Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (404)

Search Parameters:
Keywords = larvicidal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 665 KB  
Article
Promoter Regulation of mtx1 in Lysinibacillus sphaericus and Heterologous Production of the Mosquitocidal Protein Mtx1 in Bacillus subtilis
by Sumarin Soonsanga and Boonhiang Promdonkoy
Appl. Biosci. 2026, 5(1), 4; https://doi.org/10.3390/applbiosci5010004 - 15 Jan 2026
Viewed by 34
Abstract
Mtx1 is a mosquitocidal protein that exhibits high toxicity toward Culex species. It is produced during the vegetative phase of Lysinibacillus sphaericus but at very low levels and is rapidly degraded. The low expression appears to result from a weak promoter and a [...] Read more.
Mtx1 is a mosquitocidal protein that exhibits high toxicity toward Culex species. It is produced during the vegetative phase of Lysinibacillus sphaericus but at very low levels and is rapidly degraded. The low expression appears to result from a weak promoter and a potential regulatory stem-loop structure in the 5′ untranslated region. To investigate this regulation, promoter variants of mtx1 were constructed to disrupt stem-loop formation, and promoter activity was assessed using green fluorescent protein (GFP) as a reporter. Disruption of the inverted repeat resulted in approximately twofold higher fluorescence compared with the wild-type promoter in L. sphaericus 2297, indicating partial derepression of translation. To improve protein stability, Bacillus subtilis WB800N, a protease-deficient host, was employed for heterologous expression. Truncated Mtx1 (tMtx1) was secreted into the culture medium, and no obvious degradation products were detected by Western blot analysis under the conditions tested. Although the overall yield was low and not quantitatively determined, the secreted protein retained biological activity. Larvicidal assays showed elevated mortality in tMtx1-containing culture supernatants, with an estimated LC50 at approximately a 1:83 dilution and detectable activity up to a 1:512 dilution relative to control cultures. These results demonstrate that the upstream inverted repeat contributes to partial repression of mtx1 expression in L. sphaericus and that protease-deficient B. subtilis can be used as a host for producing biologically active tMtx1, although further optimization will be required to improve yield. Full article
Show Figures

Figure 1

6 pages, 406 KB  
Case Report
Unusually Extensive Furuncular Myiasis in a Returning Traveller from Rural Ethiopia Complicated by Streptococcus Pyogenes Secondary Infection Following Albendazole Therapy
by Diva Jhaveri, Alastair McGregor and Matthew J. W. Kain
Reports 2026, 9(1), 19; https://doi.org/10.3390/reports9010019 - 8 Jan 2026
Viewed by 239
Abstract
Background and Clinical Significance: Furuncular myiasis is a tropical parasitic skin infestation caused by dipterous fly larvae, most commonly affecting travellers to endemic regions. While returning travellers typically present with one or few lesions, extensive parasitism is rare. Increased global mobility and [...] Read more.
Background and Clinical Significance: Furuncular myiasis is a tropical parasitic skin infestation caused by dipterous fly larvae, most commonly affecting travellers to endemic regions. While returning travellers typically present with one or few lesions, extensive parasitism is rare. Increased global mobility and expanding ecological range of myiasis-causing species underscores the need for clinicians in endemic and non-endemic regions to recognise, diagnose, and manage this condition promptly. Awareness of exposure risks—including soil contact, infested clothing, and poor living conditions—is essential to reducing morbidity and preventing complications like secondary bacterial infection. Case Presentation: A healthy male in his forties returned to the UK after a month-long visit to rural Ethiopia, during which he slept on dirt floors and hung his washing on a line. He developed pruritic papular lesions that progressed to erythematous furuncles with central puncta and purulent discharge, accompanied by sensations of movement. The patient self-extracted 12 larvae in Ethiopia and subsequently sought local medical attention, receiving Albendazole, after which emerging larvae were non-motile. On UK presentation, he had 27 lesions at varying stages, 3 with signs of secondary infection. Laboratory investigations revealed elevated inflammatory markers, and wound swabs grew scanty Streptococcus pyogenes. Management included wound occlusion and systemic antibiotics. No further larvae were retrieved, precluding definitive speciation. All lesions improved over subsequent reviews. Conclusions: This case illustrates an unusually extensive presentation of presumed Cordylobia spp. myiasis in a returning traveller, highlighting potential complications following larvicidal therapy. Clinicians should maintain a high index of suspicion for myiasis in patients with compatible cutaneous lesions and relevant history. Increasing travel and shifting vector distributions make familiarity with tropical dermatoses and provision of effective safety measures essential in clinical practice. Full article
Show Figures

