Environmental DNA-Based Methods in Biodiversity Monitoring of Protected Areas: Application Range, Limitations, and Needs
Abstract
:1. Overview of eDNA-Based Methods in the Context of Biodiversity Monitoring
2. eDNA-Based Methodology—Advantages, Disadvantages and Requirements for Use in Protected Areas
3. Utilization of eDNA Metabarcoding in Biomonitoring in Protected Areas
4. Challenges and Limitations of eDNA-Based Methods in Protected Area Monitoring
5. Future Perspective
- Implementation of effective long-term monitoring of changes in species composition, especially in the air (e.g., pollen), water (e.g., zoobenthos, diatoms [97]), and soil (microbes, fungi). These investigations may go beyond taxon-specific monitoring and may cover entire species communities.
- Early detection of biological threats in vulnerable ecosystems, such as invasive species (e.g., pathogens [67,98]) or farmland and forest (e.g., spotted lanternfly (Lycorma delicatula) in northeastern USA; [99]). Robust analytical protocols may contribute to the implementation of an early warning system.
- Systematic detection of rare or cryptic species that may be of crucial importance for conservation and thus for management of the sites [80].
- Possibilities for systematic recording of ephemeral natural phenomena and phenological changes that can be of outstanding importance in the management of a site (e.g., research on shifts in phenology of bryophytes in relation to meteorological factors over time, https://www.lunduniversity.lu.se; accessed on 11 April 2022).
- Detecting unexpected or unintended trends in biodiversity in the context of PA management [100].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES: Bonn, Germany, 2019. [Google Scholar]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Brooks, D.R.; Bater, J.E.; Clark, S.J.; Monteith, D.T.; Andrews, C.; Corbett, S.J.; Beaumont, D.A.; Chapman, J.W. Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss in insect biodiversity. J. Appl. Ecol. 2012, 49, 1009–1019. [Google Scholar] [CrossRef]
- Field, R.H.; Hill, R.K.; Carroll, M.J.; Morris, A.J. Making explicit agricultural ecosystem service trade-offs: A case study of an English lowland arable farm. Int. J. Agric. Sustain. 2016, 14, 249–268. [Google Scholar] [CrossRef]
- Pascher, K.; Moser, D.; Dullinger, S.; Sachslehner, L.; Gros, P.; Sauberer, N.; Traxler, A.; Grabherr, G.; Frank, T. Setup, efforts and practical experiences of a monitoring program for genetically modified plants—An Austrian case study for oilseed rape and maize. Environ. Sci. Eur. 2011, 23, 12. [Google Scholar] [CrossRef] [Green Version]
- Bolpagni, R.; Poikane, S.; Laini, A.; Bagella, S.; Bartoli, M.; Cantonati, M. Ecological and conservation value of small standing-water ecosystems: A systematic review of current knowledge and future challenges. Water 2019, 11, 402. [Google Scholar] [CrossRef] [Green Version]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.-I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.-H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 2006, 81, 163–182. [Google Scholar] [CrossRef]
- Graf, W.; Leitner, P.; Pletterbauer, F. Short overview on the benthic macroinvertebrate fauna of the Danube River. In The Danube River Basin; Liška, I., Aggarwal, P.K., Eds.; Springer: Berlin/Heildelberg, Germany, 2015; pp. 287–315. ISBN 978-3-662-47738-0. [Google Scholar]
