phylogenetic tree of Lecanicillium/Simplicillium spp. (A) and Fusarium/Coniochaeta/Clonostachys (B) isolates.
Figure 5.
Phylogenetic tree of other isolates.
3.2. Distribution of Soil EPF in Different Regions
There were different numbers and isolating rates of EPFs in different regions. Compared with the average fungal isolating rates of 83.70% and 61.92% in all fungi and EPFs, Henan had the highest rate of >90% (Table 2). However, the Shannon Evenness Index indicated that Hubei and Hunan were districts with the highest EPF biodiversity, while Hunan and Hebei had the EPF biodiversity with SHEI values of 0.87 and 0.88, respectively (Table 2).
Table 2.
The fungi isolation and biodiversity of different regions.
3.3. The Biodiversity of Soil EPF in Different Environments
There were different numbers and isolating rates of EPF in Central China. Compared with the average fungal isolating rates of 87.42% and 61.16% for all fungi and EPFs, cropland samples had higher rates of >69% (Table 3). However, the SHEI indicated that cropland had the lowest EPF biodiversity, while fallow land samples had the most abundant EPF biodiversity (Table 3).
Table 3.
The fungi isolation and biodiversity of different samples.
3.4. The Pathogenicity of Fungal Isolates against P. striolata
Forty-seven isolates were subjected to a bioassay against P. striolata. The results indicate that I. javanica (IsjaHN3002) had the highest mortality, and Aspergillus spp., Fusarium falciforme, Lecanicillium spp., Metarhizium spp. and Talaromyces spp. all had obvious pathogenicity against P. striolata (Table 4).
Table 4.
The pathogenicity of fungal isolates against adults of P. striolata.
3.5. The Pathogenicity of I. javanica against P. striolata
According to the results shown in Table 5, the number of muscardine cadavers increased with the spore concentration. The lethal rate of 1.0 × 108 spores/mL spore suspension treatment group was as high as 80%. When the spore concentration was lower than 1.0 × 106 spores/mL, no hyphae were observed on the body wall of P. striolata in the first 3 days. There was no significant difference in the rate of zombies in the groups treated with spore suspensions at concentrations of 1.0 × 104 and 1.0 × 105, 1.0 × 106 spores/mL in the first 3 days, but there was a significant difference in the rate of zombies in the group treated with spore suspensions with concentrations of 1.0 × 107 and 1.0 × 108 spores/mL in the first 3 days. After the seventh day, the differences among the treatment groups were revealed. Compared with other treatment groups, there was a significant difference in the lethal rate of the spore suspension with a concentration of 1.0 × 108 spores/mL.
Table 5.
Pathogenicity of I. javanica in different concentrations against P. striolata.
3.6. Scanning Electron Microscopy Observations of Infection Process of I. javanica
The results showed that the attachment of conidia of I. javanica to different parts of the body surface was very different. After 2 h, the attachment of conidia was observed. No attachment of conidia was found on the head, abdomen, shard or other smooth surfaces. The conidia were mainly attached to the bristly areas and internodes such as the antennae, foot joints, chest and chest feet. The most densely attached site was the intersegmental membrane of the chest feet, followed by the foot joints (Figure 6).
Figure 6.
The attachment of conidia of I. javanica on the body surface after inoculation for 2 h. (A) Chest internode; (B) hind foot internode; (C) foot end.
After 12 h of inoculation, some conidia began to germinate, forming short germ tubes at the top. Twenty-four hours after infection, the top of the germ tube expanded to form an appressorium and continued in the direction of the intersegmental membrane, forming tendrils (Figure 7A–C) and looking for a suitable invasion site. The germ tube could also directly invade the body wall (Figure 7D). At 48 h, hyphae began to grow between the foot internode, and new conidiophores and conidia sprouted (Figure 8A). Next, 48–72 h after inoculation, the surface of the insect body was gradually covered by mycelia until it was completely covered (Figure 8B–D). Through stereoscopic observation, the mycelia were observed to grow from the body surface on the third day, and then the mycelium coverage increased day by day (Figure 9), while the control group never experienced mycelial growth.
Figure 7.
SEM observations of the inoculation of I. javanica for 12–24 h. (A) Spores germinate to form a short dental canal; (B) apical expansion to form an adherent cell; (C) adnexal extension; (D) bud tube invades the body wall.
Figure 8.
SEM observations of the inoculation of I. javanica for 48–72 h. (A) At 48 h, hyphae grew between the foot nodes, and new conidiophores and new conidia were formed. (B) At 60 h, conidia germination in vitro produced new hyphae covering the hindfoot. (C) At 72 h, the end of the foot was covered with mycelia. (D) At 72 h, the hind foot was covered with mycelia.
Figure 9.
Mycelial growth of Phyllotreta striolata infected by I. javanica. (A) 3 d; (B) 4 d; (C) 5 d; (D) 6 d; (E) 7 d.
4. Discussion
This study surveyed the EPF distribution at a broad scale in China. ITS sequences are small and easy to analyze and have been widely used in the phylogenetic analysis of different fungal species, but their accuracy is controversial. Therefore, the identification of the fungal species in this study has some defects. Undoubtedly, our results initially provide a large amount of information about the soil fungi in these areas. Moreover, the results indicate that the soil environment strongly impacts the distribution of EPFs. Compared to arbor and non-cultivated land, the cropland samples had fewer EPFs. The isolation rate of EPFs was not high, which showed that soil fungi were not abundant in these areas and that the sampling and isolation methods also affected the isolation of fungi. The EPF diversity may be affected by the use of fungicides in croplands. China is a heavy consumer of pesticides, and a large number of broad-spectrum fungicides such as carbendazim, chlorothalonil and azoxystrobin, etc., are sprayed on croplands and probably inhibit fungi [,].
EPFs can parasitize insects and cause insect diseases, including some obligate parasitism that may not cause insect death but that can reduce the vitality of the host insects and weaken them [] or affect insect spawning []; as such, when using EPFs, we can observe changes in the behavior of host insects [,]. Some studies have suggested that insects can actively identify fungi, with the target location being the cell wall of the fungi, while the fungi will take a series of measures to evade the host’s defenses in the face of insect recognition []. Therefore, the invasion of host insects by EPF is a process of mutual influence and interaction []. As a result, the body surface of P. striolata may be able to recognize I. javanica, and the resistance and defense of I. javanica may also take measures to promote the germination of conidia in advance. In view of this fact, we can further explore what receptor binds the cell wall of conidia of I. javanica to produce signal molecules and promote spore germination, determining the factors promoting spore germination and improving pathogenicity.
Through scanning electron microscope observation, 12 h after infection with I. javanica, some conidia began to germinate, as shown in Figure 7. After 24 h of infection, only some scattered spores germinated. Because of the hard shell and dense structure on the body surface, the structure of the body wall varies greatly in different parts, and the outer skin has hydrophobic components. However, in tests of the bioactivity of different concentrations of spore suspensions against P. striolata, it was found that the spore suspension concentration of I. javanica had a stimulative effect on the production of zombies. This may be the QS phenomenon observed in I. javanica, which refers to a change in the physiological and biochemical characteristics of the microbial population in the process of its growth due to an increase in the population density, showing the characteristics of a small number of bacteria or a single bacterium. Cells use the QS mechanism to carry out cell-to-cell communication so that they can coordinate in a complex environment, and their “team combat ability” better ensures that the whole population survives. At present, the study of QSM is mainly focused on bacteria, and QSM has also been reported in related fungi []. In recent years, more reports have confirmed that fungi have QSM [,] and have QSM pheromones that are similar to the bacterial regulation of the physiological behavior of fungi [,,]. However, in-depth studies of fungal QSM have not been carried out. Therefore, in the production of fungicidal insecticides using I. javanica, we can choose the appropriate formulation or use new production technology to help I. javanica survive in the form of sporangia, and it can also attach to the body surface after application to invade the body faster and improve its pathogenicity.
Several species have not been reported as EPF, namely Aspergillus, Lecanicillium, Monascus, Talaromyces and Fusarium. Their pathogenicity against P. striolata was discovered, and their potential for pest control deserves further research. Our experiment will provide new insight into the distribution characteristics of EPF and the conservation of their biodiversity.
5. Conclusions
In conclusion, 188 EPF isolates were identified from 226 soil samples, and the amount and types of fungi in the soil varied by region and vegetation type. Metarhizium, with 89 isolates, was recognized as the dominant EPF species, whereas Purpureocillium and Beauveria (respectively with 81 and 11 isolates) were the richer genera. Finally, it was first reported that I. javanica had pathogenicity against P. striolata, and we described its infection process.
Author Contributions
K.Z. and X.Z. completed most of the experiments, including the collection of the soil samples, the isolation and identification of the fungi strains and the bioassay and data analysis. Q.H. designed the experiments and collected partial soil samples. K.Z. and Q.W. wrote the article. All authors have read and agreed to the published version of the manuscript.
Funding
This project was supported by Guangdong Province Science and Technology Project (2016B020234005) and the National Natural Science Foundation of China (31572053).