Figure 1

13 pages, 2282 KB  
Article
Interaction Between Duddingtonia flagrans and Pochonia chlamydosporia for the Biological Control of Bovine Gastrointestinal Nematodes
by Maria Larissa Bitencourt Vidal, Júlia dos Santos Fonseca, Ítalo Stoupa Vieira, Lorena Souza Castro Altoé, Lorendane Millena de Carvalho, Wagner Nunes Rodrigues, Isabella Vilhena Freire Martins and Jackson Victor de Araújo
Microorganisms 2026, 14(1), 85; https://doi.org/10.3390/microorganisms14010085 - 30 Dec 2025
Viewed by 189
Abstract
Gastrointestinal nematodes are among the most significant parasites affecting livestock health and productivity, leading to major economic losses and contributing to the global increase in resistance to anthelmintics. Biological control using fungi with ovicidal and nematophagous activity offers an environmentally friendly alternative. This [...] Read more.
Gastrointestinal nematodes are among the most significant parasites affecting livestock health and productivity, leading to major economic losses and contributing to the global increase in resistance to anthelmintics. Biological control using fungi with ovicidal and nematophagous activity offers an environmentally friendly alternative. This trial represents the first long-term field evaluation in cattle of the commercial combination of D. flagrans and P. chlamydosporia under natural infection conditions. Eighteen Holstein × Zebu males (12–15 months old) were divided into three groups (n = 6): T1 (D. flagrans), T2 (D. flagrans + P. chlamydosporia), and control. Treatments were administered orally daily (6 g/100 kg BW of each fungus; 106 chlamydospores/g) for nine months. Fecal egg counts (EPG) and infective larvae in pasture (L3) were monitored. Groups T1 and T2 showed significantly lower EPG values than the control during most of the experimental period. Haemonchus spp. was identified as the predominant nematode, supporting its epidemiological relevance. The combined fungal treatment exhibited enhanced effectiveness, enhancing parasite suppression through complementary ovicidal and larvicidal mechanisms. This approach offers a sustainable alternative to the excessive use of chemical compounds and has the potential to contribute to integrated animal health and livestock production. Full article
(This article belongs to the Special Issue Recent Insights of the Role of Microorganisms in Bovine Medicine)
Show Figures

Figure 1

12 pages, 2486 KB  
Article
Discovery of Triazone Derivatives Containing Acylhydrazone and Phenoxypyridine Motifs as Novel Insecticidal and Antiphytopathogenic Fungus Agents
by Peipei Cui and Yan Yang
Int. J. Mol. Sci. 2026, 27(1), 260; https://doi.org/10.3390/ijms27010260 - 26 Dec 2025
Viewed by 235
Abstract
A series of novel triazone derivatives containing acylhydrazone and phenoxypyridine motifs were designed, synthesized, and evaluated for their biological activities. The bioassay results indicated that most of the target compounds exhibited excellent insecticidal activities against bean aphids. In particular, compounds 3i and 3e [...] Read more.
A series of novel triazone derivatives containing acylhydrazone and phenoxypyridine motifs were designed, synthesized, and evaluated for their biological activities. The bioassay results indicated that most of the target compounds exhibited excellent insecticidal activities against bean aphids. In particular, compounds 3i and 3e showed excellent aphicidal activities comparable to pymetrozine, thus emerging as novel insecticidal lead compounds. Additionally, compounds 3c (60%), 3e (60%), and 3f (60%) exhibited good larvicidal activities against C. pipiens pallens at 0.5 mg/kg. Further fungicidal activity tests revealed that most derivatives exhibited broad-spectrum fungicidal activities. A total of twelve compounds exhibited better fungicidal activities against cercospora arachidicola hori than carbendazim, and eight compounds exhibited better fungicidal activities against fusarium moniliforme than carbendazim. This work suggests that compound 3e could serve as an insecticidal lead compound for further structural optimization. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

