Insecticidal and Antiprotozoal Properties of Lichen Secondary Metabolites on Insect Vectors and Their Transmitted Protozoal Diseases to Humans
Abstract
:1. Introduction
2. Materials and Methods
3. Diversity of Bioactivity of LSMs from Various Aspects
3.1. Lichen Species and Their LSMs Tested for Bioactivity on Insect Vectors of Human Diseases and for Antiprotozoal Activity
3.2. Groups of Insect Vectors and Parasitic Protozoa Tested on Effectiveness of LSMs
3.2.1. Mosquitoes
3.2.2. Parasitic Protozoa
3.3. Methods of Extraction of LSMs for Bioassay on Insect Vectors and Antiprotozoal Activity
3.4. Methods of Application of LSMs on Mosquitoes and the Strength of LSMs
- 1.0, 2.5 and 5.0 mg/mL LSMs in 10% DMSO in 100 mL water were used and mortality determined after 24 h, where 20 mosquito larvae were used in laboratory set up [40];
- 0.02 g of LSMs in 1 mL of acetone as stock solution was prepared and diluted to apply 1.0, 2.5 and 50 µg/mL solutions in 250 mL glass jars containing 100 mL of the solution, where 25 mosquito larvae were used in the laboratory set up [44];
- 0.02 g usnic acid (+) and (–) was dissolved in 1 mL acetone and six concentrations obtained, i.e., 0.1, 0.5, 1.0, 2.5, 5.0 and 10 µg/mL in distilled water in 250 mL glass jars containing 100–100 mL usnic acid solutions, where 25 mosquito larvae were used in thelaboratory set up.
3.5. Dosage, Methods, Application of LSMs and Their Physiological and Morphological Effects on Protozoa
3.6. Effective LSMs Documented by Toxicity Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yildirim, E.; Aslan, A.; Emsen, B.; Cakir, A.; Ercisli, S. Insecticidal effect of Usnea longissima (Parmeliaceae) extract against Sitophilus granarius (Coleoptera: Curculionidae). Int. J. Agric. Biol. 2012, 14, 303–306. [Google Scholar]
- WHO 2020, World Health Organization/News Room/ Fact Sheets/Detail/Malaria, 1 April 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/malaria (accessed on 15 April 2021).
- Chen, L.H.; Wilson, M.E. Non-vector transmission of dengue and other mosquito-borne Flaviviruses. Dengue Bull. 2005, 29, 18–31. Available online: https://www.researchgate.net/publication/228656801_Non-vector_transmission_of_dengue_and_other_mosquito-borne_flaviviruses (accessed on 20 June 2021).
- Dar, J.A.; Wani, K.A. Environmental changes and emerging vectorborne diseases: A review. Biol. Forum Int. J. 2010, 2, 78–83. Available online: https://www.researchtrend.net/bfij/bfij_volume-3.php (accessed on 20 June 2021).
- Ghaly, A.; Edwards, S. Termite damage to buildings: Nature of attacks and preventive construction methods. Am. J. Eng. Appl. Sci. 2011, 4, 187–200. [Google Scholar] [CrossRef]
- Oberemok, V.V.; Laikova, K.V.; Gninenko, Y.I.; Zaitsev, A.S.; Nyadar, P.M.; Adeyemi, T.A. A short history of insecticides. J. Plant Protect. Res. 2015, 55, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Ricci, I.; Valzano, M.; Ulissi, U.; Epis, S.; Cappelli, A.; Favia, G. Symbiotic control of mosquito borne disease. Pathog. Glob. Health 2012, 106, 380–385. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Shukla, S.; Gupta, V.; Tandia, N.; Singh, P. Mosquito borne zoonotic diseases: A review. J. Livest. Sci. 2015, 6, 65–72. Available online: http://livestockscience.in/volumes/ (accessed on 20 June 2021).