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
Publicly available datasets were analyzed in this study. These data can be found here: https://www.ncbi.nlm.nih.gov/nuccore/?term=OM372687:OM373035[accn], submission ID SUB9030162; accessed on 25 January 2022.
Conflicts of Interest
The authors declare no conflict of interest.
Appendix A
Table A1.
The information of the soil samples collected and fungal isolates.
Table A1.
The information of the soil samples collected and fungal isolates.
| Site | Isolate | GenBank Access No. | Species | |||
|---|---|---|---|---|---|---|
| NO. | Address | Latitude and Longitude | Sample Environment | |||
| HB01 | Xianning, Hubei | 29.267 N, 113.746 E | Fallow land | HB01Z01 | -- | |
| HB01Z02 | -- | |||||
| PeruHB01Z03 | OM372687 | Penicillium rubens | ||||
| HB01Z04 | -- | |||||
| Crop | HB01G01 | -- | ||||
| PesuHB01G02 | OM372688 | Penicillium subrubescens | ||||
| HB02 | Xianning, Hubei | 29.568 N, 114.193 E | Crop | -- | -- | |
| Arbor | HB02S01 | -- | ||||
| MeanHB02S02 | OM372689 | Metarhizium anisopliae | ||||
| Grass | TapiHB0201 | OM372690 | Talaromyces pinophilus | |||
| HB0202 | -- | |||||
| PemiHB0203 | OM372691 | Penicillium mirabile | ||||
| HB03 | Daye, Hubei | 29.973 N, 114.667 E | Crop | HB03Y01 | -- | |
| AsteHB03Y02 | OM372692 | Aspergillus terreus | ||||
| HB03Y03 | -- | |||||
| Grass | HB0301 | -- | ||||
| HB04 | Huanggang, Hubei | 30.372 N, 115.161 E | Fallow land | TapiHB04Z01 | OM372693 | Talaromyces pinophilus |
| Crop | MeanHB04F01 | OM372694 | Metarhizium anisopliae | |||
| AsudHB04F02 | OM372695 | Aspergillus udagawae | ||||
| AsfuHB04F03 | OM372696 | Aspergillus fumigatus | ||||
| HB05 | Xinzhou, Hubei | 30.863 N, 114.881 E | Crop | Mema sp. HB05N01 | OM372697 | Metarhizium marquandii |
| TapiHB05N02 | OM372698 | Talaromyces pinophilus | ||||
| Grass | TapiHB0501 | OM372699 | Talaromyces pinophilus | |||
| HB06 | Huanggang, Hubei | 31.257 N, 115.056 E | Arbor | HB06S01 | -- | |
| Fallow land | PulaHB06Z01 | OM372700 | Purpureocillium lavendulum | |||
| Grass | AsteHB0601 | OM372701 | Aspergillus terreus | |||
| HB07 | Wuhan, Hubei | 30.887 N, 114.462 E | Grass | Mema sp. HB0701 | OM372702 | Metarhizium marquandii |
| HB0702 | -- | |||||
| PemiHB0703 | OM372703 | Penicillium mirabile | ||||
| Arbor | AsnoHB07S01 | OM372704 | Aspergillus nomius | |||
| HB08 | Xiaogan, Hubei | 31.030 N, 113.938 E | Crop | -- | -- | |
| Grass | TapiHB0801 | OM372705 | Talaromyces pinophilus | |||
| HB0802 | -- | |||||
| PeciHB803 | OM372706 | Penicillium citrinum | ||||
| IsjaHB0804 | OM372707 | Isaria javanica | ||||
| HB09 | Xiaogan, Hubei | 31.325 N, 113.580 E | Fallow land | GobuHB0901 | OM372708 | Gongronella butleri |
| HB0902 | -- | |||||
| Suizhou, Hubei | 31.665 N, 113.269 E | Arbor | -- | -- | ||
| Grass | -- | -- | ||||
| HB11 | Xiangyang, Hubei | 31.948 N, 112.929 E | Crop | HB11Y01 | -- | |
| PemiHB11Q01 | OM372709 | Penicillium mirabile | ||||
| ClgrHB11Q02 | OM372710 | Clonostachys grammicospora | ||||
| HB12 | Xiangyang, Hubei | 32.178 N, 112.211 E | Grass | HB12A01 | -- | |
| MeanHB12A02 | OM372711 | Metarhizium anisopliae | ||||
| Arbor | -- | |||||
| HB13 | Xiangyang, Hubei | 32.307 N, 111.614 E | Crop | AsteHB13F01 | OM372712 | Aspergillus terreus |
| HB13F02 | -- | |||||
| Arbor | PuliHB13S01 | OM372713 | Purpureocillium lilacinum | |||
| HB14 | Shiyan, Hubei | 32.502 N, E111.100 E | Grass | PulaHB1401 | OM372714 | Purpureocillium lavendulum |
| Arbor | HB14S01 | -- | ||||
| HB15 | Shiyan, Hubei | 32.020 N, 110.679 E | Fallow land | -- | ||
| Grass | HB1501 | -- | ||||
| PulaHB1502 | OM372715 | Purpureocillium lavendulum | ||||
| FufaHB1503 | OM372716 | Fusarium falciforme | ||||
| HB16 | Shennongjia, Hubei | 31.823 N, 110.508 E | Grass | MeanHB1601 | OM372717 | Metarhizium anisopliae |
| Arbor | CofaHB16S01 | OM372718 | Coniochaeta fasciculata | |||
| MeanHB16S02 | OM372719 | Metarhizium anisopliae | ||||
| PesuHB16S03 | OM372720 | Penicillium subrubescens | ||||
| HB17 | Shennongjia, Hubei | 31.514 N, 110.338 E | Grass | CofaHB1701 | OM372721 | Coniochaeta fasciculata |
| AsfuHB1702 | OM372722 | Aspergillus fumigatus | ||||
| Arbor | CofaHB17S01 | OM372723 | Coniochaeta fasciculata | |||
| HB18 | Yichang, Hubei | 31.266 N, 110.686 E | Grass | HB1801 | -- | |
| HB19 | Enshi, Hubei | 30.007 N, 110.377 E | Grass | HB1901 | -- | |
| HB1902 | -- | |||||
| AcexAB1903 | OM372724 | Acremonium exuviarum | ||||
| Crop | MeanHB20Y01 | OM372725 | Metarhizium anisopliae | |||
| HB20 | Enshi, Hubei | 30.556 N, 109.889 E | Grass | PeruHB2001 | OM372726 | Penicillium rubens |
| AsteHB2002 | OM372727 | Aspergillus terreus | ||||
| CofaHB2003 | OM372728 | Coniochaeta fasciculata | ||||
| Arbor | HB20S01 | -- | ||||
| HB20S02 | -- | |||||
| HB21 | Yichang, Hubei | 30.615 N, 110.513 E | Grass | Mema sp. HB2101 | OM372729 | Metarhizium marquandii |
| PulaHB2102 | OM372730 | Purpureocillium lavendulum | ||||
| Crop | ArkaHB21Y01 | OM372731 | Arthrographis kalrae | |||
| AsfuHB21Y02 | OM372732 | Aspergillus fumigatus | ||||
| HB22 | Yichang, Hubei | 30.582 N, 111.028 E | Fallow land | TapiHB22Z01 | OM372733 | Talaromyces pinophilus |
| Crop | HB22Y01 | -- | ||||
| HB22Y02 | -- | |||||
| HB23 | Yichang, Hubei | 30.688 N, 111.517 E | Crop | PeciHB23Y01 | OM372734 | Penicillium citrinum |
| Orchard | TapiHB23G01 | OM372735 | Talaromyces pinophilus | |||
| Arbor | TapiHB23S01 | OM372736 | Talaromyces pinophilus | |||
| HB24 | Jingmen, Hubei | 30.904 N, 112.185 E | Arbor | AsteHB24S01 | OM372737 | Aspergillus terreus |
| AsudHB24S02 | OM372738 | Aspergillus udagawae | ||||
| Crop | AsfuHB24N01 | OM372739 | Aspergillus fumigatus | |||
| HB24N02 | -- | |||||
| MuelHB24N03 | OM372740 | Mucor ellipsoideus | ||||
| HB24N04 | -- | |||||
| HB25 | Jingmen, Hubei | 30.991 N, 112.854 E | Arbor | HB25S01 | -- | |
| Grass | -- | |||||
| HB26 | Xiaogan, Hubei | 30.868 N, 113.576 E | Arbor | Mema sp.HB26S01 | OM372741 | Metarhizium marquandii |
| PeciHB26S02 | OM372742 | Penicillium citrinum | ||||
| AsteHB26S03 | OM372743 | Aspergillus terreus | ||||
| PeciHB26S04 | OM372744 | Penicillium citrinum | ||||
| Grass | AsteHB2601 | OM372745 | Aspergillus terreus | |||
| IsjaHB2602 | OM372746 | Isaria javanica | ||||
| PulaHB2603 | OM372747 | Purpureocillium lavendulum | ||||
| HB27 | Wuhan, Hubei | 30.478 N, 113.874 E | Arbor | HB27S01 | -- | |
| AsnoHB27S02 | OM372748 | Aspergillus nomius | ||||
| Grass | HB2701 | -- | ||||
| HB2702 | -- | |||||
| MeanHB2703 | OM372749 | Metarhizium anisopliae | ||||