- Maasri, A.; Jähnig, S.C.; Adamescu, M.C.; Adrian, R.; Baigun, C.; Baird, D.J.; Batista-Morales, A.; Bonada, N.; Brown, L.E.; Cai, Q.; et al. A global agenda for advancing freshwater biodiversity research. Ecol. Lett. 2022, 25, 255–263. [Google Scholar] [CrossRef]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. Camb. Philos. Soc. 2019, 94, 849–873. [Google Scholar] [CrossRef] [Green Version]
- Elahi, R.; O’Connor, M.I.; Byrnes, J.E.K.; Dunic, J.; Eriksson, B.K.; Hensel, M.J.S.; Kearns, P.J. Recent trends in local-scale marine biodiversity reflect community structure and human impacts. Curr. Biol. 2015, 25, 1938–1943. [Google Scholar] [CrossRef] [Green Version]
- Hallmann, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Müller, A.; Sumser, H.; Hörren, T.; et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2017, 12, e0185809. [Google Scholar] [CrossRef] [Green Version]
- Brühl, C.A.; Zaller, J.G. Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Front. Environ. Sci. 2019, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Ollerton, J.; Erenler, H.; Edwards, M.; Crockett, R. Pollinator declines. extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 2014, 346, 1360–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kühl, H.S.; Bowler, D.E.; Bösch, L.; Bruelheide, H.; Dauber, J.; Eichenberg, D.; Eisenhauer, N.; Fernández, N.; Guerra, C.A.; Henle, K.; et al. Effective biodiversity monitoring needs a culture of integration. One Earth 2020, 3, 462–474. [Google Scholar] [CrossRef]
- Perino, A.; Pereira, H.M.; Felipe-Lucia, M.; Kim, H.; Kühl, H.S.; Marselle, M.R.; Meya, J.N.; Meyer, C.; Navarro, L.M.; van Klink, R.; et al. Biodiversity post-2020: Closing the gap between global targets and national-level implementation. Conserv. Lett. 2021, 16, 16. [Google Scholar] [CrossRef]
- Dalton, D.T.; Pascher, K.; Berger, V.; Steinbauer, K.; Jungmeier, M. Novel technologies and their application for protected area management: A supporting approach in biodiversity monitoring. In Protected Area Management—Recent Advances; Suratman, M.N., Ed.; IntechOpen Publishing: London, UK, 2021; p. 24. [Google Scholar] [CrossRef]
- Mihoub, J.-B.; Henle, K.; Titeux, N.; Brotons, L.; Brummitt, N.A.; Schmeller, D.S. Setting temporal baselines for biodiversity: The limits of available monitoring data for capturing the full impact of anthropogenic pressures. Sci. Rep. 2017, 7, 41591. [Google Scholar] [CrossRef] [Green Version]
- Coleman, C.O. Taxonomy in times of the taxonomic impediment—Examples from the community of experts on amphipod crustaceans. J. Crustacean Biol. 2015, 35, 729–740. [Google Scholar] [CrossRef] [Green Version]
- Segrestin, J.; Bernard-Verdier, M.; Violle, C.; Richarte, J.; Navas, M.-L.; Garnier, E. When is the best time to flower and disperse? A comparative analysis of plant reproductive phenology in the Mediterranean. Funct. Ecol. 2018, 32, 1770–1783. [Google Scholar] [CrossRef]
- Wangchuk, S.; Bolch, T.; Zawadzki, J. Towards automated mapping and monitoring of potentially dangerous glacial lakes in Bhutan Himalaya using Sentinel-1 Synthetic Aperture Radar data. Int. J. Remote Sens. 2019, 40, 4642–4667. [Google Scholar] [CrossRef]
- Navarro, L.M.; Fernández, N.; Guerra, C.; Guralnick, R.; Kissling, W.D.; Londoño, M.C.; Muller-Karger, F.; Turak, E.; Balvanera, P.; Costello, M.J.; et al. Monitoring biodiversity change through effective global coordination. Curr. Opin. Environ. Sustain. 2017, 29, 158–169. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; deWaard, J.R. Biological identifications through DNA barcodes. Proc. Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Taberlet, P.; Coissac, E.; Hajibabaei, M.; Rieseberg, L.H. Environmental DNA. Mol. Ecol. 2012, 21, 1789–1793. [Google Scholar] [CrossRef] [PubMed]