- Verma, M.; Sharma, S.; Prasad, R. Biological alternatives for termite control: A review. Int. Biodeterior. Biodegrad. 2009, 63, 959–972. [Google Scholar] [CrossRef]
- Frampton, G.K.; Jansch, S.; Scott-Fordsmand, J.J.; Rombke, J.; Van den Brink, P.J. Effects of pesticides on soil invertebrates in laboratory studies: A review and analysis using species sensitivity distributions. Environ. Toxicol. Chem. 2006, 25, 2480–2489. [Google Scholar] [CrossRef]
- Starks, S.E.; Hoppin, J.A.; Kamel, F.; Lynch, C.F.; Jones, M.P.; Alavanja, M.C.; Sandler, D.P.; Gerr, F. Peripheral nervous system function and organophosphate pesticide use among licensed pesticide applicators in the agricultural health study. Environ. Health Persp. 2012, 120, 515–520. [Google Scholar] [CrossRef]
- Balakrishnan, S.; Santhanam, P.; Srinivasan, M. Larvicidal potency of marine actinobacteria isolated from mangrove environment against Aedes aegypti and Anopheles stephensi. J. Par. Dis. 2017, 41, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Cetin, H.; Tufan-Cetin, O.; Turk, A.O.; Tay, T.; Candan, M.; Yanikoglu, A.; Sumbul, H. Insecticidal activity of major lichen compounds, (-)- and (+)-usnic acid, against the larvae of house mosquito, Culex pipiens L. Parasitol Res. 2008, 102, 1277–1279. [Google Scholar] [CrossRef]
- Ghosh, A.; Chowdhury, N.; Chandra, G. Plant extracts as potential mosquito larvicides. Indian J. Med. Res. 2012, 135, 581–598. [Google Scholar] [PubMed]
- Gupta, S.; Dikshit, A.K. Biopesticides: An ecofriendly approach for pest control. J. Biopest. 2010, 3, 186–188. Available online: https://www.semanticscholar.org/paper/Biopesticides%3A-an-ecofriendly-approach-for-pest-Gupta-Dikshit/9dc875f76af9fd1ae59fac41311cc96ee3e7f875 (accessed on 20 June 2021).
- Kumar, S. Biopesticides: A need for food and environmental safety. J. Biofertil. Biopestic. 2012, 3, e107. [Google Scholar] [CrossRef]
- Molnár, K.; Farkas, E. Current results on biological activities of lichen secondary metabolites: A review. Z. Naturforsch. C. J. Biosci. 2010, 65, 157–173. [Google Scholar] [CrossRef]
- Nanayakkara, C.; Bombuwala, K.; Kathirgamanathar, S.; Adikaram, N.K.B.; Wijesundara, D.S.A.; Hariharan, G.N.; Wolseley, P.; Karunaratne, V. Effect of some lichen extracts from Sri Lanka on larvae of Aedes aegypti and the fungus Cladosporium cladosporioides. J. Natn. Sci. Found. Sri Lanka 2005, 33, 147–149. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, C.M.; Auad, A.M.; Mendes, S.M.; Frizzas, M.R. Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop. Prot. 2014, 56, 50–54. [Google Scholar] [CrossRef] [Green Version]
- Garcia, A.R.M.; Rocha, A.d.P.; Moreira, C.C.; Rocha, S.L.; Guarneri, A.A.; Elliot, S.L. Screening of fungi for biological control of a triatomine vector of Chagas disease: Temperature and trypanosome infection as factors. PLoS Negl. Trop. Dis. 2016, 10, e0005128. [Google Scholar] [CrossRef]
- Ramanujam, B.; Rangeshwaran, R.; Sivakumar, G.; Mohan, M.; Yandigeri, M.S. Management of insect pests by microorganisms. Proc. Indian Natl Sci. Acad. 2014, 80, 455–471. [Google Scholar] [CrossRef] [Green Version]
- Bostan, C.; Butnariu, M.; Butu, M.; Ortan, A.; Butu, A.; Rodino, S.; Parvue, C. Allelopathic effect of Festuca rubra on perennial grasses. Rom. Biotechnol. Lett. 2013, 18, 8190–8196. Available online: https://www.researchgate.net/publication/273678898_Allelopathic_effect_of_Festuca_rubra_on_perennial_grasses (accessed on 20 June 2021).