| HB28 | Xiantao, Hubei | 30.350 N, 113.424 E | Grass | PeguHB2801 | OM372750 | Penicillium guttulosum |
| Arbor | AcnaHB28S01 | OM372751 | Acrophialophora nainiana | |||
| PulaHB28S02 | OM372752 | Purpureocillium lavendulum | ||||
| MemaHB28S03 | OM372753 | Metarhizium marquandii | ||||
| MemaHB28S04 | OM372754 | Metarhizium marquandii | ||||
| LesaHB28S05 | OM372755 | Lecanicillium saksenae | ||||
| HB29 | Qianjiang, Hubei | 30.373 N, 112.889 E | Crop | TatrHB29Y01 | OM372756 | Talaromyces trachyspermus |
| AcnaHB29Y02 | OM372757 | Acrophialophora nainiana | ||||
| HB29Y03 | -- | |||||
| MeanHB29Y04 | OM372758 | Metarhizium anisopliae | ||||
| Arbor | AsnoHB29S01 | OM372759 | Aspergillus nomius | |||
| HB29S02 | -- | |||||
| PuliHB29S03 | OM372760 | Purpureocillium lilacinum | ||||
| HB29S04 | -- | |||||
| HB30 | Jingzhou, Hubei | 30.352 N, 112.338 E | Grass | ClroHB3001 | OM372761 | Clonostachys rosea |
| AspsHB3002 | OM372762 | Aspergillus pseudodeflectus | ||||
| HB3003 | -- | |||||
| AsgrHB3004 | OM372763 | Aspergillus granulosus | ||||
| Crop | -- | |||||
| HB31 | Jingzhou, Hubei | 30.043 N, 112.158 E | Grass | AsfuHB3101 | OM372764 | Aspergillus fumigatus |
| HB3102 | -- | |||||
| Crop | -- | |||||
| HN01 | Changsha, Hunan | 28.203 N, 113.303 E | Crop | PulaHN01S01 | OM372765 | Purpureocillium lavendulum |
| AsteHN01S02 | OM372766 | Aspergillus terreus | ||||
| MeanHN01S03 | OM372767 | Metarhizium anisopliae | ||||
| Crop | AsfuHN0101 | OM372768 | Aspergillus fumigatus | |||
| IsjaHN0102 | OM372769 | Isaria javanica | ||||
| HN02 | Changde, Hunan | 29.634 N, 111.840 E | Grass | MemaHN0201 | OM372770 | Metarhizium marquandii |
| PulaHN0202 | OM372771 | Purpureocillium lavendulum | ||||
| Arbor | PeciHN02S01 | OM372772 | Penicillium citrinum | |||
| AsteHN02S02 | OM372773 | Aspergillus terreus | ||||
| HN03 | Changde, Hunan | 29.131 N, 111.706 E | Grass | HN0301 | -- | |
| PesuHN0302 | OM372774 | Penicillium subrubescens | ||||
| Arbor | MemaHN03S01 | OM372775 | Metarhizium marquandii | |||
| AsnoHN03S02 | OM372776 | Aspergillus nomius | ||||
| HN04 | Zhangjiajie, Hunan | 29.424 N, 111.163 E | Orchard | TapiHN04Y01 | OM372777 | Talaromyces pinophilus |
| Grass | -- | -- | ||||
| HN05 | Zhangjiajie, Hunan | 29.348 N, 110.568 E | Arbor | HN05S01 | -- | |
| Grass | -- | -- | ||||
| HN06 | Xiangxi, Hunan | 29.034 N, 110.228 E | Arbor | PulaHN06S01 | OM372778 | Purpureocillium lavendulum |
| Grass | TapiHN0601 | OM372779 | Talaromyces pinophilus | |||
| Crop | HN06Y01 | -- | ||||
| PuliHN06Y02 | OM372780 | Purpureocillium lilacinum | ||||
| ChasHN06Y03 | OM372781 | Chloridium aseptatum | ||||
| HN06Y04 | -- | |||||
| HN06Y05 | -- | |||||
| HN07 | Xiangxi, Hunan | 28.623 N, 109.547 E | Grass | HN0701 | -- | |
| Pula sp. HN0702 | OM372782 | Purpureocillium lavendulum | ||||
| PeciHN0703 | OM372783 | Penicillium citrinum | ||||
| Arbor | PulaHN07S01 | OM372784 | Purpureocillium lavendulum | |||
| AsscHN07S02 | OM372785 | Aspergillus sclerotiorum | ||||
| HN08 | Huaihua, Hunan | 26.963 N, 109.747 E | Grass | Mema sp. HN0801 | OM372786 | Metarhizium marquandii |
| Arbor | PesuHN08S01 | OM372787 | Penicillium subrubescens | |||
| PulaHN08S02 | OM372788 | Purpureocillium lavendulum | ||||
| HN09 | Huaihua, Hunan | 26.614 N, 109.671 E | Grass | HataHN0901 | OM372789 | Hawksworthiomyces taylorii |
| PuliHN0902 | OM372790 | Purpureocillium lilacinum | ||||
| PesuHN0903 | OM372791 | Penicillium subrubescens | ||||
| Arbor | PulaHN09S01 | OM372792 | Purpureocillium lavendulum | |||
| HN09S02 | -- | |||||
| HN10 | Yongzhou, Hunan | 26.662 N, 111.493 E | Grass | HN1001 | -- | |
| PesuHN1002 | OM372793 | Penicillium subrubescens | ||||
| HN1003 | -- | |||||
| Arbor | HN10S01 | -- | ||||
| HN11 | Yongzhou, Hunan | 26.063 N, 111.831 E | Arbor | FufaHN11S01 | OM372794 | Fusarium falciforme |
| Fallow land | -- | -- | ||||
| HN12 | Yongzhou, Hunan | 25.528 N, 112.111 E | Grass | PulaHN1201 | OM372795 | Purpureocillium lavendulum |
| CudeHN1202 | OM372796 | Cutaneotrichosporon dermatis | ||||
| HN13 | Chenzhou, Hunan | 25.659 N, 112.729 E | Grass | TavaHN1301 | OM372797 | Talaromyces variabilis |
| BebaHN1302 | OM372798 | Beauveria bassiana | ||||
| HN1303 | -- | |||||
| Arbor | MeteHN13S01 | OM372799 | Melanoctona tectonae | |||
| HN14 | Chenzhou, Hunan | 25.965 N, 113.042 E | Grass | BebaHN1401 | OM372800 | Beauveria bassiana |
| Arbor | PesuHN14S01 | OM372801 | Penicillium subrubescens | |||
| PuliHN14S02 | OM372802 | Purpureocillium lilacinum | ||||
| HN15 | Hengyang, Hunan | 26.426 N, 112.889 E | Grass | AstaHN1501 | OM372803 | Aspergillus tanneri |
| AsscHN1502 | OM372804 | Aspergillus sclerotiorum | ||||
| Arbor | AsscHN15S01 | OM372805 | Aspergillus sclerotiorum | |||
| Mema sp. HN15S02 | OM372806 | Metarhizium marquandii | ||||
| ToalHN15S03 | OM372807 | Tolypocladium album | ||||
| ToalHN15S04 | OM372808 | Tolypocladium album | ||||
| FusoHN15S05 | OM372809 | Fusarium solani | ||||
| HN16 | Hengyang, Hunan | 26.974 N, 112.425 E | Grass | Mema sp. HN1601 | OM372810 | Metarhizium marquandii |
| Orchard | AsscHN16Z01 | OM372811 | Aspergillus sclerotiorum | |||
| AsscHN16Z02 | OM372812 | Aspergillus sclerotiorum | ||||
| HN17 | Loudi, Hunan | 27.440 N, 112.132 E | Grass | PesuHN1701 | OM372813 | Penicillium subrubescens |
| Arbor | MemaHN17S01 | OM372814 | Metarhizium marquandii | |||
| XepiHN17S02 | OM372815 | Xenopolyscytalum pinea | ||||
| CuelHN17S03 | OM372816 | Cunninghamella elegans | ||||
| HN18 | Loudi, Hunan | 27.821 N, 111.763 E | Grass | MemaHN1801 | OM372817 | Metarhizium marquandii |
| HN1802 | ||||||
| Fallow land | PesuHN18Z01 | OM372818 | Penicillium subrubescens | |||
| HN19 | Yiyang, Hunan | 28.264 N, 111.712 E | Arbor | MeanHN19S01 | OM372819 | Metarhizium anisopliae |
| HN19S02 | ||||||
| HN19S03 | ||||||
| Grass | FufaHN1901 | OM372820 | Fusarium falciforme | |||
| Mema sp. HN1902 | OM372821 | Metarhizium marquandii | ||||
| HN20 | Yiyang, Hunan | 28.525 N, 112.045 E | Grass | BebaHN2001 | OM372822 | Beauveria bassiana |
| PulaHN2002 | OM372823 | Purpureocillium lavendulum | ||||
| PesuHN2003 | OM372824 | Penicillium subrubescens | ||||
| Fallow land | HN20Z01 | -- | ||||
| BebaHN20Z02 | OM372825 | Beauveria bassiana | ||||
| Mema sp. HN20Z03 | OM372826 | Metarhizium marquandii | ||||
| HN21 | Changsha, Hunan | 28.222 N, 112.567 E | Crop | MeanHN21G01 | OM372829 | Metarhizium anisopliae |
| Pula sp. HN21G02 | OM372830 | Purpureocillium lavendulum | ||||
| TapiHN21G03 | OM372831 | Talaromyces pinophilus | ||||
