Synthesis and Characterization of New Potential Hypoxia-Sensitive Azo-thiacalix[4]arenes Derivatives
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bristow, R.G.; Hill, R.P. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat. Rev. Cancer 2008, 8, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.M.; Wilson, W.R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer 2004, 4, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Ko, J.; Ju, C.; Eltzschig, H.K. Hypoxia signaling in human diseases and therapeutic targets. Exp. Mol. Med. 2019, 51, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schellinger, I.N.; Cordasic, N.; Panesar, J.; Buchholz, B.; Jacobi, J.; Hartner, A.; Klanke, B.; Jakubiczka-Smorag, J.; Burzlaff, N.; Heinze, E.; et al. Hypoxia inducible factor stabilization improves defective ischemia-induced angiogenesis in a rodent model of chronic kidney disease. Kidney Int. 2017, 91, 616–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Span, P.N.; Bussink, J.B. Biology of Hypoxia. WB Saunders 2015, 45, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Qin, F.; Chen, C. Designing Hypoxia-Responsive Nanotheranostic Agents for Tumor Imaging and Therapy. Adv. Healthc. Mater. 2021, 10, 2001277. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, A.; Mercier, C.; Saurel, L.; Orenga, S.; Renard, P.Y.; Romieu, A. The first latent green fluorophores for the detection of azoreductase activity in bacterial cultures. Chem. Commun. 2013, 49, 8815–8817. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Chen, C.; Zhu, J.; Dwivedi, P.; Zhao, Y.; Wang, Z. Hypoxia-induced activity loss of a photo-responsive microtubule inhibitor azobenzene combretastatin A4. Front. Chem. Sci. Eng. 2020, 14, 880–888. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, S.; Huang, J.; Cui, L.; Hu, J.; Tan, S. Novel designed azo substituted semi-cyanine fluorescent probe for cytochrome P450 reductase detection and hypoxia imaging in cancer cells. RSC Adv. 2019, 9, 21572–21577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.B.; Ha, W.; Gao, K.; Shi, Y.P. Precisely Traceable Drug Delivery of Azoreductase-Responsive Prodrug for Colon Targeting via Multimodal Imaging. Anal. Chem. 2020, 92, 9039–9047. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, M.; Li, J.; Lan, S.; Zeng, Y.; Liu, X.; Liu, J. Light-Enhanced Hypoxia-Response of Conjugated Polymer Nanocarrier for Successive Synergistic Photodynamic and Chemo-Therapy. ACS Appl. Mater. Interfaces 2018, 10, 21909–21919. [Google Scholar] [CrossRef] [PubMed]
- Geng, W.-C.; Jia, S.; Zheng, Z.; Li, Z.; Ding, D.; Guo, D.-S. A noncovalent fluorescence turn-on strategy for hypoxia imaging. Agewandte Chem. Int. Ed. 2019, 58, 2377–2381. [Google Scholar] [CrossRef] [PubMed]
- Mironova, D.; Burilov, B.; Galieva, F.; Khalifa, M.A.M.; Kleshnina, S.; Gazalieva, A.; Nugmanov, R.; Solovieva, S.; Antipin, I. Azocalix[4]arene-rhodamine supramolecular hypoxia-sensitive systems: A search for the best calixarene hosts and rhodamine guests. Molecules 2021, 26, 5451. [Google Scholar] [CrossRef] [PubMed]
- Tyuftin, A.A.; Solovieva, S.E.; Muravrev, A.A.; Polyantsev, F.M.; Latypov, S.H.K.; Antipin, I. Synthesis and fluorescent properties of thiacalix[4]arenes containing terpyridyl fragments at the lower rim. Chem. Bull. Int. Ed. 2009, 58, 145–151. [Google Scholar] [CrossRef]
- Wei, Y.; Zeng, Q.; Bai, S.; Wang, M.; Wang, L. Nanosized Difunctional Photo Responsive Magnetic Imprinting Polymer for Electrochemically Monitored Light-Driven Paracetamol Extraction. ACS Appl. Mater. Interfaces 2017, 9, 44114–44123. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabdrakhmanova, F.B.; Churbanova, E.S.; Khalifa, M.A.; Kleshnina, S.R.; Solovieva, S.E.; Antipin, I.S. Synthesis and Characterization of New Potential Hypoxia-Sensitive Azo-thiacalix[4]arenes Derivatives. Molbank 2023, 2023, M1570. https://doi.org/10.3390/M1570
Gabdrakhmanova FB, Churbanova ES, Khalifa MA, Kleshnina SR, Solovieva SE, Antipin IS. Synthesis and Characterization of New Potential Hypoxia-Sensitive Azo-thiacalix[4]arenes Derivatives. Molbank. 2023; 2023(1):M1570. https://doi.org/10.3390/M1570
Chicago/Turabian StyleGabdrakhmanova, Farida B., Ekaterina S. Churbanova, Mohamed A. Khalifa, Sofia R. Kleshnina, Svetlana E. Solovieva, and Igor S. Antipin. 2023. "Synthesis and Characterization of New Potential Hypoxia-Sensitive Azo-thiacalix[4]arenes Derivatives" Molbank 2023, no. 1: M1570. https://doi.org/10.3390/M1570
APA StyleGabdrakhmanova, F. B., Churbanova, E. S., Khalifa, M. A., Kleshnina, S. R., Solovieva, S. E., & Antipin, I. S. (2023). Synthesis and Characterization of New Potential Hypoxia-Sensitive Azo-thiacalix[4]arenes Derivatives. Molbank, 2023(1), M1570. https://doi.org/10.3390/M1570