- Taberlet, P.; Coissac, E.; Pompanon, F.; Brochmann, C.; Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 2012, 21, 2045–2050. [Google Scholar] [CrossRef] [PubMed]
- Taberlet, P.; Bonin, A.; Zinger, L.; Coissac, E. Environmental DNA—For Biodiversity Research and Monitoring; Oxford University Press: Oxford, UK, 2018; ISBN 9780198767220. [Google Scholar]
- Pawlowski, J.; Apothéloz-Perret-Gentil, L.; Mächler, E.; Altermatt, F. Environmental DNA Applications for Biomonitoring and Bioassessment in Aquatic Ecosystems; Federal Office for the Environment: Bern, Switzerland, 2020. [Google Scholar]
- Ficetola, G.F.; Miaud, C.; Pompanon, F.; Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 2008, 4, 423–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harper, L.R.; Niemiller, M.L.; Benito, J.B.; Paddock, L.E.; Knittle, E.; Molano-Flores, B.; Davis, M.A. BeeDNA: Microfluidic environmental DNA metabarcoding as a tool for connecting plant and pollinator communities. bioRxiv 2021. [Google Scholar] [CrossRef]
- Dejean, T.; Valentini, A.; Duparc, A.; Pellier-Cuit, S.; Pompanon, F.; Taberlet, P.; Miaud, C. Persistence of environmental DNA in freshwater ecosystems. PLoS ONE 2011, 6, e23398. [Google Scholar] [CrossRef] [Green Version]
- Giguet-Covex, C.; Ficetola, G.F.; Walsh, K.; Poulenard, J.; Bajard, M.; Fouinat, L.; Sabatier, P.; Gielly, L.; Messager, E.; Develle, A.L.; et al. New insights on lake sediment DNA from the catchment: Importance of taphonomic and analytical issues on the record quality. Sci. Rep. 2019, 9, 14676. [Google Scholar] [CrossRef]
- Blackman, R.C.; Ling, K.K.S.; Harper, L.R.; Shum, P.; Hänfling, B.; Lawson-Handley, L. Targeted and passive environmental DNA approaches outperform established methods for detection of quagga mussels, Dreissena rostriformis bugensis in flowing water. Ecol. Evol. 2020, 10, 13248–13259. [Google Scholar] [CrossRef]
- Sasso, T.; Lopes, C.M.; Valentini, A.; Dejean, T.; Zamudio, K.R.; Haddad, C.F.; Martins, M. Environmental DNA characterization of amphibian communities in the Brazilian Atlantic forest: Potential application for conservation of a rich and threatened fauna. Biol. Conserv. 2017, 215, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Blattner, L.; Ebner, J.N.; Zopfi, J.; von Fumetti, S. Targeted non-invasive bioindicator species detection in eDNA water samples to assess and monitor the integrity of vulnerable alpine freshwater environments. Ecol. Indic. 2021, 129, 107916. [Google Scholar] [CrossRef]
- Filipová, L.; Grandjean, F.; Chucholl, C.; Soes, D.M.; Petrusek, A. Identification of exotic North American crayfish in Europe by DNA barcoding. Knowl. Managt. Aquat. Ecosyst. 2011, 401, 14. [Google Scholar] [CrossRef] [Green Version]
- Kamoroff, C.; Goldberg, C.S. Using environmental DNA for early detection of amphibian chytrid fungus Batrachochytrium dendrobatidis prior to a ranid die-off. Dis. Aquat. Organ. 2017, 127, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Steyer, K.; Kraus, R.H.S.; Mölich, T.; Anders, O.; Cocchiararo, B.; Frosch, C.; Geib, A.; Götz, M.; Herrmann, M.; Hupe, K.; et al. Large-scale genetic census of an elusive carnivore, the European wildcat (Felis s. silvestris). Conserv. Genet. 2016, 17, 1183–1199. [Google Scholar] [CrossRef] [Green Version]