| Arbor | PulaHN21S01 | OM372827 | Purpureocillium lavendulum | |||
| Mema sp. HN21S02 | OM372828 | Metarhizium marquandii | ||||
| HN22 | Xiangtan, Hunan | 27.806 N, 112.511 E | Fallow land | Pula sp. HN22Z01 | OM372832 | Purpureocillium lavendulum |
| Arbor | -- | -- | ||||
| HN23 | Xiangtan, Hunan | 27.846 N, 113.017 E | Grass | Mema sp. HN2301 | OM372833 | Metarhizium marquandii |
| PulaHN2302 | OM372834 | Purpureocillium lavendulum | ||||
| PeciHN2303 | OM372835 | Penicillium citrinum | ||||
| Arbor | Pula sp. HN23S01 | OM372836 | Purpureocillium lavendulum | |||
| HN24 | Hengyang, Hunan | 27.229 N, 112.897 E | Grass | TavaHN2401 | OM372837 | Talaromyces variabilis |
| ApcaHN2402 | OM372838 | Apiotrichum cacaoliposimilis | ||||
| PesuHN2403 | OM372839 | Penicillium subrubescens | ||||
| Arbor | MeanHN24S01 | OM372840 | Metarhizium anisopliae | |||
| HN24S02 | -- | |||||
| HN25 | Zhuzhou, Hunan | 26.893 N, 113.374 E | Grass | Mema sp. HN2501 | OM372841 | Metarhizium marquandii |
| Orchard | MeanHN25B01 | OM372842 | Metarhizium anisopliae | |||
| HN26 | Zhuzhou, Hunan | 27.496 N, 113.486 E | Arbor | MemaHN26S01 | OM372843 | Metarhizium marquandii |
| HN26S02 | -- | |||||
| Fallow land | MeanHN26Z01 | OM372844 | Metarhizium anisopliae | |||
| HN27 | Xiangxi, Hunan | 27.914 N, 109.385 E | Grass | PulaHN2701 | OM372845 | Purpureocillium lavendulum |
| PhliHN2702 | OM372846 | Phialophora livistonae | ||||
| HN28 | Huaihua, Hunan | 27.896 N, 109.702 E | Orchard | HN28J01 | -- | |
| PuliHN28J02 | OM372847 | Purpureocillium lilacinum | ||||
| PeruHN28J03 | OM372848 | Penicillium rubens | ||||
| HN29 | Huaihua, Hunan | 27.367 N, 109.935 E | Fallow land | PulaHN29B01 | OM372849 | Purpureocillium lavendulum |
| MeanHN29B02 | OM372850 | Metarhizium anisopliae | ||||
| Grass | ArhiHN2901 | OM372851 | Arthropsis hispanica | |||
| HN30 | Huaihua, Hunan | 27.216 N, 110.420 E | Arbor | SimiHN3001 | OM372852 | Simplicillium minatense |
| IsjaHN3002 | OM372853 | Isaria javanica | ||||
| HN31 | Shaoyang, Hunan | 26.941 N, 110.638 E | Arbor | XepiHN3101 | OM372854 | Xenopolyscytalum pinea |
| HN32 | Shaoyang, Hunan | 26.322 N, 110.837 E | Grass | -- | -- | |
| HE01 | Xingtai, Hebei | 36.905 N, 114.559 E | Crop | MeanHE01A01 | OM372855 | Metarhizium anisopliae |
| LecoHE01A02 | OM372856 | Lecanicillium coprophilum | ||||
| Grass | MeanHE01B01 | OM372857 | Metarhizium anisopliae | |||
| NemaHE01B02 | OM372858 | Nectria mauritiicola | ||||
| LecoHE01B03 | OM372859 | Lecanicillium coprophilum | ||||
| HE02 | Shijiazhuang, Hebei | 35.994 N, 113.758 E | Arbor | LecoHE02A01 | OM372860 | Lecanicillium coprophilum |
| MeanHE02A02 | OM372861 | Metarhizium anisopliae | ||||
| HE02A03 | -- | |||||
| HE03 | Baoding, Hebei | 39.138 N, 115.536 E | Crop | LecoHE03A01 | OM372862 | Lecanicillium coprophilum |
| MemaHE03A02 | OM372863 | Metarhizium marquandii | ||||
| Grass | HE03B01 | -- | ||||
| LecoHE03B02 | OM372864 | Lecanicillium coprophilum | ||||
| Poplar | ClgrHE03C01 | OM372865 | Clonostachys grammicospora | |||
| MeanHE03C02 | OM372866 | Metarhizium anisopliae | ||||
| TatrHE03C03 | OM372867 | Talaromyces trachyspermus | ||||
| HE04 | Zhangjiakou, Hebei | 39.273 N, 115.455 E | Poplar | AualHE04A01 | OM372868 | Auxarthron alboluteum |
| ClgrHE04A02 | OM372869 | Clonostachys grammicospora | ||||
| Crop | HE04B01 | -- | ||||
| LecoHE04B02 | OM372870 | Lecanicillium coprophilum | ||||
| Mema sp. HE04B03 | OM372871 | Metarhizium marquandii | ||||
| HE05 | Zhangjiakou, Hebei | 39.375 N, 114.866 E | Poplar | HE05A01 | -- | |
| LecoHE05A02 | OM372872 | Lecanicillium coprophilum | ||||
| Crop | Mema sp. HE05B01 | OM372873 | Metarhizium marquandii | |||
| MeanHE05B02 | OM372874 | Metarhizium anisopliae | ||||
| HE06 | Zhangjiakou, Hebei | 40.488 N, 114.838 E | Orchard | MeanHE06A01 | OM372875 | Metarhizium anisopliae |
| TrteHE06A02 | OM372876 | Trichurus terrophilus | ||||
| AssyHE06A03 | OM372877 | Aspergillus sydowii | ||||
| BebaHE06A04 | OM372878 | Beauveria bassiana | ||||
| Crop | Mema sp. HE06B01 | OM372879 | Metarhizium marquandii | |||
| PuliHE06B02 | OM372880 | Purpureocillium lilacinum | ||||
| HE07 | Zhangjiakou, Hebei | 41.267 N, 114.785 E | Crop | HE07A01 | -- | |
| AscrHE07C01 | OM372882 | Aspergillus crustosus | ||||
| Grass | LecoHE07B01 | OM372881 | Lecanicillium coprophilum | |||
| Poplar | LecoHE07D01 | OM372883 | Lecanicillium coprophilum | |||
| HE08 | Zhangjiakou, Hebei | 41.073 N, 115.389 E | Grass | HE08A01 | -- | |
| HE08A02 | -- | |||||
| Crop | AualHE08B01 | OM372884 | Auxarthron alboluteum | |||
| AsfuHE08C01 | OM372885 | Aspergillus fumigatus | ||||
| HE09 | Chengde, Hebei | 41.581 N, 116.023 E | Grass | MeanHE09A01 | OM372886 | Metarhizium anisopliae |
| PulaHE09A02 | OM372887 | Purpureocillium lavendulum | ||||
| Elm | AsfuHE09B01 | OM372888 | Aspergillus fumigatus | |||
| Crop | HE09C01 | -- | ||||
| OifuHE09C02 | OM372889 | Oidiodendron fuscum | ||||
| HE10 | Chengde, Hebei | 42.001 N, 116.975 E | Grass | TapuHE10A01 | OM372890 | Talaromyces purpureogenus |
| Crop | -- | -- | ||||
| HE11 | Chengde, Hebei | 42.253 N, 117.143 E | Grass | PulaHE11A01 | OM372891 | Purpureocillium lavendulum |
| PesuHE11A02 | OM372892 | Penicillium subrubescens | ||||
| Pine | CofaHE11C01 | OM372893 | Coniochaeta fasciculata | |||
| Crop | AssyHE11D01 | OM372894 | Aspergillus sydowii | |||
| HE12 | Chengde, Hebei | 41.997 N, 117.655 E | Orchard | AsfuHE12A01 | OM372895 | Aspergillus fumigatus |
| Grass | PulaHE12B01 | OM372896 | Purpureocillium lavendulum | |||
| MeanHE12B02 | OM372897 | Metarhizium anisopliae | ||||
| HE13 | Chengde, Hebei | 41.302 N, 118.038 E | Crop | HE13A01 | -- | |
| MeanHE13B01 | OM372898 | Metarhizium anisopliae | ||||
| MeanHE13B02 | OM372899 | Metarhizium anisopliae | ||||
| Poplar | AsudHE13C01 | OM372900 | Aspergillus udagawae | |||
| PulaHE13C02 | OM372901 | Purpureocillium lavendulum | ||||
| MeanHE13C03 | OM372902 | Metarhizium anisopliae | ||||
| HE14 | Chengde, Hebei | 40.578 N, 117.704 E | Crop | TatrHE14A01 | OM372903 | Talaromyces trachyspermus |
| Grass | -- | -- | ||||
| HE15 | Tangshan, Hebei | 40.108 N, 117.985 E | Crop | MeanHE15A01 | OM372904 | Metarhizium anisopliae |
| Sicy sp. HE15A02 | OM372905 | Simplicillium cylindrosporum | ||||
| Arbor | MeanHE15B01 | OM372906 | Metarhizium anisopliae | |||
| PemiHB15B02 | OM372907 | Penicillium mirabile | ||||
| Grass | SicyHE15C01 | OM372908 | Simplicillium cylindrosporum | |||
| SimiHE15C02 | OM372909 | Simplicillium minatense | ||||
| MeanHE15C03 | OM372910 | Metarhizium anisopliae | ||||