15 pages, 278 KB  
Article
Phytochemical Profiling and Larvicidal Activity of Ethanolic Extracts from Persea americana Mill. (Var. Lorena) Against Aedes aegypti
by Clara Barragán-Avilez, Paula Pareja-Loaiza, Katherine Girón Domínguez, Beatriz López-Monroy, Adriana E. Flores, Martha Sánchez-Bolívar, Jaime Luna-Carrascal, Leonardo C. Pacheco-Londoño, Nataly J. Galán-Freyle, Elkin Navarro Quiroz, Karina Castellanos-Romero, Ronald Maestre-Serrano, Roger Valle-Molinares and Fabián Espitia-Almeida
Insects 2026, 17(1), 34; https://doi.org/10.3390/insects17010034 - 25 Dec 2025
Viewed by 566
Abstract
Dengue is a mosquito-borne viral disease transmitted by Aedes aegypti, the main vector in the Americas. The lack of effective antiviral treatments, limited vaccine coverage, and the increasing resistance of mosquitoes to conventional insecticides emphasize the need for alternative vector control strategies. [...] Read more.
Dengue is a mosquito-borne viral disease transmitted by Aedes aegypti, the main vector in the Americas. The lack of effective antiviral treatments, limited vaccine coverage, and the increasing resistance of mosquitoes to conventional insecticides emphasize the need for alternative vector control strategies. Plant-derived larvicides represent a promising and eco-friendly approach. This study characterized the phytochemical profile of Persea americana Mill. (var. Lorena) and evaluated its larvicidal activity against Ae. aegypti (Rockefeller strain). The phytochemical profile was assessed through qualitative screening, UV-Vis spectrophotometry, and UHPLC analysis. Larvicidal activity was evaluated against third-instar larvae of Ae. aegypti (Rockefeller strain) and the median lethal concentration (LC50) values were determined. Preliminary screening of ethanolic extracts revealed the presence of various secondary metabolites of pharmacological relevance, including alkaloids, coumarins, tannins, flavonoids, saponins, triterpenes/sterols, and quinones. UV-Vis spectra displayed distinct absorption patterns, with a prominent peak near 260 nm, consistent with the presence of aromatic compounds. UHPLC profiling revealed high chemical diversity across different plant parts, with 70, 98, 71, and 52 peaks (above 1 × 105 intensity) detected in seed, flower, pulp, and leaf extracts, respectively. Larvicidal bioassays showed significant activity, particularly in the seed extract, with LC50 values (µg/mL) of 3.8 (3.3–4.1) for seeds, 22.4 (21.8–23.9) for flowers, 23.0 (21.5–24.6) for pulp, and 29.7 (28.1–31.2) for leaves. This study highlights the larvicidal potential of ethanolic extracts from P. americana (var. Lorena), with the seed extract exhibiting the highest chemical diversity and bioactivity against Ae. aegypti larvae. The detection of key secondary metabolites, including flavonoids, alkaloids, and saponins, supports the development of an effective, plant-based larvicide for sustainable vector control strategies. Full article
(This article belongs to the Section Insect Pest and Vector Management)
22 pages, 3574 KB  
Review
A Brief History of the Use of Insecticides in Brazil to Control Vector-Borne Diseases, and Implications for Insecticide Resistance
by Bashir Alsharif, Maria Alice Varjal Melo-Santos, Rosângela Maria Rodrigues Barbosa and Constância Flávia Junqueira Ayres
Trop. Med. Infect. Dis. 2025, 10(12), 336; https://doi.org/10.3390/tropicalmed10120336 - 27 Nov 2025
Viewed by 1149
Abstract
In Brazil, public health programs have relied predominantly on chemical insecticides to control Aedes aegypti, Anopheles spp., Culex quinquefasciatus, triatomines, and phlebotomines. Rising vector-borne disease incidence and insecticide resistance (IR) call for a critical appraisal of historical and current control practices. [...] Read more.
In Brazil, public health programs have relied predominantly on chemical insecticides to control Aedes aegypti, Anopheles spp., Culex quinquefasciatus, triatomines, and phlebotomines. Rising vector-borne disease incidence and insecticide resistance (IR) call for a critical appraisal of historical and current control practices. This literature review compiles secondary data produced from 1901 to 2024 obtained from Medline/PubMed, Google Scholar, and governmental notes and reports. Brazil’s vector control progressed from organochlorines (e.g., DDT) to organophosphates, carbamates, pyrethroids, insect growth regulators, microbial larvicides (Bti and Lsp), spinosad, and recently formulations with dual active-ingredient. Ae. aegypti showed widespread resistance to temephos and pyrethroids, decreased susceptibility to pyriproxyfen, and no documented Bti resistance. Anopheles spp. exhibited low to moderate resistance to pyrethroids. Cx. quinquefasciatus resistance is likely influenced by collateral exposure from Aedes control and domestic use. Regarding triatomines and phlebotomines, there was a predominant reliance on pyrethroids; most studies indicate their susceptibility to these compounds. In short, Brazil’s century-long, insecticide-centric strategy has delivered episodic gains but fostered Aedes aegypti resistance. For other species, for which there is no dedicated program for a long period, data on resistance are scarce or nonexistent. Sustainable progress requires strengthened, nationwide IR surveillance and entomological mapping to coordinate cross-program actions. Full article
(This article belongs to the Special Issue Insecticide Resistance and Vector Control)
Show Figures