- Hadaček, F.; Müller, C.; Werner, A.; Greger, H.; Proksch, P. Analysis, isolation and insecticidal activity of linear furanocoumarins and other coumarin derivatives from Peucedanum (Apiaceae: Apioideae). J. Chem. Ecol. 1994, 20, 2035–2054. [Google Scholar] [CrossRef] [PubMed]
- Larhsini, M.; Bousaid, M.; Lazrek, H.B.; Jana, M.; Amarouch, H. Evaluation of antifungal and molluscicidal properties of extracts of Calotropis procera. Fitoterapia 1997, 68, 371–373. Available online: https://www.researchgate.net/publication/290792705_Evaluation_of_antifungal_and_molluscicidal_properties_of_extracts_of_Calotropis_procera (accessed on 20 June 2021).
- Alam, M.A.; Habib, M.R.; Nikkon, F.; Khalequzzaman, M.; Karim, M.R. Insecticidal activity of root bark of Calotropis gigantea L. against Tribolium castaneum (Herbst). World. J. Zool. 2009, 4, 90–95. [Google Scholar]
- Singh, R.K.; Mittal, P.; Dhiman, R.C. Laboratory study on larvicidal properties of leaf extract of Calotropis procera (Family-Asclepiadaceae) against mosquito larvae. J. Commun. Dis. 2005, 37, 109–113. Available online: https://www.researchgate.net/publication/7034248_Laboratory_study_on_larvicidal_properties_of_leaf_extract_of_Calotropis_procera_Family-Asclepiadaceae_against_mosquito_larvae (accessed on 20 June 2021). [PubMed]
- Singhi, M.; Joshi, V.; Sharma, R.C.; Sharma, K. Ovipositioning behaviour of Aedes aegypti in different concentrations of latex of Calotropis procera: Studies on refractory behaviour and its sustenance across gonotrophic cycles. Dengue Bull. 2004, 28, 184–188. Available online: https://apps.who.int/iris/handle/10665/164002 (accessed on 20 June 2021).
- Moncayo, A. Program Report of the UNPD/World Bank/WHO Special Program for Research and Training in Tropical Diseases (TDR); World Health Organization: Geneva, Switzerland, 1993; pp. 67–75. [Google Scholar]
- Estani, S.S.; Porcel, B.M.; Segura, E.L.; Yampotis, C.; Ruiz, A.M.; Velazquez, E. Efficacy of chemotherapy with benznidazole in children in intermediate phase of Chagas’ disease. Amer. J. Trop. Med. Hyg. 1998, 59, 526–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Castro, S.L. The challenge of Chagas’ disease chemotherapy: An update of drugs assayed against Trypanosoma cruzi. Acta Trop. 1993, 53, 83–98. [Google Scholar] [CrossRef]
- Curtin, J.M.; Aronson, N.E. Leishmaniasis in the United States: Emerging issues in a region of low endemicity. Microorganisms 2021, 9, 578. [Google Scholar] [CrossRef]
- Berman, J.D. Chemotherapy for leishmaniasis: Biochemical and mechanisms, clinical efficacy, and future strategies. Rev. Infect. Dis. 1988, 10, 560–586. [Google Scholar] [CrossRef]
- Croft, S.L. Recent developments in the chemotherapy of leishmaniasis. Trends Pharmacol. Sci. 1988, 9, 376–381. [Google Scholar] [CrossRef]
- Sachin, M.B.; Mahalakshmi, S.N.; Prashith Kekuda, T.R. Insecticidal efficacy of lichens and their metabolites—A mini review. J. Appl. Pharm. Sci. 2018, 8, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Khan, K.S.; Kunz, R.M.; Kleinen, J.; Antes, G. Five steps to conducting a systematic review. J. R. Soc. Med. 2003, 96, 118–121. [Google Scholar] [CrossRef]
- De Carvalho, E.A.B.; Andrade, P.P.; Silva, N.H.; Pereira, E.C.; Figueiredo, R.C.B.Q. Effect of usnic acid from the lichen Cladonia substellata on Trypanosoma cruzi in vitro: An ultrastructural study. Micron 2005, 36, 155–161. [Google Scholar] [CrossRef]
