Water-Mediated Synthesis of (E)-3-(1-Methyl-1H-benzo[d]imidazol-5-yl)-N-phenethylacrylamide, a Caffeic Acid Phenethyl Amide Analogue
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olgierd, B.; Kamila, Z.; Anna, B.; Emilia, M. The Pluripotent Activities of Caffeic Acid Phenethyl Ester. Molecules 2021, 26, 1335. [Google Scholar] [CrossRef] [PubMed]
- Balaha, M.; De Filippis, B.; Cataldi, A.; di Giacomo, V. CAPE and neuroprotection: A review. Biomolecules 2021, 11, 176. [Google Scholar] [CrossRef] [PubMed]
- Erdemli, H.K.; Akyol, S.; Armutcu, F.; Akyol, O. Antiviral properties of caffeic acid phenethyl ester and its potential application. J. Intercult. Ethnopharmacol. 2015, 4, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Pittala, V.; Salerno, L.; Romeo, G.; Acquaviva, R.; Di Giacomo, C.; Sorrenti, V. Therapeutic potential of caffeic acid phenethyl ester (cape) in diabetes. Curr. Med. Chem. 2018, 25, 4827–4836. [Google Scholar] [CrossRef]
- Tolba, M.F.; Omar, H.A.; Azab, S.S.; Khalifa, A.E.; Abdel-Naim, A.B.; Abdel-Rahman, S.Z. Caffeic Acid Phenethyl Ester: A Review of Its Antioxidant Activity, Protective Effects against Ischemia-reperfusion Injury and Drug Adverse Reactions. Crit. Rev. Food Sci. Nutr. 2016, 56, 2183–2190. [Google Scholar] [CrossRef]
- Balaha, M.; Cataldi, A.; Ammazzalorso, A.; Cacciatore, I.; De Filippis, B.; Di Stefano, A.; Maccallini, C.; Rapino, M.; Korona-Glowniak, I.; Przekora, A.; et al. CAPE derivatives: Multifaceted agents for chronic wound healing. Archiv. Pharm. 2024, 357, e2400165. [Google Scholar] [CrossRef]
- Kamarauskaite, J.; Baniene, R.; Trumbeckas, D.; Strazdauskas, A.; Trumbeckaite, S. Caffeic acid phenethyl ester protects kidney mitochondria against ischemia/reperfusion induced injury in an in vivo rat model. Antioxidants 2021, 10, 747. [Google Scholar] [CrossRef]
- Yin, W.; Zhang, Z.; Shuai, X.; Zhou, X.; Yin, D. Caffeic acid phenethyl ester (CAPE) inhibits cross-kingdom biofilm formation of Streptococcus mutans and Candida albicans. Microbiol. Spectr. 2022, 10, e01578-22. [Google Scholar] [CrossRef]
- Kodani, S.D.; Berthelemy, M.; Jamita, S.G.; Hammock, B.; Morisseau, C. Development of amide-based fluorescence probes for selective measurement of carboxylesterase1 activity in tissue extracts. Anal. Biochem. 2017, 539, 81–89. [Google Scholar] [CrossRef]
- Masson, P.; Shaihutdinova, Z.; Lockridge, O. Drug and pro-drug substrates and pseudo-substrates of human butyrylcholinesterase. Biochem. Pharmacol. 2023, 218, 115910. [Google Scholar] [CrossRef]
- Velderrain-Rodriguez, G.R.; Palafox-Carlos, H.; Wall-Medrano, A.; Ayala-Zavala, J.F.; Chen, C.Y.O.; Robles-Sanchez, M.; Astiazaran-Garcia, H.; Alvarez-Parrilla, E.; Gonzalez-Aguilar, G.A. Phenolic compounds: Their journey after intake. Food Funct. 2014, 5, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Bolton, J.L.; Dunlap, T.L.; Dietz, B.M. Formation and biological targets of botanical o-quinones. Food Chem. Toxicol. 2018, 120, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Ndreu, L.; Hurben, A.K.; Nyman, G.S.A.; Tretyakova, N.Y.; Karlsson, I.; Hagvall, L. Investigation into Propolis Components Responsible for Inducing Skin Allergy: Air Oxidation of Caffeic Acid and Its Esters Contribute to Hapten Formation. Chem. Res. Toxicol. 2023, 36, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Arnett, C.D.; Wright, J.; Zenker, N. Synthesis and Adrenergic Activity of Benzimidazole Bioisosteres of Norepinephrine and Isoproterenol. J. Med. Chem. 1978, 21, 72–78. [Google Scholar] [CrossRef]
- Loriga, M.; Paglietti, G.; Sparatore, F.; Pinna, G.; Sisini, A. Synthesis of Substituted Di-3(5-Benzazolyl) Alanines as DOPA and Alpha-Methyl DOPA Analogs and their Effects on Dopamine Beta-Hydroxylase, Tyrosinase and Diphenoloxidase. Il Farm. 1991, 47, 439–448. [Google Scholar]
- Alvarez, R.; Gajate, C.; Puebla, P.; Mollinedo, F.; Medarde, M.; Pelaez, R. Substitution at the Indole 3 position Yields Highly Potent Indole combretastatins Against Human Tumor Cells. Eur. J. Med. Chem. 2018, 158, 167–183. [Google Scholar] [CrossRef]