Figure 1

25 pages, 5987 KB  
Article
Synthesis of Novel Arylhydrazones Bearing 8-Trifluoromethyl Quinoline: Crystal Insights, Larvicidal Activity, ADMET Predictions, and Molecular Docking Studies
by Sukumar Kotyan, Shankaranahalli N. Chandana, Doddabasavanahalli P. Ganesha, Banavase N. Lakshminarayana, Nefisath Pandikatte, Pran Kishore Deb, Manik Ghosh, Raquel M. Gleiser, Mohamad Fawzi Mahomoodally, Sukainh Aiaysh Alherz, Mohamed A. Morsy, Hany Ezzat Khalil, Mahesh Attimarad, Sreeharsha Nagaraja, Rashed M. Almuqbil, Abdulmalek Ahmed Balgoname, Bandar E. Al-Dhubiab, Afzal Haq Asif, Katharigatta N. Venugopala and Jagadeesh Prasad Dasappa
Pharmaceuticals 2025, 18(12), 1804; https://doi.org/10.3390/ph18121804 - 26 Nov 2025
Viewed by 487
Abstract
Background/Objectives: Vector-borne diseases like malaria remain a major global health concern, worsened by insecticide resistance in mosquito populations. Quinoline-based compounds have been extensively studied for their pharmacological effects, including antimalarial and larvicidal properties. Modifying quinoline structures with hydrazone groups may enhance their [...] Read more.
Background/Objectives: Vector-borne diseases like malaria remain a major global health concern, worsened by insecticide resistance in mosquito populations. Quinoline-based compounds have been extensively studied for their pharmacological effects, including antimalarial and larvicidal properties. Modifying quinoline structures with hydrazone groups may enhance their biological activity and physicochemical properties. This study reports the synthesis, structural characterization, and larvicidal testing of a new series of aryl hydrazones (6ai) derived from 8-trifluoromethyl quinoline. Methods: Compounds 6ai were prepared via condensation reactions and characterized using 1H NMR, 19F-NMR, 13C NMR, and HRMS techniques. Their larvicidal activity was tested against Anopheles arabiensis. Single-crystal X-ray diffraction (XRD) was performed on compound 6d to determine its three-dimensional structure. Hirshfeld surface analysis, fingerprint plots, and interaction energy calculations (HF/3-21G) were used to examine intermolecular interactions. Quantum chemical parameters were computed using density functional theory (DFT). Molecular docking studies were performed for the synthesized compounds 6ai against the target acetylcholinesterase from the malaria vector (6ARY). In silico ADMET properties were also calculated to evaluate the drug-likeness of all the tested compounds. Results: Compound 6a showed the highest larvicidal activity, causing significant mortality in Anopheles arabiensis larvae. Single-crystal XRD analysis of 6d revealed a monoclinic crystal system with space group P21/c, stabilized by N–H···N intermolecular hydrogen bonds. Hirshfeld analysis identified H···H (22.0%) and C···H (12.1%) interactions as key contributors to molecular packing. Density functional theory results indicated a favorable HOMO–LUMO energy gap, supporting molecular stability and good electronic distribution. The most active compounds, 6a and 6d, also showed strong binding interactions with the target protein 6ARY and satisfactory ADMET properties. The BOILED-Egg model is a powerful tool for predicting both blood–brain barrier (BBB) and gastrointestinal permeation by calculating the lipophilicity and polarity of the reported compounds 6ai. Conclusions: The synthesized arylhydrazone derivatives demonstrated promising larvicidal activity. Combined crystallographic and computational studies support their structural stability and suitability for further development as eco-friendly bioactive agents in malaria vector control. Full article
Show Figures