- Fournet, A.; Ferreira, M.-E.; Rojas de Arias, A.; Torres de Ortiz, S.; Inchausti, A.; Yaluff, G.; Quilhot, W.; Fernandez, E.; Hidalgo, M.E. Activity of compounds isolated from Chilean lichens against experimental cutaneous leishmaniasis. Comp. Biochem. Physiol. C. 1997, 116, 51–54. [Google Scholar] [CrossRef]
- Syed Zameer Ahmed, K.; Sidhra, S.Z.A.; Kisore, P.V.; Kamaraj, C.; Nayaka, S. Larvicidal potential of selected indigenous lichens against three mosquito species—Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi. Chin. Herb. Med. 2018, 10, 152–156. [Google Scholar] [CrossRef]
- Karthik, S.; Nandini, K.C.; Prashith Kekuda, T.R.; Vinayaka, K.S.; Mukunda, S. Total phenol content, insecticidal and amylase inhibitory efficacy of Heterodermia leucomela (L). Ann. Biol. Res. 2011, 2, 38–43. [Google Scholar]
- Vinayaka, K.S.; Krishnamurthy, Y.L.; Prashith Kekuda, T.R.; Praveen Kumar, S.V.; Sudharshan, S.J.; Chinmaya, A. Larvicidal and wormicidal efficacy of methanolic extracts of five macrolichens collected from Bhadra wildlife sanctuary. Biomedicine 2009, 29, 327–331. Available online: https://www.researchgate.net/publication/259174826_Larvicidal_and_Wormicidal_efficacy_of_methanolic_extracts_of_five_macrolichens_collected_from_Bhadra_wildlife_sanctuary (accessed on 20 June 2021).
- Kumar, P.S.V.; Kekuda, P.T.R.; Vinayaka, K.S.; Swathi, D.; Chinmaya, A. Insecticidal efficacy of Ramalina hossei H. Magn & G. Awasthi and Ramalina conduplicans Vain.—macrolichens from Bhadra wildlife sanctuary, Karnataka. Biomedicine 2010, 30, 100–102. Available online: https://www.researchgate.net/publication/259464166_Insecticidal_efficacy_of_Ramalina_hossei_H_Magn_G_Awasthi_and_Ramalina_conduplicans_Vain-Macrolichens_from_Bhadra_wildlife_sanctuary_Karnataka (accessed on 20 June 2021).
- Moreira, A.S.N.; Fernandes, R.O.S.; Lemos, F.J.A.; Braz-Filho, R.; Vieira, I.J.C. Larvicidal activity of Ramalina usnea lichen against Aedes aegypti. Rev. Bras. Farm. 2016, 26, 530–532. [Google Scholar] [CrossRef] [Green Version]
- Lauinger, I.L.; Vivas, L.; Perozzo, R.; Stairiker, C.; Tarun, A.; Zloh, M.; Zhang, X.; Xu, H.; Tonge, P.J.; Franzblau, S.G.; et al. Potential of lichen secondary metabolites against Plasmodium liver stage parasites with FAS-II as the potential target. J. Nat. Prod. 2013, 76, 1064–1070. [Google Scholar] [CrossRef] [Green Version]
- Cetin, H.; Tufan-Cetin, O.; Turk, A.O.; Tay, T.; Candan, M.; Yanikoglu, A.; Sumbul, H. Larvicidal activity of some secondary lichen metabolites against the mosquito Culiseta longiareolata Macquart (Diptera: Culicidae). Nat. Prod. Res. 2012, 26, 350–355. [Google Scholar] [CrossRef]
- Mosquito Taxonomic Inventory. Available online: http://mosquito-taxonomic-inventory.info (accessed on 8 May 2021).
- WHO 2005, World Health Organization. Guidelines for Laboratory and Field Testing of Mosquito Larvicides; World Health Organization: Geneva, Switzerland, 2005; pp. 1–39, No. WHO/CDS/WHOPES/GCDPP/2005.13; Available online: https://apps.who.int/iris/handle/10665/69101 (accessed on 20 June 2021).
- Bomfim, R.R.; Araújo, A.A.S.; Cuadros-Orellana, S.; Melo, M.G.D.; Quintans, L.J., Jr.; Cavalcanti, S.C.H. Larvicidal activity of Cladonia substellata extract and usnic acid against Aedes aegypti and Artemia salina. Lat. Am. J. Pharm. 2009, 28, 580–584. Available online: https://www.researchgate.net/publication/238114261_Larvicidal_Activity_of_Cladonia_substellata_Extract_and_Usnic_Acid_against_Aedes_aegypti_and_Artemia_salina (accessed on 20 June 2021).