| HE16 | Tangshan, Hebei | 39.584 N, 118.264 E | Grass | MeanHE16A01 | OM372911 | Metarhizium anisopliae |
| HE17 | Tangshan, Hebei | 39.490 N, 118.682 E | Grass | PeciHE17A01 | OM372912 | Penicillium citrinum |
| SicyHE17A02 | OM372913 | Simplicillium cylindrosporum | ||||
| PulaHE17A03 | OM372914 | Purpureocillium lavendulum | ||||
| Orchard | Pula sp. HE17B01 | OM372915 | Purpureocillium lavendulum | |||
| SicyHE17B02 | OM372916 | Simplicillium cylindrosporum | ||||
| BebaHE17B03 | OM372917 | Beauveria bassiana | ||||
| Poplar | SimiHE17C01 | OM372918 | Simplicillium minatense | |||
| MemaHE17C02 | OM372919 | Metarhizium marquandii | ||||
| HE18 | Tangshan, Hebei | 39.408 N, 117.954 E | Crop | PulaHE18A01 | OM372920 | Purpureocillium lavendulum |
| TatrHE18B01 | OM372921 | Talaromyces trachyspermus | ||||
| Pula sp. HE18B02 | OM372922 | Purpureocillium lavendulum | ||||
| TrteHE18B03 | OM372923 | Trichurus terrophilus | ||||
| Poplar | MeanHE18C01 | OM372924 | Metarhizium anisopliae | |||
| HE19 | Tianjin, Hebei | 38.768 N, 117.184 E | Crop | MeanHE19A01 | OM372925 | Metarhizium anisopliae |
| NemaHE19A02 | OM372926 | Nectria mauritiicola | ||||
| Orchard | Pula sp. HE19B01 | OM372927 | Purpureocillium lavendulum | |||
| MeanHE19B02 | OM372928 | Metarhizium anisopliae | ||||
| HE20 | Cangzhou, Hebei | 38.151 N, 115.740 E | Crop | PulaHE20A01 | OM372929 | Purpureocillium lavendulum |
| MemaHE20A02 | OM372930 | Metarhizium marquandii | ||||
| Grass | MeanHE20B01 | OM372931 | Metarhizium anisopliae | |||
| HE21 | Hengshui, Hebei | 37.719 N, 115.193 E | Crop | PemiHB21A01 | OM372932 | Penicillium mirabile |
| Grass | PechHE21B01 | OM372933 | Penicillium chrysogenum | |||
| Pula sp. HE21B02 | OM372934 | Purpureocillium lavendulum | ||||
| MemaHE21B03 | OM372935 | Metarhizium marquandii | ||||
| HE22 | Handan, Hebei | 36.804 N, 115.193 E | Crop | ClroHE22A01 | OM372936 | Clonostachys rosea |
| MemaHe22B01 | OM372937 | Metarhizium marquandii | ||||
| HA01 | Xinxiang, Henan | 35.268 N, 113.974 E | Orchard | HA01A01 | -- | |
| Crop | MemaHA01B01 | OM372938 | Metarhizium marquandii | |||
| Grass | -- | -- | ||||
| HA02 | Linzhou, Henan | 35.994 N, 113.758 N | Crop | PulaHA02A01 | OM372939 | Purpureocillium lavendulum |
| MeanHA02B01 | OM372940 | Metarhizium anisopliae | ||||
| Arbor | PulaHA02C01 | OM372941 | Purpureocillium lavendulum | |||
| HA03 | Linzhou, Henan | 35.928 N, 113.655 E | Crop | -- | -- | |
| HA04 | Puyang, Henan | 36.090 N, 115.124 E | Crop | TrteHA04A01 | OM372942 | Trichurus terrophilus |
| MemaHA04B01 | OM372943 | Metarhizium marquandii | ||||
| HA04B02 | -- | |||||
| Grass | Pula sp. HA04C01 | OM372944 | Purpureocillium lavendulum | |||
| HA05 | Kaifeng, Henan | 34.790 N, 114.485 E | Crop | -- | -- | |
| Grass | PulaHA05B01 | OM372945 | Purpureocillium lavendulum | |||
| BebaHA05B02 | OM372946 | Beauveria bassiana | ||||
| Crop | Mema sp. HA05C01 | OM372947 | Metarhizium marquandii | |||
| TavaHA05C02 | OM372948 | Talaromyces variabilis | ||||
| HA06 | Kaifeng, Henan | 34.895 N, 114.328 E | Crop | MemaHA06A01 | OM372949 | Metarhizium marquandii |
| PulaHA06A02 | OM372950 | Purpureocillium lavendulum | ||||
| HA06A03 | -- | |||||
| Poplar | OifuHA06B01 | OM372951 | Oidiodendron fuscum | |||
| HA06B02 | -- | |||||
| Grass | PulaHA06C01 | OM372952 | Purpureocillium lavendulum | |||
| ChloHA06C02 | OM372953 | Chrysosporium lobatum | ||||
| MeanHA06C03 | OM372954 | Metarhizium anisopliae | ||||
| HA07 | Zhengzhou, Henan | 34.481 N, 113.030 E | Arbor | MemaHA07A01 | OM372955 | Metarhizium marquandii |
| Orchard | PeciHA07B01 | OM372956 | Penicillium citrinum | |||
| Pula sp. HA07B02 | OM372957 | Purpureocillium lavendulum | ||||
| Crop | PeguHA07C01 | OM372958 | Penicillium guttulosum | |||
| HA08 | Luoyang, Henan | 34.555 N, 112.873 E | Crop | PulaHA08A01 | OM372959 | Purpureocillium lavendulum |
| MemaHA08A02 | OM372960 | Metarhizium marquandii | ||||
| PulaHA08B01 | OM372961 | Purpureocillium lavendulum | ||||
| MeanHA08B02 | OM372962 | Metarhizium anisopliae | ||||
| MemaHA08B03 | OM372963 | Metarhizium marquandii | ||||
| PulaHA08C01 | OM372964 | Purpureocillium lavendulum | ||||
| MemaHA08C02 | OM372965 | Metarhizium marquandii | ||||
| HA09 | Luoyang, Henan | 34.768 N, 112.093 E | Crop | PulaHA09A01 | OM372966 | Purpureocillium lavendulum |
| MeanHA09A02 | OM372967 | Metarhizium anisopliae | ||||
| Poplar | MemaHA09B01 | OM372968 | Metarhizium marquandii | |||
| MeanHA09B02 | OM372969 | Metarhizium anisopliae | ||||
| PulaHA09B03 | OM372970 | Purpureocillium lavendulum | ||||
| HA10 | Sanmenxia, Henan | 34.797 N, 111.243 E | Crop | PulaHA10A01 | OM372971 | Purpureocillium lavendulum |
| MeanHA10A02 | OM372972 | Metarhizium anisopliae | ||||
| Pula sp. HA10B01 | OM372973 | Purpureocillium lavendulum | ||||
| MemaHA10B02 | OM372974 | Metarhizium marquandii | ||||
| MeanHA10B03 | OM372975 | Metarhizium anisopliae | ||||
| HA11 | Sanmenxia, Henan | 34.626 N, 110.914 E | Crop | MemaHA11A01 | OM372976 | Metarhizium marquandii |
| MeanHA11A02 | OM372977 | Metarhizium anisopliae | ||||
| PulaHA11A03 | OM372978 | Purpureocillium lavendulum | ||||
| PulaHA11B01 | OM372979 | Purpureocillium lavendulum | ||||
| Grass | -- | -- | ||||
| HA12 | Nanyang, Henan | 33.566 N, 111.185 E | Crop | Pula sp. HA12A01 | OM372980 | Purpureocillium lavendulum |
| Mema sp. HA12A02 | OM372981 | Metarhizium marquandii | ||||
| BebaHA12B01 | OM372982 | Beauveria bassiana | ||||
| PuliHA12B02 | OM372983 | Purpureocillium lilacinum | ||||
| TrteHA12B03 | OM372984 | Trichurus terrophilus | ||||
| Grass | PulaHA12C01 | OM372985 | Purpureocillium lavendulum | |||
| HA13 | Nanyang, Henan | 33.072 N, 111.792 E | Crop | -- | -- | -- |
| PuliHA13B01 | OM372986 | Purpureocillium lilacinum | ||||
| HA13B02 | -- | -- | ||||
| HA14 | Nanyang, Henan | 32.780 N, 112.707 E | Crop | PulaHA14A01 | OM372987 | Purpureocillium lavendulum |
| NemaHA14B01 | OM372988 | Nectria mauritiicola | ||||
| Grass | MemaHA14C01 | OM372989 | Metarhizium marquandii | |||
| HA15 | Xinyang, Henan | 32.401 N, 113.931 E | Crop | PulaHA15A01 | OM372990 | Purpureocillium lavendulum |
| ChasHA15A02 | OM372991 | Chloridium aseptatum | ||||
| Grass | PulaHA15C01 | OM372992 | Purpureocillium lavendulum | |||
| HA16 | Xinyang, Henan | 32.338 N, 114.128 E | Crop | PulaHA16A01 | OM372993 | Purpureocillium lavendulum |
| MaauHA16A02 | OM372994 | Malbranchea aurantiaca | ||||
| Grass | PulaHA16C01 | OM372995 | Purpureocillium lavendulum | |||
| HA17 | Zhumadian, Henan | 32.707 N, 114.109 E | Crop | PulaHA17A01 | OM372996 | Purpureocillium lavendulum |