Graphical abstract

10 pages, 258 KB  
Article
In Vitro Activity of Ethanolic Extract and Essential Oil of Achyrocline satureioides Against Larvae of the Tick Rhipicephalus sanguineus
by Rafaela Regina Fantatto, Flávio Augusto Sanches Politi, Rodrigo Sorrechia and Rosemeire Cristina Linhari Rodrigues Pietro
Parasitologia 2025, 5(4), 60; https://doi.org/10.3390/parasitologia5040060 - 7 Nov 2025
Viewed by 564
Abstract
The tick Rhipicephalus sanguineus is the most prevalent ectoparasite in dogs, causing discomfort to the animals and acting as a vector for several pathogens, including the bacterium Ehrlichia canis and the protozoa Babesia canis, Babesia gibsoni, and Hepatozoon canis. Control [...] Read more.
The tick Rhipicephalus sanguineus is the most prevalent ectoparasite in dogs, causing discomfort to the animals and acting as a vector for several pathogens, including the bacterium Ehrlichia canis and the protozoa Babesia canis, Babesia gibsoni, and Hepatozoon canis. Control of this parasite is traditionally carried out with synthetic chemical acaricides. However, due to the increasing number of cases of resistance, phytotherapy has been increasingly investigated as a promising alternative. In this study, the larvicidal activity of the crude ethanolic extract and essential oil obtained from the inflorescences of Achyrocline satureioides was evaluated, whose constituents were identified through phytochemical analyses and gas chromatography. The analyses revealed that the extract is rich in flavonoids, tannins, and saponins, while the essential oil is composed mainly of terpenes. In contact tests with impregnated paper, the extract at 100 mg/mL showed a mortality rate of 32.2% in R. sanguineus larvae with LC50 calculated at 249.62 mg/mL, while the essential oil, at the same concentration, resulted in 56.55% mortality, and the LC50 and LC90 were 119.73 mg/mL and 185.53 mg/mL, respectively. These results indicate that the essential oil of A. satureioides has significant larvicidal activity and has potential for use as an alternative, alone or in combination with other extracts or synthetic acaricides. Full article
24 pages, 1187 KB  
Article
Insecticidal Potential of Aniba canelilla (H.B.K.) Mez Essential Oil Against Aedes aegypti: Larvicidal and Adulticidal Activities, Mechanism of Action, and Formulation Development
by Jefferson D. da Cruz, Maíra M. H. Almeida, Maria Athana M. Silva, Jefferson R. A. Silva, Fernando A. Genta and Ana Claudia F. Amaral
Plants 2025, 14(21), 3348; https://doi.org/10.3390/plants14213348 - 31 Oct 2025
Viewed by 790
Abstract
Control of Aedes aegypti, the primary vector of arboviruses such as dengue, Zika, and chikungunya, is increasingly difficult due to resistance to synthetic insecticides and environmental concerns. Plant essential oils offer sustainable alternatives with multi-target modes of action and rapid biodegradation. This [...] Read more.
Control of Aedes aegypti, the primary vector of arboviruses such as dengue, Zika, and chikungunya, is increasingly difficult due to resistance to synthetic insecticides and environmental concerns. Plant essential oils offer sustainable alternatives with multi-target modes of action and rapid biodegradation. This study evaluated the insecticidal potential of the essential oil of Aniba canelilla (EOANIB), its major constituent 1-Nitro-2-phenylethane (NFTANE), and the derivative 1-Nitro-2-phenylethene (NFTENE) against larvae and adults of A. aegypti. Acetylcholinesterase (AChE) inhibition was quantified using enzymes from Electrophorus electricus, Aedes aegypti and Drosophila melanogaster. Pluronic® F127 (5% w/v) nanoformulations loaded with EOANIB, NFTANE, or NFTENE at 1.5% or 0.34% (w/v) improved efficacy and stability. Formulations remained stable for 120 to 190 days at 25 to 60 °C. Larvicidal assay at 24 h yielded LC50 values of 86.9 (CI 78.2–94.7) ppm for EOANIB, 84.8 ppm (CI 75.6–92.4) for NFTANE and 10.9 (CI 8.0–14.0) ppm for NFTENE. Against adults, EOANIB achieved an LC50 of 33.9 ppm at 1.5 h. Nanoformulation reduced the EOANIB LC50 by 22.2% after 24 h and 40.1% after 48 h. Toxicity assays evaluated selectivity with Artemia salina (EOANIB LC50: 77.2 ppm) and no mortality in D. melanogaster at 100 ppm. The convergence of efficacy, formulation-enhanced performance, and demonstrated storage stability positions Aniba canelilla as a promising source of bioinsecticide candidates for Aedes aegypti control and supports further development of micellar delivery systems for integrated vector management. Full article
(This article belongs to the Special Issue Recent Advances in Essential Oils and Plant Extracts)
Show Figures