- WHO 2006, World Health Organization. Guidelines for Testing Mosquito Adulticides for Indoor Residual Spraying and Treatment of Mosquito Nets; World Health Organization: Geneva, Switzerland, 2006; pp. 1–60, WHO/CDS/NTD/WHOPES/GCDPP/2006.3; Available online: https://apps.who.int/iris/handle/10665/69296 (accessed on 20 June 2021).
- Farkas, E.; Biró, B.; Szabó, K.; Veres, K.; Csintalan, Z.; Engel, R. The amount of lichen secondary metabolites in Cladonia foliacea (Cladoniaceae, lichenised Ascomycota). Acta Bot. Hung. 2020, 62, 33–48. [Google Scholar] [CrossRef]
- Si, K.; Wei, L.; Yu, X.; Wu, F.; Li, X.; Li, C.; Cheng, Y. Effects of (+)-usnic acid and (+)-usnic acid-liposome on Toxoplasma gondii. Expl. Parasit. 2016, 166, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, M.; Ding, D.; Tan, T.; Yan, B. Effect of Cladonia alpestris on Trichomonas vaginalis in vitro. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi [Chin. J. Parasitol. Parasit. Dis.] 1995, 13, 126–129. [Google Scholar] [PubMed]
- Han, D.; Matsumaru, K.; Rettori, D.; Kaplowitz, N. Usnic acid-induced necrosis of cultured mouse hepatocytes: Inhibition of mitochondrial function and oxidative stress. Biochem. Pharmacol. 2004, 67, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Pramyothin, P.; Janthasoot, W.; Pongnimitprasert, N.; Phrukudom, S.; Ruangrungsi, N. Hepatotoxic effect of (+)usnic acid from Usnea siamensis Wainio in rats, isolated rat hepatocytes and isolated rat liver mitochondria. J. Ethnopharm. 2004, 90, 381–387. [Google Scholar] [CrossRef]
- Kinoshita, Y.; Yamamoto, Y.; Yoshimura, I.; Kurokawa, T.; Huneck, S. Distribution of optical isomers of usnic and isousnic acids analyzed by high performance liquid chromatography. J. Hattori Bot. Lab. 1997, 83, 173–178. [Google Scholar]
- Galanty, A.; Paśko, P.; Podolak, I. Enantioselective activity of usnic acid: A comprehensive review and future perspectives. Phytochem. Rev. 2019, 18, 527–548. [Google Scholar] [CrossRef] [Green Version]
- Kirk, P.M.; Cannon, P.F.; Minter, D.W.; Stalpers, J.A. Ainsworth & Bisby’s Dictionary of the Fungi, 10th ed.; CAB International: Wallingford, UK, 2008; pp. 1–772. [Google Scholar]
- Stocker-Wörgötter, E. Metabolic diversity of lichen forming, ascomycetous fungi: Culturing, production of polyketides and shikimi acid derivatives, and PKS genes. Nat. Prod. Rep. 2008, 25, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Samfira, I.; Rodino, S.; Petrache, P.; Cristina, R.T.; Butu, M.; Butnariu, M. Characterization and identity confirmation of essential oils by mid infrared absorption spectrophotometry. Dig. J. Nanomat. Biostruct. 2015, 10, 557–566. Available online: https://www.researchgate.net/publication/224806602_Volatile_constituents_of_selected_Parmeliaceae_lichens (accessed on 20 June 2021).
- Stojanović, I.Ž.; Radulović, N.S.; Mitrović, T.L.J.; Stamenković, S.M.; Stojanović, G.S. Volatile constituents of selected Parmeliaceae lichens. J. Serb. Chem. Soc. 2011, 76, 987–994. [Google Scholar] [CrossRef]
- Barbat, C.; Rodino, S.; Petrache, P.; Butu, M.; Butnariu, M. Microencapsulation of the allelochemical compounds and study of their release from different products. Dig. J. Nanomat. Biostruct. 2013, 8, 945–953. Available online: https://www.researchgate.net/publication/249643665_Microencapsulation_of_the_allelochemical_compounds_and_study_of_their_release_from_different_products (accessed on 20 June 2021).