| MemaHA17B01 | OM372997 | Metarhizium marquandii | ||||
| PulaHA17B02 | OM372998 | Purpureocillium lavendulum | ||||
| Grass | HA17C01 | -- | -- | |||
| PulaHA17C02 | OM372999 | Purpureocillium lavendulum | ||||
| HA18 | Luohe, Henan | 33.510 N, 113.980 E | Crop | PulaHA18A01 | OM373000 | Purpureocillium lavendulum |
| Pula sp. HA18B01 | OM373001 | Purpureocillium lavendulum | ||||
| HA18B02 | -- | |||||
| Grass | MeanHA18C01 | OM373002 | Metarhizium anisopliae | |||
| PulaHA18C02 | OM373003 | Purpureocillium lavendulum | ||||
| MemaHA18C03 | OM373004 | Metarhizium marquandii | ||||
| HA19 | Pingdingshan, Henan | 33.652 N, 113.370 E | Crop | MeanHA19A01 | OM373005 | Metarhizium anisopliae |
| PulaHA19A02 | OM373006 | Purpureocillium lavendulum | ||||
| MeanHA19B01 | OM373007 | Metarhizium anisopliae | ||||
| PulaHA19B02 | OM373008 | Purpureocillium lavendulum | ||||
| Grass | MemaHA19C01 | OM373009 | Metarhizium marquandii | |||
| Pula sp. HA19C02 | OM373010 | Purpureocillium lavendulum | ||||
| AssyHA19C03 | OM373011 | Aspergillus sydowii | ||||
| HA20 | Xuchang, Henan | 34.052 N, 113.709 E | Crop | MemaHA20A01 | OM373012 | Metarhizium marquandii |
| MemaHA20B01 | OM373013 | Metarhizium marquandii | ||||
| Grass | PulaHA20C01 | OM373014 | Purpureocillium lavendulum | |||
| MemaHA20C02 | OM373015 | Metarhizium marquandii | ||||
| BebaHA20C03 | OM373016 | Beauveria bassiana | ||||
| HA21 | Zhoukou, Henan | 33.978 N, 114.867 E | Crop | PulaHA21A01 | OM373017 | Purpureocillium lavendulum |
| MemaHA2102 | OM373018 | Metarhizium marquandii | ||||
| Grass | Pula sp. HA21B01 | OM373019 | Purpureocillium lavendulum | |||
| PeciHA21B02 | OM373020 | Penicillium citrinum | ||||
| HA22 | Shangqiu, Henan | 34.350 N, 115.572 E | Crop | HA22A01 | -- | |
| BebaHA22A02 | OM373021 | Beauveria bassiana | ||||
| PuliHA22B01 | OM373022 | Purpureocillium lilacinum | ||||
| Grass | PuliHA22C01 | OM373023 | Purpureocillium lilacinum | |||
| HA23 | Shangqiu, Henan | 34.596 N, 115.109 E | Crop | TapuHA23A01 | OM373024 | Talaromyces purpureogenus |
| MemaHA23B01 | OM373025 | Metarhizium marquandii | ||||
| HA23B02 | -- | |||||
| Orchard | PemiHA23C01 | OM373026 | Penicillium mirabile | |||
| HA24 | Kaifeng, Henan | 34.771 N, 114.806 E | Crop | MemaHA24A01 | OM373027 | Metarhizium marquandii |
| PulaHA24A02 | OM373028 | Purpureocillium lavendulum | ||||
| PuliHA24B01 | OM373029 | Purpureocillium lilacinum | ||||
| HA25 | Zhengzhou, Henan | 34.838 N, 114.036 E | Crop | PeciHA25A01 | OM373030 | Penicillium citrinum |
| MeanHA25A02 | OM373031 | Metarhizium anisopliae | ||||
| Grass | MeanHA25B01 | OM373032 | Metarhizium anisopliae | |||
| PuliHA25B02 | OM373033 | Purpureocillium lilacinum | ||||
| Crop | MeanHA25C01 | OM373034 | Metarhizium anisopliae | |||
| Poplar | MemaHA25D01 | OM373035 | Metarhizium marquandii | |||
| HA25D02 | -- | |||||
References
- Assadi, B.H.; Chouikhi, S.; Ettaib, R.; M’Hamdi, N.B.; Belkadhi, M.S. Effect of the native strain of the predator Nesidiocoris tenuis Reuter and the entomopathogenic fungi Beauveria bassiana and Lecanicillium muscarium against Bemisia tabaci (Genn.) under greenhouse conditions in Tunisia. Egypt. J. Biol. Pest Control 2021, 31, 47. [Google Scholar] [CrossRef]
- Ni, C.C. Current situation and prospect of using entomopathogenic microorganisms to control pests. World Pestic. 2005, 27, 35–37. [Google Scholar]
- Peng, Y.; Li, S.J.; Yan, J.; Tang, Y.; Cheng, J.P.; Gao, A.J.; Yao, X.; Ruan, J.J.; Xu, B.L. Research Progress on Phytopathogenic Fungi and Their Role as Biocontrol Agents. Front. Microbiol. 2021, 12, 670135. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Q.; Liang, W.L.; Huang, L.P.; Shen, B.B. Identification of 29 strains of entomogenous fungi and their toxicity to Bemisia tabaci. J. South China Agric. Univ. 2020, 41, 57–67. [Google Scholar] [CrossRef]
- Lian, T.; Qin, C.S.; Jie, Y.Z.; Xu, J.Z.; Zhao, D.Y.; Qiu, H.L.; Yang, H.; Lai, G.D. Biological characteristics of six strains of entomophytic fungi and theirpathogenicity against Curculio chinensis (Coleoptera: Curculionidae). J. Environ. Entomol. 2019, 41, 642–649. [Google Scholar] [CrossRef]
- Wang, J.X.; Ma, J.L. Application of entomogenous fungi in biological control of agriculture and forestry pests. J. Zhejiang For. Colg. 2009, 26, 286–291. [Google Scholar] [CrossRef]
- Song, X.B.; Peng, A.T.; Cheng, B.P.; Ling, J.F.; Chen, X.; Zhang, L.H. Isolation of identification of a Beauveria bassiana strain infecting Diaphorina citri. Plant Prot. 2017, 43, 139–144. [Google Scholar] [CrossRef]
- Mascarin, G.M.; Lopes, R.B.; Delalibera, I., Jr.; Fernandes, E.; Luz, C.; Faria, M. Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. J. Invertebr. Pathol. 2019, 165, 46–53. [Google Scholar] [CrossRef]
- Zec-Vojinovic, M.; Hokkanen, H.M.T.; Büchs, W.; Klukowski, Z.; Luik, A.; Nilsson, C.; Ulber, B.; Williams, I.H. Natural occurrence of pathogens of oilseed rape pests in agricultural fields in Europe. In Proceedings of the International Symposium of Integrated Pest Management in Oilseed Rape, Gottingen, Germany, 3–5 April 2006. [Google Scholar]
- Li, Z.Z. Application status of entomogenous fungi in pest control. J. Anhui Agric. Colg. 1987, 14, 59–66. [Google Scholar]
- Wu, Y.Y.; Tang, Y.L.; Gu, N.C.; Li, T.T.; Bao, J.L.; Li, T.; Li, C.F.; Wei, J.H.; Pan, G.Q.; Zhou, Z.Y. Isolation and identification of three Beauveria bassiana isolates in Chongqing area. J. Southwest Univ. 2019, 41, 14–19. [Google Scholar] [CrossRef]
- Soroka, J.; Grenkow, L.; Otani, J.; Gavloski, J.; Olfert, O. Flea beetle (Coleoptera: Chrysomelidae) species in canola (Brassicaceae) on the northern Great Plains of North America. Can. Èntomol. 2018, 150, 100–115. [Google Scholar] [CrossRef]
- Cao, C.X.; Huang, D.Y.; Yao, J.W.; Zhu, Z.G.; Zheng, J.L.; Zhou, R.H.; Wang, K. Field application techniques for control of Phyllotreta striolata with microbial insecticides on radish. Chin. J. Biol. Control. 2020, 36, 987–991. [Google Scholar] [CrossRef]
- Noosidum, A.; Mangtab, S.; Lewis, E.E. Biological control potential of entomopathogenic nematodes against the striped flea beetle, Phyllotreta sinuata Stephens (Coleoptera: Chrysomelidae). Crop Prot. 2020, 141, 105448. [Google Scholar] [CrossRef]
- Gao, X.J.; Zhang, M.M.; Wang, H.L.; Zu, J.H.; Yang, W.J.; Qiao, Y.S. The combined effect and safety of bifenthrin-acetamiprid on Phyllotreta striolata. Agrochem 2022, 61, 57–60. [Google Scholar] [CrossRef]