Figure 1

11 pages, 545 KB  
Article
Larvicidal Activities of Juniperus chinensis var. kaizuka Leaf Essential Oil and Its Constituents Against Dengue Vector Mosquitoes, Aedes aegypti and Ae. albopictus
by Ji-Yun Chang, Kun-Hsien Tsai, Yu-Mei Huang, Yu-Yi Chang, Chong-Syuan Huang, Yu-Tung Ho, Sheng-Yang Wang, Mei-Ling Chang and Hui-Ting Chang
Plants 2025, 14(21), 3321; https://doi.org/10.3390/plants14213321 - 30 Oct 2025
Viewed by 565
Abstract
Juniperus is one of the vital genera of the Cupressaceae family; many Juniperus species (juniper) have served as traditional folk medicines. The aims of this study are to analyze its chemical composition and to evaluate the mosquito larvicidal activity of leaf essential oil [...] Read more.
Juniperus is one of the vital genera of the Cupressaceae family; many Juniperus species (juniper) have served as traditional folk medicines. The aims of this study are to analyze its chemical composition and to evaluate the mosquito larvicidal activity of leaf essential oil and its constituents. The constituents of leaf essential oil were analyzed by GC-MS. Leaf essential oil is mainly composed of hydrocarbon monoterpenes and, secondly, oxygenated monoterpenes. Leaf essential oil exhibited good brine shrimp lethality activity, which is highly correlated with larvicidal activity, with the LC50 of 49.89 μg/mL. Leaf essential oil showed a strong mosquito larvicidal activity against two Dengue vector mosquitoes, Aedes aegypti and Ae. albopictus, the LC50 values for both species were lower than 50 μg/mL. Among the major constituents of leaf essential oil, compounds limonene, sabinene, and β-myrcene also exhibited a significant larvicidal effect. Through these investigations, it is expected that leaf essential oil from J. chinensis var. kaizuka and its constituents are of potential use as environmental control chemicals against Dengue vector mosquitoes. Full article
Show Figures

Figure 1

17 pages, 2417 KB  
Article
Rapid-Response Vector Surveillance and Emergency Control During the Largest West Nile Virus Outbreak in Southern Spain
by Mikel Alexander González, Carlos Barceló, Roberto Muriel, Juan Jesús Rodríguez, Eduardo Rodríguez, Jordi Figuerola and Daniel Bravo-Barriga
Insects 2025, 16(11), 1100; https://doi.org/10.3390/insects16111100 - 29 Oct 2025
Viewed by 1355
Abstract
West Nile Virus (WNV) is an emerging arboviral threat in Europe, with rising incidence in Spain since 2004. In 2024, Spain experienced its largest outbreak, primarily in small urban areas of south-western regions. We report a subset of an emergency integrated vector management [...] Read more.
West Nile Virus (WNV) is an emerging arboviral threat in Europe, with rising incidence in Spain since 2004. In 2024, Spain experienced its largest outbreak, primarily in small urban areas of south-western regions. We report a subset of an emergency integrated vector management program, focusing on six municipalities accounting for one-third of all human WNV cases nationwide. Over four months, 725 potential larval sites were inspected during 4026 visits. Adult mosquitoes (n = 2553) were collected with suction traps, and immature stages (n = 4457) with dipper techniques, yielding 11 species. Culex pipiens s.l. was predominant, while Cx. perexiguus, though less abundant, was epidemiologically significant. Cytochrome Oxidase I (COI) gene phylogenetic analysis confirmed Cx. perexiguus, forming a distinct clade from Cx. univittatus. Immature mosquitoes were found in 18.6% of sites, especially irrigation canals, ditches, and backwaters near urban areas. Habitat differences in larval abundance were analyzed using generalized linear mixed models. Targeted larviciding with Bacillus thuringiensis var. israelensis (Bti) and focal adulticiding with cypermethrin totaled 259 interventions (70.4% larviciding, 29.6% adulticiding). A significant 63.9% reduction in larval abundance was observed after five consecutive Bti treatments, with some variation among treatment cycles (52.2–75.5%). Adult activity persisted into late autumn. This study provides the first comprehensive characterization of larval mosquitoes in Spain’s main WNV hotspot, highlighting the need for rapid, coordinated expert interventions and extended seasonal control to prevent future outbreaks. Full article
(This article belongs to the Special Issue Challenges in Mosquito Surveillance and Control)
Show Figures