Lichen Species | LSM | Bioactivity | References |
---|---|---|---|
Cladonia coniocraea (Flörke) Spreng. | crude extract | antivector activity | [18] |
Cladonia foliacea (Huds.) Willd. | (-)-usnic acid | antivector activity | [13] |
Cladonia substellata Vain. | (+)-usnic acid | antiprotozoal activity | [36] |
Dirinaria applanata (Fée) D.D. Awasthi | crude extract | antivector activity | [18] |
Erioderma leylandi (Taylor) Müll. Arg. | 1′chloropannarin | antiprotozoal activity | [37] |
Everniastrum sp. | crude extract | antivector activity | [18] |
Hypogymnia sp. | crude extract | antivector activity | [18] |
Lepraria atrotomentosa Orange & Wolseley | crude extract | antivector activity | [18] |
Leptogium papillosum (de Lesd.) C.W. Dodge | crude extract | antivector activity | [38] |
Leucodermia leucomelos (L.) Kalb (syn. Heterodermia leucomelos (L.) Poelt) | crude extract (atranorin, salazinic acid) | antivector activity | [18,39] |
Myriotrema spp. (2) | crude extract | antivector activity | [18] |
Notoparmelia erumpens (Kurok.) A. Crespo, Ferencová & Divakar (syn. Parmelia erumpens Kurok.) | crude extract | antivector activity | [38] |
Ocellularia sp. | crude extract | antivector activity | [18] |
Parmeliella sp. | crude extract | antivector activity | [18] |
Parmelina tiliacea (Hoffm.) Hale | crude extract | antivector activity | [18] |
Parmotrema chinense (Osbeck) Hale & Ahti | crude extract | antivector activity | [18] |
Parmotrema kamatti Patw. & Prabhu | crude extract | antivector activity | [38] |
Parmotrema reticulatum (Taylor) M. Choisy (syn. Rimelia reticulata (Taylor) Hale & A. Fletcher) | crude extract | antivector activity | [18] |
Parmotrema tinctorum (Despr. ex Nyl.) Hale | crude extract (lecanoric acid, orsellinic acid) | antivector activity | [18,38,40] |
Protousnea malacea (Stirt.) Krog | (+)-usnic acid | antiprotozoal activity | [37] |
Psoroma pallidum Nyl. | pannarin | antiprotozoal activity | [37] |
Ramalina conduplicans Vain. | crude extract (salazinic, sekikaic acid, usnic acid, (tannins, steroids)) | antivector activity | [41] |
Ramalina farinacea (L.) Ach. | usnic acid | antivector activity | [13] |
Ramalina hossei Vain. | crude extract (sekikaic acid, usnic acid, (tannins, terpenoids)) | antivector activity | [41] |
Ramalina nervulosa (Müll. Arg.) Abbayes | crude extract (sekikaic acid, usnic acid) | antivector activity | [40] |
Ramalina pacifica Asahina | crude extract (salazinic acid, usnic acid) | antivector activity | [40] |
Ramalina usnea (L.) R. Howe | usnic acid | antivector activity | [42] |
Roccella montagnei Bél. | crude extract (erythrin, lecanoric acid) | antivector activity | [18,38,40] |
Stereocaulon sp. | crude extract | antivector activity | [18] |
Usnea galbinifera Asahina | crude extract (galbinic acid, norstictic acid) | antivector activity | [40] |
Usnea sp. | crude extract | antivector activity | [18] |
N/A | evernic acid | antiprotozoal activity | [43] |
N/A | gyrophoric acid | antivector activity | [44] |
N/A | psoromic acid | antiprotozoal activity | [43] |
N/A | (+)-usnic acid | antiprotozoal activity | [43] |
N/A | vulpic acid | antiprotozoal activity | [43] |
LSM | Concentration of Active LSM | Species of Parasitic Protozoa | Target Stage of Protozoa or Inhibited Enzyme | References |