- Wood, Z.T.; Lacoursière-Roussel, A.; LeBlanc, F.; Trudel, M.; Kinnison, M.T.; Garry McBrine, C.; Pavey, S.A.; Gagné, N. Spatial heterogeneity of eDNA transport improves stream assessment of threatened salmon presence, abundance, and location. Front. Ecol. Evol. 2021, 9, 16. [Google Scholar] [CrossRef]
- Guenay-Greunke, Y.; Bohan, D.A.; Traugott, M.; Wallinger, C. Handling of targeted amplicon sequencing data focusing on index hopping and demultiplexing using a nested metabarcoding approach in ecology. Sci. Rep. 2021, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, P.F.; Willerslev, E. Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 2015, 183, 4–18. [Google Scholar] [CrossRef]
- Staats, M.; Arulandhu, A.J.; Gravendeel, B.; Holst-Jensen, A.; Scholtens, I.; Peelen, T.; Prins, T.W.; Kok, E. Advances in DNA metabarcoding for food and wildlife forensic species identification. Anal. Bioanal. Chem. 2016, 408, 4615–4630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillson, L.; Biggs, H.; Smit, I.P.J.; Virah-Sawmy, M.; Rogers, K. Finding Common Ground between Adaptive Management and Evidence-Based Approaches to Biodiversity Conservation. Trends Ecol. Evol. 2019, 34, 31–44. [Google Scholar] [CrossRef]
- Akçakaya, H.R.; Bennett, E.L.; Brooks, T.M.; Grace, M.K.; Heath, A.; Hedges, S.; Hilton-Taylor, C.; Hoffmann, M.; Keith, D.A.; Long, B.; et al. Quantifying species recovery and conservation success to develop an IUCN Green List of Species. Conserv. Biol. 2018, 32, 1128–1138. [Google Scholar] [CrossRef] [Green Version]
- Bohmann, K.; Evans, A.; Gilbert, M.T.P.; Carvalho, G.R.; Creer, S.; Knapp, M.; Yu, D.W.; de Bruyn, M. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 2014, 29, 358–367. [Google Scholar] [CrossRef]
- Veilleux, H.D.; Misutka, M.D.; Glover, C.N. Environmental DNA and environmental RNA: Current and prospective applications for biological monitoring. Sci. Total Environ. 2021, 782, 146891. [Google Scholar] [CrossRef]
- Biggs, J.; Ewald, N.; Valentini, A.; Gaboriaud, C.; Dejean, T.; Griffiths, R.A.; Foster, J.; Wilkinson, J.W.; Arnell, A.; Brotherton, P.; et al. Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biol. Conserv. 2015, 183, 19–28. [Google Scholar] [CrossRef]
- Barba, M.; Czosnek, H.; Hadidi, A. Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses 2014, 6, 106–136. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.R.; Good, J.M. Targeted capture in evolutionary and ecological genomics. Mol. Ecol. 2016, 25, 185–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herder, J.; Valentini, A.; Bellemain, E.; Dejean, T.; van Delft, J.J.; Thomsen, P.; Taberlet, P. Environmental DNA—A Review of the Possible Applications for the Detection of (Invasive) Species; Netherlands Food and Consumer Product Safety Authority: Nijmegen, The Netherlands, 2014. [Google Scholar]
- Pawlowski, J.; Apothéloz-Perret-Gentil, L.; Altermatt, F. Environmental DNA: What’s behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring. Mol. Ecol. 2020, 29, 4258–4264. [Google Scholar] [CrossRef] [PubMed]
- Abbott, C.; Coulson, M.; Gagné, N.; Lacoursière-Roussel, A.; Parent, G.J.; Bajno, R.; Dietrich, C.; May-McNally, S. Guidance on the Use of Targeted Environmental DNA (eDNA) Analysis for the Management of Aquatic Invasive Species and Species at Risk; Canadian Science Advisory Secretariat (CSAS): Ottawa, ON, Canada, 2021; 42p. [Google Scholar]
- Fonseca, V.G. Pitfalls in relative abundance estimation using eDNA metabarcoding. Mol. Ecol. Resour. 2018, 18, 923–926. [Google Scholar] [CrossRef] [Green Version]