Graphical abstract

18 pages, 4218 KB  
Article
Evaluation of the Insecticidal Potential of Lysinibacillus fusiformis Against Drosophila suzukii Larvae
by Maristella Mastore, Elisa Broggio, Davide Banfi, Ricardo A. R. Machado, Aashaq Hussain Bhat, Sadreddine Kallel, Marcella Reguzzoni, Silvia Quadroni and Maurizio F. Brivio
Insects 2025, 16(11), 1090; https://doi.org/10.3390/insects16111090 - 24 Oct 2025
Viewed by 1016
Abstract
The increase in the world population and consequent rise in food demand have led to the extensive use of chemical pesticides, causing environmental and health concerns. In response, biological control methods, particularly those involving microbial agents, have emerged as sustainable alternatives within integrated [...] Read more.
The increase in the world population and consequent rise in food demand have led to the extensive use of chemical pesticides, causing environmental and health concerns. In response, biological control methods, particularly those involving microbial agents, have emerged as sustainable alternatives within integrated pest management. This study highlights the potential of Lysinibacillus fusiformis as a biocontrol agent against the dipteran Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), a pest responsible for damaging soft-skinned fruits. Experimental treatments using vegetative cells, spores, and secondary metabolites of L. fusiformis on D. suzukii larvae demonstrated significant larvicidal effects, accompanied by observable changes in gut morphology under microscopy. Moreover, preliminary immunological assays showed the interference of this bacterium with the host immune system. All the results indicate the suitability of L. fusiformis for its possible integration into sustainable agricultural practices, although additional research is required to understand its applicability in the field. Full article
Show Figures

Graphical abstract

16 pages, 703 KB  
Article
Toxicity of Hypaconitine from Aconitum coreanum (H. Lév.) Rapaics Against the Oriental Armyworm, Mythimna separata (Walker)
by Xiuwei Li, Jiaqi Xing, Meng Yang, Naiwei Chen and Yaping Liang
Insects 2025, 16(11), 1080; https://doi.org/10.3390/insects16111080 - 22 Oct 2025
Viewed by 827
Abstract
Mythimna separata (Walker) (Lepidoptera: Noctuidae) is a major migratory pest causing severe damage to cereal crops such as maize, wheat, and rice across Asia, and is also found in many parts of Oceania. With increasing insecticide resistance, botanical alternatives are urgently needed. This [...] Read more.
Mythimna separata (Walker) (Lepidoptera: Noctuidae) is a major migratory pest causing severe damage to cereal crops such as maize, wheat, and rice across Asia, and is also found in many parts of Oceania. With increasing insecticide resistance, botanical alternatives are urgently needed. This study evaluated the insecticidal potential of hypaconitine, a C19-diterpenoid alkaloid from Aconitum coreanum, against M. separata larvae. Hypaconitine exhibited significant stomach toxicity and strong antifeedant activity. It also caused pronounced growth inhibition, prolonged larval and pupal development, reduced pupation and adult emergence, induced morphological deformities, and significantly shortened adult longevity. Crucially, biochemical assays revealed sustained, time- and concentration-dependent upregulation of key detoxification enzymes—carboxylesterase (CarE), glutathione S-transferase (GST), and cytochrome P450 (CYP450)—over 72 h, indicating that hypaconitine imposes severe metabolic fitness costs rather than being readily detoxified. These effects collectively demonstrate that hypaconitine’s insecticidal efficacy arises not only from direct toxicity but also from exploiting the physiological trade-offs inherent in xenobiotic defense. Its multi-modal action—combining larvicidal, antifeedant, growth-regulatory, and metabolism-disrupting effects—presents a novel strategy for bioinsecticide development with a lower risk of resistance evolution. These findings highlight hypaconitine as a promising candidate for sustainable, integrated management of M. separata and other resistant lepidopteran pests. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