---|---|---|---|---|
1′chloropannarin | 50 µg/mL (in vitro) | Leishmania amazonensis | promastigote | [37] |
L. braziliensis | promastigote | |||
L. donovani | promastigote | |||
evernic acid | 36.1 μM | Plasmodium falciparum | LS of PfFabI | [43] |
>200 μM | P. falciparum | LS of PfFabG | ||
10.7 μM | P. falciparum | LS of PfFabZ | ||
pannarin | 50 µg/mL (in vitro) | L. amazonensis | promastigote | [37] |
L. braziliensis | promastigote | |||
L. donovani | promastigote | |||
psoromic acid | 71.4 μM | P. falciparum | LS of PfFabI | [43] |
183 μM | P. falciparum | LS of PfFabG | ||
35.2 μM | P. falciparum | LS of PfFabZ | ||
(+)-usnic acid | 25 mg/kg (in vivo) | L. amazonensis | promastigote | [37] |
25 µg/mL (in vitro) | L. braziliensis | promastigote | ||
25 µg/mL (in vitro) | L. donovani | promastigote | ||
2.3 μM | P. berghei | liver stage (LS) | [43] | |
47.3 μM | P. falciparum | blood stage (BS) | ||
>200 μM | P. falciparum | LS of PfFabI, PfFabG and PfFabZ | ||
5–30 μg/mL | Trypanosoma cruzi | epimastigote | [36] | |
40 and 80 μg/mL | T. cruzi | trypomastigote | ||
20, 40 and 80 μg/mL | T. cruzi | amastigote | ||
vulpic acid | >140 μM | P. falciparum | LS of PfFabI | [43] |
>200 μM | P. falciparum | LS of PfFabG | ||
20.5 μM | P. falciparum | LS of PfFabZ |
Lichen Species | Concentration of LSM or Crude Extract (μg/mL) | Mortality Effect (LC50) | References |
---|---|---|---|
Cladonia coniocraea | ≤5000 * | 91–100% | [18] |
Cladonia foliacea | 10 *** | 100% | [13] |
Dirinaria applanata | ≤5000 * | 91–100% | [18] |
Everniastrum sp. | ≤5000 * | 91–100% | [18] |
Hypogymnia sp. | ≤5000 * | 91–100% | [18] |
Lepraria atrotomentosa | ≤5000 * | 91–100% | [18] |
Leptogium papillosum | 81.1 *, 89.1 **, 9.0 **** | 100% | [38] |
Leucodermia leucomelos | 1000–2000 * | (50–)100% | [39] |
Leucodermia leucomelos | ≤5000 * | 91–100% | [18] |
Myriotrema spp. | ≤5000 * | 91–100% | [18] |
Notoparmelia erumpens | 341.0 *, 112.0 **, 9.3 **** | 100% | [38] |
Ocellularia sp. | ≤5000 * | 91–100% | [18] |
Parmeliella sp. | ≤5000 * | 91–100% | [18] |
Parmelina tiliacea | ≤5000 * | 91–100% | [18] |
Parmotrema chinense | ≤5000 * | 91–100% | [18] |
Parmotrema kamatti | 296.3 *, 153.3 **, 13.2 **** | 100% | [38] |
Parmotrema reticulatum | 417.1 *, 102.1 **, 10.2 **** | 100% | [38] |
Parmotrema reticulatum | ≤5000 * | 91–100% | [18] |
Parmotrema tinctorum | ≤5000 * | 91–100% | [18] |
Parmotrema tinctorum | 201.1 *, 156.2 **, 5.3 ****, (660*) | 100% | [37,40] |
Ramalina conduplicans | 5000 * | 25% | [41] |
10,000 * | 40% | ||
20,000 * | 85% | ||
Ramalina farinacea | 5 *** | 100% | [13] |
Ramalina hossei | 5000 * | 50% | [41] |
10,000 * | 70% | ||
20,000 * | 100% | ||
Ramalina nervulosa | 1000 * | 100% | [40] |
Ramalina pacifica | 830 * | 100% | [40] |
Ramalina usnea | 150 * | 96.6% | [42] |
Roccella montagnei | 640.9 *, 127.4 **, 7.0 ****, (830*) | 100% | [38,40] |
Roccella montagnei | ≤5000 * | 91–100% | [18] |
Stereocaulon sp. | ≤5000 * | 91–100% | [18] |
Usnea galbinifera | 760 * | 100% | [40] |
Usnea sp. | ≤5000 * | 91–100% | [18] |
Species of Protozoa | LSM | Concentration of LSM | The Route of Administration | Control Agent | References |
---|---|---|---|---|---|
Leishmania spp. | 1′chloropannarin | 50 μg/mL | in vitro | pentamidine and ketoconazole | [37] |