- deWaard, J.R.; Ivanova, N.V.; Hajibabaei, M.; Hebert, P.D.N. Assembling DNA barcodes. Analytical protocols. Methods Mol. Biol. 2008, 410, 275–293. [Google Scholar] [CrossRef]
- Deiner, K.; Bik, H.M.; Mächler, E.; Seymour, M.; Lacoursière-Roussel, A.; Altermatt, F.; Creer, S.; Bista, I.; Lodge, D.M.; de Vere, N.; et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 2017, 26, 5872–5895. [Google Scholar] [CrossRef]
- Blaxter, M.; Mann, J.; Chapman, T.; Thomas, F.; Whitton, C.; Floyd, R.; Abebe, E. Defining operational taxonomic units using DNA barcode data. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2005, 360, 1935–1943. [Google Scholar] [CrossRef]
- Wang, S.; Yan, Z.; Hänfling, B.; Zheng, X.; Wang, P.; Fan, J.; Li, J. Methodology of fish eDNA and its applications in ecology and environment. Sci. Total Environ. 2021, 755, 142622. [Google Scholar] [CrossRef]
- Bálint, M.; Nowak, C.; Márton, O.; Pauls, S.U.; Wittwer, C.; Aramayo, J.L.; Schulze, A.; Chambert, T.; Cocchiararo, B.; Jansen, M. Accuracy, limitations and cost efficiency of eDNA-based community survey in tropical frogs. Mol. Ecol. Resour. 2018, 18, 1415–1426. [Google Scholar] [CrossRef]
- Deiner, K.; Altermatt, F. Transport distance of invertebrate environmental DNA in a natural river. PLoS ONE 2014, 9, e88786. [Google Scholar] [CrossRef] [Green Version]
- Jerde, C.L.; Olds, B.P.; Shogren, A.J.; Andruszkiewicz, E.A.; Mahon, A.R.; Bolster, D.; Tank, J.L. Influence of stream bottom substrate on retention and transport of vertebrate environmental DNA. Environ. Sci. Technol. 2016, 50, 8770–8779. [Google Scholar] [CrossRef] [PubMed]
- Harper, L.R.; Lawson Handley, L.; Carpenter, A.I.; Ghazali, M.; Di Muri, C.; Macgregor, C.J.; Logan, T.W.; Law, A.; Breithaupt, T.; Read, D.S.; et al. Environmental DNA (eDNA) metabarcoding of pond water as a tool to survey conservation and management priority mammals. Biol. Conserv. 2019, 238, 108225. [Google Scholar] [CrossRef]
- Beng, K.C.; Corlett, R.T. Applications of environmental DNA (eDNA) in ecology and conservation: Opportunities, challenges and prospects. Biodivers. Conserv. 2020, 29, 2089–2121. [Google Scholar] [CrossRef]
- Dully, V.; Balliet, H.; Frühe, L.; Däumer, M.; Thielen, A.; Gallie, S.; Berrill, I.; Stoeck, T. Robustness, sensitivity and reproducibility of eDNA metabarcoding as an environmental biomonitoring tool in coastal salmon aquaculture—An inter-laboratory study. Ecol. Indic. 2021, 121, 107049. [Google Scholar] [CrossRef]
- Ruoss, E.; Alfare, L.T. Shifting protected area strategies to evidence based governance and management. In Proceedings of the 6th Symposium for Research in Protected Areas, Salzburg, Austria, 2–3 November 2017; pp. 561–564. [Google Scholar]
- Stokes, E.J.; Strindberg, S.; Bakabana, P.C.; Elkan, P.W.; Iyenguet, F.C.; Madzoké, B.; Malanda, G.A.F.; Mowawa, B.S.; Moukoumbou, C.; Ouakabadio, F.K.; et al. Monitoring great ape and elephant abundance at large spatial scales: Measuring effectiveness of a conservation landscape. PLoS ONE 2010, 5, e10294. [Google Scholar] [CrossRef] [Green Version]
- Veldhoen, N.; Hobbs, J.; Ikonomou, G.; Hii, M.; Lesperance, M.; Helbing, C.C. Implementation of novel design features for qPCR-based eDNA assessment. PLoS ONE 2016, 11, e0164907. [Google Scholar] [CrossRef]
- Schenekar, T. The current state of eDNA research in freshwater ecosystems: Are we shifting from the developmental phase to standard applicatin in biomonitoring? Hydrobiologia 2022, 20. [Google Scholar] [CrossRef]