- De Armas-Ricard, M.; Ruiz-Reyes, E.; Ramirez-Rodriguez, O. Caffeates and Caffeamides: Synthetic Methodologies and Their Antioxidant Properties. Int. J. Med. Chem. 2019, 2019, 2592609. [Google Scholar] [CrossRef]
- Russell, M.G.; Warren, S. Synthesis of New Water-soluble Phosphonium Salts and Their Wittig Reactions in Water. Chem. Soc. Perkin Trans. 2000, 4, 505–513. [Google Scholar] [CrossRef]
- Dambacher, J.; Zhao, W.; El-Batta, A.; Arness, R.; Jiang, C.; Berdgahl, M. Water is an Efficient Medium for Wittig Reactions Employing Stabilized Ylides and Aldehydes. Tetrahedron Lett. 2005, 46, 4473–4477. [Google Scholar] [CrossRef]
- Saucedo, A.; Subbarao, M.; Jemal, M.; Mesa-Diaz, N.L.; Smith, J.; Vernaza, A.; Du, L.; Kerwin, S.M. Flow and On-Water Synthesis and Cancer Cell Cytotoxicity of Caffeic Acid Phenethyl Amide (CAPA) Derivatives. Int. J. Mol. Sci. 2024, 25, 8051. [Google Scholar] [CrossRef]
- El-Batta, A.; Jiang, C.; Zhao, W.; Anness, R.; Cooksy, A.L.; Bergdahl, M. Wittig reactions in water media employing stabilizedylides with aldehydes. Synthesis of α, β-unsaturated esters from mixing aldehydes, α-bromoesters, and Ph3P in aqueous NaHCO3. J. Org. Chem. 2007, 72, 5244–5259. [Google Scholar] [CrossRef]
- Otto, S.; Engberts, J.B.F.N. Hydrophobic interactions and chemical reactivity. Org. Biomol. Chem. 2003, 1, 2809–2820. [Google Scholar] [CrossRef] [PubMed]
- Kelly, M.J.B.; Fallot, L.B.; Gustafson, J.L.; Bergdahl, B.M. Water Mediated Wittig Reactions of Aldehydes in the Teaching Laboratory: Using Sodium Bicarbonate for the inSitu Formation of Stabilized Ylides. J. Chem. Educ. 2016, 93, 1631–1636. [Google Scholar] [CrossRef]
- Deau, E.; Lindberg, M.F.F.; Miege, F.; Roche, D.; George, N.; George, P.; Kramer, A.; Knapp, S.; Meijer, L. Leucettinibs, a Class of DYRK/CLK Kinase Inhibitors Inspired by the Marine Sponge Natural Product Leucettamine B. J. Med. Chem. 2023, 66, 10694–10714. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Breit, B. Cu-Catalyzed C-H Allylation of Benzimidazoles with Allenes. Org. Lett. 2021, 23, 6765–6769. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Marriner, G.A.; Wang, X.; Bowman, P.D.; Kerwin, S.M.; Stavchansky, S. Synthesis of a Series of Caffeic Acid PhenethylAmide (CAPA) Fluorinated Derivatives: Comparison of Cytoprotective Effects to Caffeic Acid Phenethyl Ester (CAPE). Bioorg. Med. Chem. 2010, 18, 5032–5038. [Google Scholar] [CrossRef]
- Shintre, S.A.; Ramjugernath, D.; Singh, P.; Mocktar, C.; Koorbanally, N.A. Microwave Synthesis, Biological Evaluation and Docking Studies of 2-Substituted Methyl 1-(4-fluorophenyl)-1H-benzimidazole-5-carboxylates. Med. Chem. Res. 2017, 26, 484–498. [Google Scholar] [CrossRef]
- Munack, S.; Leroux, V.; Roderer, K.; Ökvist, M.; van Eerde, A.; Gundersen, L.-L.; Krengel, U.; Kast, P. When Inhibitors do not Inhibit: Critical Evaluation of Rational Drug Design Targeting Chorismate Mutase from Mycobacterium tuberculosis. Chem. Biodiv. 2012, 9, 2507–2527. [Google Scholar] [CrossRef]
- Liu, L.F.; Zhang, L.Y.; Chen, X.X.; Yang, K.; Cui, H.; Qian, R.; Zhao, S.S.; Wang, L.Q.; Su, X.; Zhao, M.Y.; et al. Design and Synthesis of 1H-benzo[d]imidazole Selective HDAC6 Inhibitors with Potential Therapy for Multiple Myeloma. Eur. J. Med. Chem. 2023, 261, 115833. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subbarao, M.; Kerwin, S.M. Water-Mediated Synthesis of (E)-3-(1-Methyl-1H-benzo[d]imidazol-5-yl)-N-phenethylacrylamide, a Caffeic Acid Phenethyl Amide Analogue. Molbank 2024, 2024, M1915. https://doi.org/10.3390/M1915
Subbarao M, Kerwin SM. Water-Mediated Synthesis of (E)-3-(1-Methyl-1H-benzo[d]imidazol-5-yl)-N-phenethylacrylamide, a Caffeic Acid Phenethyl Amide Analogue. Molbank. 2024; 2024(4):M1915. https://doi.org/10.3390/M1915
Chicago/Turabian StyleSubbarao, Muppidi, and Sean M. Kerwin. 2024. "Water-Mediated Synthesis of (E)-3-(1-Methyl-1H-benzo[d]imidazol-5-yl)-N-phenethylacrylamide, a Caffeic Acid Phenethyl Amide Analogue" Molbank 2024, no. 4: M1915. https://doi.org/10.3390/M1915
APA StyleSubbarao, M., & Kerwin, S. M. (2024). Water-Mediated Synthesis of (E)-3-(1-Methyl-1H-benzo[d]imidazol-5-yl)-N-phenethylacrylamide, a Caffeic Acid Phenethyl Amide Analogue. Molbank, 2024(4), M1915. https://doi.org/10.3390/M1915