- Yan, X.; Han, R.; Moens, M.; Chen, S.; De Clercq, P. Field evaluation of entomopathogenic nematodes for biological control of striped flea beetle, Phyllotreta striolata (Coleoptera: Chrysomelidae). BioControl 2012, 58, 247–256. [Google Scholar] [CrossRef]
- Andersen, C.L.; Hazzard, R.; Vandriesche, R.; Mangan, F.X. Alternative Management Tactics for Control of Phyllotreta cruciferae and Phyllotreta striolata (Coleoptera: Chrysomelidae) on Brassica rapa in Massachusetts. J. Econ. Èntomol. 2006, 99, 803–810. [Google Scholar] [CrossRef]
- Mason, J.; Alford, A.M.; Kuhar, T.P. Flea Beetle (Coleoptera: Chrysomelidae) Populations, Effects of Feeding Injury, and Efficacy of Insecticide Treatments on Eggplant and Cabbage in Southwest Virginia. J. Econ. Èntomol. 2019, 113, 887–895. [Google Scholar] [CrossRef]
- Hoarau, C.; Campbell, H.; Prince, G.; Chandler, D.; Pope, T. Biological control agents against the cabbage stem flea beetle in oilseed rape crops. Biol. Control 2022, 167, 104844. [Google Scholar] [CrossRef]
- Mascarin, G.M.; Pereira-Junior, R.A.; Fernandes, E.; Quintela, E.D.; Dunlap, C.A.; Arthurs, S.P. Phenotype responses to abiotic stresses, asexual reproduction and virulence among isolates of the entomopathogenic fungus Cordyceps javanica (Hypocreales: Cordycipitaceae). Microbiol. Res. 2018, 216, 12–22. [Google Scholar] [CrossRef]
- Fang, W.; Lu, H.-L.; King, G.; Leger, R.J.S. Construction of a Hypervirulent and Specific Mycoinsecticide for Locust Control. Sci. Rep. 2014, 4, 7345. [Google Scholar] [CrossRef]
- Kuang, Z.B.; Lv, L.H.; Feng, X.; Chen, H.Y.; Wu, Y.J.; He, Y.R. Pathogenicity of Beauveria bassiana isolate to cruciferous vegetable insect pests. Chin. Bull. Entomol. 2005, 42, 673–676. [Google Scholar] [CrossRef]
- He, Y.C.; Chen, J.; Shi, M.Z.; Li, J.Y.; Wang, T.; Fu, J.W.; Wu, M.X. Screening and culture of a strain of Metarhizium highly pathogenic to Phyllotreta striolata, Fujian. J. Agric. Sci. 2017, 32, 189–194. [Google Scholar] [CrossRef]
- Meyling, N.V.; Eilenberg, J. Occurrence and distribution of soil borne entomopathogenic fungi within a single organic agroecosystem. Agric. Ecosyst. Environ. 2006, 113, 336–341. [Google Scholar] [CrossRef]
- Masoudi, A.; Koprowski, J.L.; Bhattarai, U.R.; Wang, D. Elevational distribution and morphological attributes of the entomopathogenic fungi from forests of the Qinling Mountains in China. Appl. Microbiol. Biotechnol. 2017, 102, 1483–1499. [Google Scholar] [CrossRef]
- Niu, X.; Xie, W.; Zhang, J.; Hu, Q. Biodiversity of Entomopathogenic Fungi in the Soils of South China. Microorganisms 2019, 7, 311. [Google Scholar] [CrossRef]
- Dong, T.; Zhang, B.; Jiang, Y.; Hu, Q. Isolation and Classification of Fungal Whitefly Entomopathogens from Soils of Qinghai-Tibet Plateau and Gansu Corridor in China. PLoS ONE 2016, 11, e0156087. [Google Scholar] [CrossRef][Green Version]
- Hu, Q.-B.; Ren, S.-X.; Wu, J.-H.; Chang, J.-M.; Musa, P.D. Investigation of destruxin A and B from 80 Metarhizium strains in China, and the optimization of cultural conditions for the strain MaQ10. Toxicon 2006, 48, 491–498. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Schoch, C.L.; Robbertse, B.; Robert, V.; Vu, D.; Cardinali, G.; Irinyi, L.; Meyer, W.; Nilsson, R.H.; Hughes, K.; Miller, A.N.; et al. Finding needles in haystacks: Linking scientific names, reference specimens and molecular data for Fungi. Database 2014, 2014, bau061. [Google Scholar] [CrossRef]
- Gujjari, P.; Suh, S.-O.; Coumes, K.; Zhou, J.J. Characterization of oleaginous yeasts revealed two novel species: Trichosporon cacaoliposimilis sp. nov. and Trichosporon oleaginosus sp. nov. Mycologia 2011, 103, 1110–1118. [Google Scholar] [CrossRef]
- Sugiura, Y.; Hironaga, M. Arthrographis kalrae, a rare causal agent of onychomycosis, and its occurrence in natural and commercially available soils. Med. Mycol. 2010, 48, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Giraldo, A.; Sutton, D.A.; Gené, J.; Fothergill, A.W.; Cano-Lira, J.F.; Guarro, J. Rare Arthroconidial Fungi in Clinical Samples: Scytalidium cuboideum and Arthropsis hispanica. Mycopathologia 2012, 175, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Peterson, S.W. Phylogenetic analysis of Aspergillus species using DNA sequences from four loci. Mycologia 2008, 100, 205–226. [Google Scholar] [CrossRef] [PubMed]
- Samson, R.; Peterson, S.; Frisvad, J.; Varga, J. New species in Aspergillus section Terrei. Stud. Mycol. 2011, 69, 39–55. [Google Scholar] [CrossRef] [PubMed]
- Vu, D.; Groenewald, M.; De Vries, M.; Gehrmann, T.; Stielow, B.; Eberhardt, U.; Al-Hatmi, A.; Groenewald, J.Z.; Cardinali, G.; Houbraken, J.; et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud. Mycol. 2019, 92, 135–154. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.-J.; Zhang, H.; Dong, W.; Boonmee, S.; Zhang, D. Introducing Dictyochaeta aquatica sp. nov. and two new species of Chloridium (Chaetosphaeriaceae, Sordariomycetes) from aquatic habitats. Phytotaxa 2018, 362, 187–199. [Google Scholar] [CrossRef]
- Schroers, H.J. A monograph of Bionectria (Ascomycota, Hypocreales, Bionectriaceae) and its Clonostachys anamorphs. Stud. Mycol. 2001, 17, 1–214. [Google Scholar] [CrossRef]
- Liu, X.Y.; Huang, H.; Zheng, R.Y. Relationships within Cunninghamella based on sequence analysis of ITS rDNA. Mycotaxon 2001, 80, 77–95. [Google Scholar]
- Sandoval-Denis, M.; Crous, P. Removing chaos from confusion: Assigning names to common human and animal pathogens in Neocosmospora. Pers. Mol. Phylogeny Evol. Fungi 2018, 41, 109–129. [Google Scholar] [CrossRef]
- Short, D.P.G.; O’Donnell, K.; Zhang, N.; Juba, J.H.; Geiser, D.M. Widespread Occurrence of Diverse Human Pathogenic Types of the Fungus Fusarium Detected in Plumbing Drains. J. Clin. Microbiol. 2011, 49, 4264–4272. [Google Scholar] [CrossRef]
- Schroers, H.-J.; Samuels, G.J.; Zhang, N.; Short, D.P.; Juba, J.; Geiser, D.M. Epitypification of Fusisporium (Fusarium) solani and its assignment to a common phylogenetic species in the Fusarium solani species complex. Mycologia 2016, 108, 806–819. [Google Scholar] [CrossRef]
- Walther, G.; Pawłowska, J.; Alastruey-Izquierdo, A.; Wrzosek, M.; Rodriguez-Tudela, J.; Dolatabadi, S.; Chakrabarti, A.; de Hoog, G. DNA barcoding in Mucorales: An inventory of biodiversity. Pers. Mol. Phylogeny Evol. Fungi 2013, 30, 11–47. [Google Scholar] [CrossRef]
- De Beer, Z.W.; Marincowitz, S.; Duong, T.A.; Kim, J.-J.; Rodrigues, A.; Wingfield, M.J. Hawksworthiomyces gen. nov. (Ophiostomatales), illustrates the urgency for a decision on how to name novel taxa known only from environmental nucleic acid sequences (ENAS). Fungal Biol. 2016, 120, 1323–1340. [Google Scholar] [CrossRef]