- Leontidou, K.; Vokou, D.; Sandionigi, A.; Bruno, A.; Lazarina, M.; de Groeve, J.; Li, M.; Varotto, C.; Girardi, M.; Casiraghi, M.; et al. Plant biodiversity assessment through pollen DNA metabarcoding in Natura 2000 habitats (Italian Alps). Sci. Rep. 2021, 11, 18226. [Google Scholar] [CrossRef]
- Rota, N.; Canedoli, C.; Ferrè, C.; Ficetola, G.F.; Guerrieri, A.; Padoa-Schioppa, E. Evaluation of soil biodiversity in alpine habitats through eDNA metabarcoding and relationships with environmental features. Forests 2020, 11, 738. [Google Scholar] [CrossRef]
- Yan, D.; Mills, J.G.; Gellie, N.J.; Bissett, A.; LOWE, A.J.; Breed, M.F. High-throughput eDNA monitoring of fungi to track functional recovery in ecological restoration. Biol. Conserv. 2018, 217, 113–120. [Google Scholar] [CrossRef]
- Matthias, L.; Allison, M.J.; Maslovat, C.Y.; Hobbs, J.; Helbing, C.C. Improving ecological surveys for the detection of cryptic, fossorial snakes using eDNA on and under artificial cover objects. Ecol. Indic. 2021, 131, 108187. [Google Scholar] [CrossRef]
- Urban, L.; Miller, A.; Eason, D.; Vercoe, D.; Shaffer, M.; Wilkinson, S.; Guhlin, J.; Dearden, P.; Jeunen, G.-J.; Gemmell, N.; et al. Genomic monitoring of the critically endangered Kākāpō by real-time targeted nanopore sequencing of environmental DNA. Curr. Biol. 2021, 19. [Google Scholar] [CrossRef]
- Farrell, M.J.; Govender, D.; Hajibabaei, M.; van der Bank, M.; Davies, T.J. Bacterial diversity in the waterholes of the Kruger National Park: An eDNA metabarcoding approach 1. Genome 2019, 62, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Gorički, Š.; Stanković, D.; Snoj, A.; Kuntner, M.; Jeffery, W.R.; Trontelj, P.; Pavićević, M.; Grizelj, Z.; Năpăruş-Aljančič, M.; Aljančič, G. Environmental DNA in subterranean biology: Range extension and taxonomic implications for Proteus. Sci. Rep. 2017, 7, 45054. [Google Scholar] [CrossRef] [PubMed]
- Ushio, M.; Fukuda, H.; Inoue, T.; Makoto, K.; Kishida, O.; Sato, K.; Murata, K.; Nikaido, M.; Sado, T.; Sato, Y.; et al. Environmental DNA enables detection of terrestrial mammals from forest pond water. Mol. Ecol. Resour. 2017, 17, e63–e75. [Google Scholar] [CrossRef]
- Fernandez, S.; Sandin, M.M.; Beaulieu, P.G.; Clusa, L.; Martinez, J.L.; Ardura, A.; García-Vázquez, E. Environmental DNA for freshwater fish monitoring: Insights for conservation within a protected area. PeerJ 2018, 6, e4486. [Google Scholar] [CrossRef]
- Li, J.; Hatton-Ellis, T.W.; Lawson Handley, L.-J.; Kimbell, H.S.; Benucci, M.; Peirson, G.; Hänfling, B. Ground-truthing of a fish-based environmental DNA metabarcoding method for assessing the quality of lakes. J. Appl. Ecol. 2019, 56, 1232–1244. [Google Scholar] [CrossRef]
- Pilliod, D.S.; Goldberg, C.S.; Arkle, R.S.; Waits, L.P. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Can. J. Fish. Aquat. Sci. 2013, 70, 1123–1130. [Google Scholar] [CrossRef]
- Jorde, K.; Jungmeier, M.; Schneider, M.; Peter, A.; Watzal, M.; Dorji, C.; Haas, C. Guideline to Determine Minimum Environmental Flow Regulations for Dewatered Reaches of Hydropower Projects in Bhutan; National Environment Commission: Thimphu, Bhutan, 2018; p. 128. [Google Scholar]
- Liu, Q.; Zhang, Y.; Wu, H.; Liu, F.; Peng, W.; Zhang, X.; Chang, F.; Xie, P.; Zhang, H. A review and perspective of eDNA application to eutrophication and HAB Control in Freshwater and Marine Ecosystems. Microorganisms 2020, 8, 417. [Google Scholar] [CrossRef] [Green Version]