Leishmania spp. | pannarin | 50 μg/mL | in vitro | pentamidine and ketoconazole | [37] |
Leishmania spp. | (+)-usnic acid | 25 μg/mL | Subcutaneous * and oral * | Glucantime (N-methylglucamine antimonate) | [37] |
Leishmania spp. | (+)-usnic acid | 25 mg/kg | Intralesional * | Glucantime (N-methylglucamine antimonate) | [37] |
Plasmodium berghei | evernic acid | 77.3 μΜ (LS) | in vitro | Atovaquone | [43] |
P. berghei | psoromic acid | 31.6 μM (LS) | in vitro | Atovaquone | [43] |
P. berghei | (+)-usnic acid | 2.3 μΜ (LS) | in vitro | Atovaquone | [43] |
P. berghei | vulpic acid | 10.0 μM (LS) | in vitro | Atovaquone | [43] |
P. falciparum | evernic acid | 142.1 μM (BS) | in vitro | Atovaquone | [43] |
P. falciparum | psoromic acid | 29.2 μM (BS) | in vitro | Atovaquone | [43] |
P. falciparum | (+)-usnic acid | 47.3 μM (BS) | in vitro | Atovaquone | [43] |
P. falciparum | vulpic acid | 48.5 μM (BS) | in vitro | Atovaquone | [43] |
Trypanosoma cruzi | (+)-usnic acid | 5 up to 50 μg/mL ** and 80 μg/mL *** | in vitro | DMSO | [36] |
LSM | Stage of Protozoa | Effect on Parasite or Affected Organelles | References |
---|---|---|---|
evernic acid and psoromic acid | liver stage of Plasmodium spp. | none (10 μM) | [43] |
vulpic acid and (+)-usnic acid | liver stage of Plasmodium spp. | size reduction (10 μM) | [43] |
(+)-usnic acid | epimastigotes (Trypanosoma cruzi) | ultrastructural changes of mitochondria | [36] |
(+)-usnic acid | trypomastigotes (T. cruzi) | lysis, flagellar pocket | [36] |
(+)-usnic acid | amastigote (T. cruzi) | cytoplasm vacuolation | [36] |
(+)-usnic acid | amastigote (Leishmania amazonensis) | None * | [37] |
(+)-usnic acid | amastigote (L. amazonensis) | reduced weight of lesion and parasite loads ** | [37] |
LSM | Type of Experimental Animal or Subject Used | Safety Status | References |
---|---|---|---|
evernic, vulpic and psoromic acids | zebrafish larvae ** | liver toxicity detected (reduction of size and enlarged liver) | [43] |
evernic, vulpic, psoromic and (+)-usnic acids | human hepatoma cell * | safe | [43] |
(+)-usnic acid | zebrafish larvae ** | safe | [43] |
(+)-usnic acid | murine peritoneal macrophages * | safe (morphology and ultrastructure not affected) | [36] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhoro, A.M.; Farkas, E.É. Insecticidal and Antiprotozoal Properties of Lichen Secondary Metabolites on Insect Vectors and Their Transmitted Protozoal Diseases to Humans. Diversity 2021, 13, 342. https://doi.org/10.3390/d13080342
Muhoro AM, Farkas EÉ. Insecticidal and Antiprotozoal Properties of Lichen Secondary Metabolites on Insect Vectors and Their Transmitted Protozoal Diseases to Humans. Diversity. 2021; 13(8):342. https://doi.org/10.3390/d13080342
Chicago/Turabian StyleMuhoro, Arthur M., and Edit É. Farkas. 2021. "Insecticidal and Antiprotozoal Properties of Lichen Secondary Metabolites on Insect Vectors and Their Transmitted Protozoal Diseases to Humans" Diversity 13, no. 8: 342. https://doi.org/10.3390/d13080342
APA StyleMuhoro, A. M., & Farkas, E. É. (2021). Insecticidal and Antiprotozoal Properties of Lichen Secondary Metabolites on Insect Vectors and Their Transmitted Protozoal Diseases to Humans. Diversity, 13(8), 342. https://doi.org/10.3390/d13080342