- Humber, R.A.; Rocha, L.F.; Inglis, P.W.; Kipnis, A.; Luz, C. Morphology and molecular taxonomy of Evlachovaea-like fungi, and the status of this unusual conidial genus. Fungal Biol. 2013, 117, 1–12. [Google Scholar] [CrossRef]
- Rehner, S.A.; Minnis, A.M.; Sung, G.-H.; Luangsa-Ard, J.J.; Devotto, L.; Humber, R.A. Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia 2011, 103, 1055–1073. [Google Scholar] [CrossRef]
- Luangsa-Ard, J.J.; Hywel-Jones, N.L.; Manoch, L.; Samson, R.A. On the relationships of Paecilomyces sect. Isarioidea species. Mycol. Res. 2005, 109, 581–589. [Google Scholar] [CrossRef]
- Inglis, P.W.; Tigano, M.S. Identification and taxonomy of some entomopathogenic Paecilomyces spp. (Ascomycota) isolates using rDNA-ITS Sequences. Genet. Mol. Biol. 2006, 29, 132–136. [Google Scholar] [CrossRef]
- Cabanillas, H.E.; de León, J.H.; Humber, R.A.; Murray, K.D.; Jones, W.A. Isaria poprawskii sp. nov. (Hypocreales: Cordycipitaceae), a new entomopathogenic fungus from Texas affecting sweet potato whitefly. Mycoscience 2013, 54, 158–169. [Google Scholar] [CrossRef]
- Ayala-Zermeño, M.; Gallou, A.; Berlanga-Padilla, A.; Serna-Domínguez, M.; Arredondo-Bernal, H.; Montesinos-Matías, R. Characterisation of entomopathogenic fungi used in the biological control programme of Diaphorina citri in Mexico. Biocontrol Sci. Technol. 2015, 25, 1192–1207. [Google Scholar] [CrossRef]
- Su, L.; Zhu, H.; Guo, Y.; Du, X.; Guo, J.; Zhang, L.; Qin, C. Lecanicillium coprophilum (Cordycipitaceae, Hypocreales), a new species of fungus from the feces of Marmota monax in China. Phytotaxa 2019, 387, 55–62. [Google Scholar] [CrossRef]
- Sugiyama, M.; Mikawa, T. Phylogenetic analysis of the non-pathogenic genus Spiromastix (Onygenaceae) and related onygenalean taxa based on large subunit ribosomal DNA sequences. Mycoscience 2001, 42, 413–421. [Google Scholar] [CrossRef]
- Koehn, F.E.; Kirsch, D.R.; Feng, X.; Janso, J.; Young, M. A Cell Wall-Active Lipopeptide from the Fungus Pochonia bulbillosa. J. Nat. Prod. 2008, 71, 2045–2048. [Google Scholar] [CrossRef]
- Oxelman, B.; Lidén, M.; Rabeler, R.K.; Popp, M. A revised generic classification of the tribe Sileneae (Caryophyllaceae). Nord. J. Bot. 2000, 20, 743–748. [Google Scholar] [CrossRef]
- Nonaka, K.; Ōmura, S.; Masuma, R.; Kaifuchi, S. Three new Pochonia taxa (Clavicipitaceae) from soils in Japan. Mycologia 2013, 105, 1202–1218. [Google Scholar] [CrossRef]
- Samson, R.; Houbraken, J.; Varga, J.; Frisvad, J. Polyphasic taxonomy of the heat resistant ascomycete genus Byssochlamys and its Paecilomyces anamorphs. Pers. Mol. Phylogeny Evol. Fungi 2009, 22, 14–27. [Google Scholar] [CrossRef]
- Peterson, S.W.; Orchard, S.S.; Menon, S. Penicillium menonorum, a new species related to P. pimiteouiense. IMA Fungus 2011, 2, 121–125. [Google Scholar] [CrossRef]
- Samson, R.; Yilmaz, N.; Houbraken, J.; Spierenburg, H.; Seifert, K.; Peterson, S.; Varga, J.; Frisvad, J. Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Stud. Mycol. 2011, 70, 159–183. [Google Scholar] [CrossRef]
- Pan, X.; Richardson, M.D.; Deng, S.; Kremer, R.J.; English, J.T.; Mihail, J.D.; Sams, C.E.; Scharf, P.C.; Veum, K.S.; Xiong, X. Effect of Organic Amendment and Cultural Practice on Large Patch Occurrence and Soil Microbial Community. Crop Sci. 2017, 57, 2263–2272. [Google Scholar] [CrossRef]
- Dung, J.K.; Kaur, N.; Walenta, D.L.; Alderman, S.C.; Frost, K.E.; Hamm, P.B. Reducing Claviceps purpurea sclerotia germination with soil-applied fungicides. Crop Prot. 2018, 106, 146–149. [Google Scholar] [CrossRef]
- Dash, C.K.; Bamisile, B.S.; Keppanan, R.; Qasim, M.; Lin, Y.; Islam, S.U.; Hussain, M.; Wang, L. Endophytic entomopathogenic fungi enhance the growth of Phaseolus vulgaris L. (Fabaceae) and negatively affect the development and reproduction of Tetranychus urticae Koch (Acari: Tetranychidae). Microb. Pathog. 2018, 125, 385–392. [Google Scholar] [CrossRef]
- De Azevedo, A.G.C.; Stuart, R.M.; Sigsgaard, L. Presence of a generalist entomopathogenic fungus influences the oviposition behaviour of an aphid-specific predator. BioControl 2018, 63, 655–664. [Google Scholar] [CrossRef]
- Sangbaramou, R.; Camara, I.; Huang, X.-Z.; Shen, J.; Tan, S.-Q.; Shi, W.-P. Behavioral thermoregulation in Locusta migratoria manilensis (Orthoptera: Acrididae) in response to the entomopathogenic fungus, Beauveria bassiana. PLoS ONE 2018, 13, e0206816. [Google Scholar] [CrossRef] [PubMed]
- Canassa, F.; Tall, S.; Moral, R.A.; de Lara, I.A.; Delalibera, I.; Meyling, N.V. Effects of bean seed treatment by the entomopathogenic fungi Metarhizium robertsii and Beauveria bassiana on plant growth, spider mite populations and behavior of predatory mites. Biol. Control 2019, 132, 199–208. [Google Scholar] [CrossRef]
- Hou, C.X.; Qin, G.X.; Liu, T.; Guo, X.J. Advances in defense mechanism of insects against pathogenic fungi. J. Anhui Agric. Sci. 2012, 40, 11649–11652. [Google Scholar] [CrossRef]
- Horikawa, M.; Shimazu, M.; Aibe, M.; Kaku, H.; Inai, M.; Tsunoda, T. A role of uroleuconaphins, polyketide red pigments in aphid, as a chemopreventor in the host defense system against infection with entomopathogenic fungi. J. Antibiot. 2018, 71, 992–999. [Google Scholar] [CrossRef]
- Hornby, J.M.; Jensen, E.C.; Lisec, A.D.; Tasto, J.J.; Jahnke, B.; Shoemaker, R.; Dussault, P.; Nickerson, K.W. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl. Environ. Microbiol. 2001, 7, 2982–2992. [Google Scholar] [CrossRef]
- Alem, M.A.S.; Oteef, M.D.Y.; Flowers, T.H.; Douglas, L.J. Production of Tyrosol by Candida albicans Biofilms and Its Role in Quorum Sensing and Biofilm Development. Eukaryot. Cell 2006, 5, 1770–1779. [Google Scholar] [CrossRef]
- Baert, K.; Devlieghere, F.; Bo, L.; Debevere, J.; De Meulenaer, B. The effect of inoculum size on the growth of Penicillium expansum in apples. Food Microbiol. 2008, 25, 212–217. [Google Scholar] [CrossRef]
- Li, C.Y.; Liang, Z.H.; Huang, K.L. Research progress on quorum sensing of Aspergilus flavus. J. Food Saf. Qual. 2015, 6, 3205–3210. [Google Scholar] [CrossRef]
- Ke, H.; Niu, Y.; Gu, D.; Wu, J.; Chen, Q. Quorum sensing molecule, farnesol and its action mechanism in fungi. J. Food Saf. Qual. 2017, 8, 862–868. [Google Scholar] [CrossRef]
- Chen, H.; Fujita, M.; Feng, Q.; Clardy, J.; Fink, G.R. Tyrosol is a quorum-sensing molecule in Candida albicans. Proc. Natl. Acad. Sci. USA 2004, 101, 5048–5052. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).