- Gold, Z.; Sprague, J.; Kushner, D.J.; Zerecero Marin, E.; Barber, P.H. eDNA metabarcoding as a biomonitoring tool for marine protected areas. PLoS ONE 2021, 16, e0238557. [Google Scholar] [CrossRef]
- Michaela, S.; Sabine, S.; Oliver, M.; Christoph, L.; Christian, B.; Elisabeth, H.; Stefan, D.; Andreas, E.; Rupert, F.; Elisabeth, G.; et al. Beitrag der ABOL-BioBlitze zur österreichischen Biodiversitäts-Erfassung: DNA-Barcodes aus 2019 und 2020. Acta Zoo Bot. Austria 2022, 158, 81–95. [Google Scholar]
- Bruce, K.; Blackman, R.; Bourlat, S.J. A Practical Guide to DNA-Based Methods for Biodiversity Assessment; Pensoft Publishing: Sofia, Bulgaria, 2021; ISBN 978-619-248-053-0. [Google Scholar]
- Minamoto, T.; Miya, M.; Sado, T.; Seino, S.; Doi, H.; Kondoh, M.; Nakamura, K.; Takahara, T.; Yamamoto, S.; Yamanaka, H.; et al. An illustrated manual for environmental DNA research: Water sampling guidelines and experimental protocols. Environ. DNA 2021, 3, 8–13. [Google Scholar] [CrossRef]
- Shogren, A.J.; Tank, J.L.; Andruszkiewicz, E.; Olds, B.; Mahon, A.R.; Jerde, C.L.; Bolster, D. Controls on eDNA movement in streams: Transport, retention, and resuspension. Sci. Rep. 2017, 7, 5065. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhao, J.; Yao, M. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish. Methods Ecol. Evol. 2020, 11, 1609–1625. [Google Scholar] [CrossRef]
- Schenekar, T.; Schletterer, M.; Lecaudey, L.A.; Weiss, S.J. Reference databases, primer choice, and assay sensitivity for environmental metabarcoding: Lessons learnt from a re-evaluation of an eDNA fish assessment in the Volga headwaters. River Res. Appl. 2020, 36, 1004–1013. [Google Scholar] [CrossRef] [Green Version]
- Blackman, R.; Mächler, E.; Altermatt, F.; Arnold, A.; Beja, P.; Boets, P.; Egeter, B.; Elbrecht, V.; Filipe, A.F.; Jones, J.; et al. Advancing the use of molecular methods for routine freshwater macroinvertebrate biomonitoring—The need for calibration experiments. Metabarcoding Metagenomics 2019, 3, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Lacoursière-Roussel, A.; Côté, G.; Leclerc, V.; Bernatchez, L. Quantifying relative fish abundance with eDNA: A promising tool for fisheries management. J. Appl. Ecol. 2016, 53, 1148–1157. [Google Scholar] [CrossRef]
- Yates, M.C.; Fraser, D.J.; Derry, A.M. Meta-analysis supports further refinement of eDNA for monitoring aquatic species-specific abundance in nature. Environ. DNA 2019, 1, 5–13. [Google Scholar] [CrossRef]
- Clusa, L.; Ardura, A.; Fernández, S.; Roca, A.A.; García-Vázquez, E. An extremely sensitive nested PCR-RFLP mitochondrial marker for detection and identification of salmonids in eDNA from water samples. PeerJ 2017, 5, e3045. [Google Scholar] [CrossRef] [Green Version]
- Nichols, R.V.; Königsson, H.; Danell, K.; Spong, G. Browsed twig environmental DNA: Diagnostic PCR to identify ungulate species. Mol. Ecol. Resour. 2012, 12, 983–989. [Google Scholar] [CrossRef]
- Lock, M.; van Duren, I.; Skidmore, A.K.; Saintilan, N. Harmonizing forest conservation policies with essential biodiversity variables Incorporating Remote Sensing and Environmental DNA Technologies. Forests 2022, 13, 445. [Google Scholar] [CrossRef]
- Fediajevaite, J.; Priestley, V.; Arnold, R.; Savolainen, V. Meta-analysis shows that environmental DNA outperforms traditional surveys, but warrants better reporting standards. Ecol. Evol. 2021, 11, 4803–4815. [Google Scholar] [CrossRef] [PubMed]
- James, A.N.; Green, M.J.B.; Paine, J. A Global Review of Protected Area Budgets and Staff; WCMC—World Conservation Press: Cambridge, UK, 1999; p. 46. [Google Scholar]