13 pages, 1265 KB  
Article
In Vitro Larvicidal Efficacy of a Fipronil-Based Nanoixodicide Against Rhipicephalus microplus
by José Pablo Villarreal-Villarreal, José Noel García-Pérez, Jesús Jaime Hernández Escareño, Sergio Arturo Galindo Rodríguez, Michel Stéphane Heya, Gustavo Hernández Vidal and Romario García-Ponce
Trop. Med. Infect. Dis. 2025, 10(10), 284; https://doi.org/10.3390/tropicalmed10100284 - 6 Oct 2025
Viewed by 738
Abstract
Controlling Rhipicephalus microplus is currently one of the main challenges in livestock farming due to the significant economic losses it causes. Traditionally, managing this parasite has been based on the use of synthetic ixodicides, among which fipronil has proven to be highly effective. [...] Read more.
Controlling Rhipicephalus microplus is currently one of the main challenges in livestock farming due to the significant economic losses it causes. Traditionally, managing this parasite has been based on the use of synthetic ixodicides, among which fipronil has proven to be highly effective. However, its low water solubility and the limitations of commercially available formulations can affect the bioavailability of this compound, favoring the emergence of resistance in tick populations. In this context, fipronil-loaded nanoparticles were developed using the Eudragit® E PO polymer (NP_F) (Helm, Naucalpan, Mexico, Mexico), which were physicochemically characterized and evaluated against fipronil-susceptible R. microplus larvae. NP_F had an average size of 143.43 ± 1.88 nm, a polydispersity index (PDI) of 0.162 ± 0.01, a ζ (P ζ) of 21.16 ± 0.54, an encapsulation percentage (%E) of 7.36 ± 0.30, and an encapsulation efficiency percentage (%EE) of 66.28 ± 3.5%. Free fipronil showed an LC50 of 0.582 µg/mL and an LC90 of 2.503 µg/mL against R. microplus. The NP_F formulation showed an LC50 of 0.427 µg/mL and an LC90 of 2.092 µg/mL. These results suggest that incorporating fipronil into nanoparticles improves its ixodicide efficacy, positioning it as an innovative and promising alternative for the development of effective tick control formulations. Full article
(This article belongs to the Special Issue Insecticide Resistance and Vector Control)
Show Figures

Figure 1

28 pages, 5122 KB  
Article
Major Components of Dittrichia viscosa (Asteraceae) as a Source of New Pesticides
by María José Segura-Navarro, José Francisco Quílez del Moral, María Fe Andrés, Félix Valcárcel, Azucena González-Coloma, Diego O. Molina Inzunza and Alejandro F. Barrero
Molecules 2025, 30(19), 3950; https://doi.org/10.3390/molecules30193950 - 1 Oct 2025
Viewed by 785
Abstract
Ilicic acid, nerolidol, and 9-hydroxynerolidol are major components of the aerial parts of Dittrichia viscosa. These components were selectively isolated in multigram quantities and used as lead compounds to generate diversity in the search for new natural-product-derived pesticides. A total of 29 [...] Read more.
Ilicic acid, nerolidol, and 9-hydroxynerolidol are major components of the aerial parts of Dittrichia viscosa. These components were selectively isolated in multigram quantities and used as lead compounds to generate diversity in the search for new natural-product-derived pesticides. A total of 29 derivatives of these three molecules—some of which are known natural products—were generated by subjecting these natural products to different transformations. In order to explore potential applications in sustainable biocontrol, some of the compounds generated were evaluated for plant protection potential against insect pests (Spodoptera littoralis, Myzus persicae, Rhopalosiphum padi), against the nematode Meloidogyne javanica, and for their phytotoxic effects on ryegrass (Lolium perenne) and lettuce (Lactuca sativa). Additionally, their effects against the tick Hyalomma lusitanicum have been tested. Compound 11 was found to be antifeedant against S. littoralis and nematicidal. Compounds 3a and 8 were potent antifeedants against R. padi. None of the tested compounds significantly inhibited lettuce growth, and compounds 17, 3, and 3a even promoted root development. Conversely, compounds 3, 4, 11, 17, and 21a exhibited strong herbicidal activity on ryegrass. In larvicidal assays against H. lusitanicum, compounds 3, 3a, 11, 17, 29, and 33 were active, with compound 29 being six times more active than the positive control nootkatone. Full article
(This article belongs to the Special Issue Synthesis of Bioactive Compounds, 3rd Edition)
Show Figures

Graphical abstract

Back to TopTop