- Cordier, T.; Frontalini, F.; Cermakova, K.; Apothéloz-Perret-Gentil, L.; Treglia, M.; Scantamburlo, E.; Bonamin, V.; Pawlowski, J. Multi-marker eDNA metabarcoding survey to assess the environmental impact of three offshore gas platforms in the North Adriatic Sea (Italy). Mar. Environ. Res. 2019, 146, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Norros, V.; Laamanen, T.; Meissner, K.; Lehtinen, S.; Lohtander-Buckbee, K.; Nygård, H.; Ruohonen-Lehto, M.; Sirkiä, P.; Suikkanen, S.; Tolkkinen, M.; et al. Roadmap for Implementing Environmental DNA (eDNA) and Other Molecular Monitoring Methods in Finland: Vision and Action Plan for 2022–2025; Draft of the Reports of the Finnish Environment Institute XX/2022; Finnish Environment Institute: Helsinki, Finland, 2022; p. 50. [Google Scholar]
- Apothéloz-Perret-Gentil, L.; Bouchez, A.; Cordier, T.; Cordonier, A.; Guéguen, J.; Rimet, F.; Vasselon, V.; Pawlowski, J. Monitoring the ecological status of rivers with diatom eDNA metabarcoding: A comparison of taxonomic markers and analytical approaches for the inference of a molecular diatom index. Mol. Ecol. 2021, 30, 2959–2968. [Google Scholar] [CrossRef]
- Suarez-Menendez, M.; Planes, S.; Garcia-Vazquez, E.; Ardura, A. Early alert of biological risk in a coastal lagoon through eDNA metabarcoding. Front. Ecol. Evol. 2020, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Valentin, R.E.; Fonseca, D.M.; Gable, S.; Kyle, K.E.; Hamilton, G.C.; Nielsen, A.L.; Lockwood, J.L. Moving eDNA surveys onto land: Strategies for active eDNA aggregation to detect invasive forest insects. Mol. Ecol. Resour. 2020, 20, 746–755. [Google Scholar] [CrossRef]
- Boulanger, E.; Loiseau, N.; Valentini, A.; Arnal, V.; Boissery, P.; Dejean, T.; Deter, J.; Guellati, N.; Holon, F.; Juhel, J.-B.; et al. Environmental DNA metabarcoding reveals and unpacks a biodiversity conservation paradox in Mediterranean marine reserves. Proc. Biol. Sci. 2021, 288, 20210112. [Google Scholar] [CrossRef]
- Echi, C.P.; Suresh, U.K.; George, S.; Ratheesh, V.R.; Vinitha, R.M.; Ejere, C.V.; Iyaji, O.F.; Nnamonu, I.E. Contribution towards the development of a DNA barcode reference library for West African mammals. Afr. J. Biotechnol. 2013, 12, 6704–6708. [Google Scholar] [CrossRef]
- Jungmeier, M.; Arpa, Y.N.; Pechacek, P. The Guidelines for Biodiversity Monitoring: Conservation and Sustainable Management of Turkey’s Steppe Ecosystems Project–GCP/TUR/061/GFF; FAO; MAF: Ankara, Turkey, 2022; p. 76. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pascher, K.; Švara, V.; Jungmeier, M. Environmental DNA-Based Methods in Biodiversity Monitoring of Protected Areas: Application Range, Limitations, and Needs. Diversity 2022, 14, 463. https://doi.org/10.3390/d14060463
Pascher K, Švara V, Jungmeier M. Environmental DNA-Based Methods in Biodiversity Monitoring of Protected Areas: Application Range, Limitations, and Needs. Diversity. 2022; 14(6):463. https://doi.org/10.3390/d14060463
Chicago/Turabian StylePascher, Kathrin, Vid Švara, and Michael Jungmeier. 2022. "Environmental DNA-Based Methods in Biodiversity Monitoring of Protected Areas: Application Range, Limitations, and Needs" Diversity 14, no. 6: 463. https://doi.org/10.3390/d14060463
APA StylePascher, K., Švara, V., & Jungmeier, M. (2022). Environmental DNA-Based Methods in Biodiversity Monitoring of Protected Areas: Application Range, Limitations, and Needs. Diversity, 14(6), 463. https://doi.org/10.3390/d14060463