8,13-Dimethylicosa-9,11-diyne-8,13-diol
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General
3.2. Synthesis of 2a
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tan, R.K.; Liu, Y.; Xie, L. Reinforcement Learning for Systems Pharmacology-Oriented and Personalized Drug Design. Expert Opin. Drug Discov. 2022, 17, 849–863. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-J.; Kwon, H.-S.; Kang, M.; Leem, H.; Lee, K.-H.; Kim, D.-Y. The Antitumor Natural Compound Falcarindiol Disrupts Neural Stem Cell Homeostasis by Suppressing Notch Pathway. Int. J. Mol. Sci. 2018, 19, 3432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W. Isolobetyol, a New Polyacetylene Derivative from Platycodon grandiflorum Root. Nat. Prod. Res. 2022, 36, 466–469. [Google Scholar] [CrossRef]
- Chung, C.-Y.; Yang, W.-C.; Liang, C.-L.; Liu, H.-Y.; Lai, S.-K.; Chang, C.L.-T. Cytopiloyne, a Polyacetylenic Glucoside from Bidens Pilosa, Acts as a Novel Anticandidal Agent via Regulation of Macrophages. J. Ethnopharmacol. 2016, 184, 72–80. [Google Scholar] [CrossRef]
- Geng, C.-A.; Huang, X.-Y.; Chen, X.-L.; Ma, Y.-B.; Rong, G.-Q.; Zhao, Y.; Zhang, X.-M.; Chen, J.-J. Three New Anti-HBV Active Constituents from the Traditional Chinese Herb of Yin-Chen (Artemisia scoparia). J. Ethnopharmacol. 2015, 176, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Fois, B.; Bianco, G.; Sonar, V.P.; Distinto, S.; Maccioni, E.; Meleddu, R.; Melis, C.; Marras, L.; Pompei, R.; Floris, C.; et al. Phenylpropenoids from Bupleurum fruticosum as Anti-Human Rhinovirus Species A Selective Capsid Binders. J. Nat. Prod. 2017, 80, 2799–2806. [Google Scholar] [CrossRef]
- Liu, X.; Latkolik, S.; Atanasov, A.; Kunert, O.; Pferschy-Wenzig, E.-M.; Heiss, E.; Malainer, C.; Schinkovitz, A.; Kollroser, M.; Dirsch, V.; et al. Bupleurum Chinense Roots: A Bioactivity-Guided Approach toward Saponin-Type NF-ΚB Inhibitors. Planta Med. 2017, 83, 1242–1250. [Google Scholar] [CrossRef] [Green Version]
- Chan, G.G.; Koch, C.M.; Connors, L.H. Blood Proteomic Profiling in Inherited (ATTRm) and Acquired (ATTRwt) Forms of Transthyretin-Associated Cardiac Amyloidosis. J. Proteome Res. 2017, 16, 1659–1668. [Google Scholar] [CrossRef]
- Xu, W.-J.; Li, J.-H.; Zhou, M.-M.; Luo, J.; Jian, K.-L.; Tian, X.-M.; Xia, Y.-Z.; Yang, L.; Luo, J.; Kong, L.-Y. Toonasindiynes A-F, New Polyacetylenes from Toona Sinensis with Cytotoxic and Anti-Inflammatory Activities. Fitoterapia 2020, 146, 104667. [Google Scholar] [CrossRef]
- Christensen, L.P. Bioactive C17 and C18 Acetylenic Oxylipins from Terrestrial Plants as Potential Lead Compounds for Anticancer Drug Development. Molecules 2020, 25, 2568. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Matsuura, D.; Kanatani, H.; Yano, S.; Tsunakawa, M.; Matsuyama, S.; Shigemori, H. Inhibitory Effects of Polyacetylene Compounds from Panax ginseng on Neurotrophin Receptor-Mediated Hair Growth. Biol. Pharm. Bull. 2017, 40, 1784–1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, M.-Y.; Yang, C.-T.; Pu, X.-Y.; Fu, G.; Wang, W.; Li, Y.-X.; Feng, L.; Niu, H.-R.; Tan, J.-L.; Huang, X.-Z. Polyacetylenes from the Roots of Aralia Dumetorum. Rec. Nat. Prod. 2019, 13, 424–428. [Google Scholar] [CrossRef]
- Siemsen, P.; Livingston, R.C.; Diederich, F. Acetylenic Coupling: A Powerful Tool in Molecular Construction. Angew. Chem. Int. Ed. 2000, 39, 2632–2657. [Google Scholar] [CrossRef]
- Yadav, J.S.; Reddy, B.V.S.; Reddy, K.B.; Gayathri, K.U.; Prasad, A.R. Glaser Oxidative Coupling in Ionic Liquids: An Improved Synthesis of Conjugated 1,3-Diynes. Tetrahedron Lett. 2003, 44, 6493–6496. [Google Scholar] [CrossRef]
- Liao, Y.; Fathi, R.; Yang, Z. Aliphatic Acetylenic Homocoupling Catalyzed by a Novel Combination of AgOTs−CuCl 2 −TMEDA and Its Application for the Solid-Phase Synthesis of Bis-Benzo[b]Furan-Linked 1,3-Diynes. Org. Lett. 2003, 5, 909–912. [Google Scholar] [CrossRef] [PubMed]
- Atobe, S.; Sonoda, M.; Suzuki, Y.; Yamamoto, T.; Masuno, H.; Shinohara, H.; Ogawa, A. Palladium-Catalyzed Oxidative Homocoupling Reaction of Terminal Acetylenes Using Trans-BidentaTable 1-(2-Pyridylethynyl)-2-(2-Thienylethynyl)Benzene. Res. Chem. Intermed. 2013, 39, 359–370. [Google Scholar] [CrossRef]
- Zhu, B.C.; Jiang, X.Z. A New CuAl–Hydrotalcite Catalyzed Homocoupling Reaction of Terminal Alkynes at Room Temperature. Appl. Organomet. Chem. 2007, 21, 345–349. [Google Scholar] [CrossRef]
- Zheng, Q.; Hua, R.; Wan, Y. An Alternative CuCl–Piperidine-Catalyzed Oxidative Homocoupling of Terminal Alkynes Affording 1,3-Diynes in Air. Appl. Organomet. Chem. 2009, 24, 314–316. [Google Scholar] [CrossRef]
- Hosseini, A.; Seidel, D.; Miska, A.; Schreiner, P.R. Fluoride-Assisted Activation of Calcium Carbide: A Simple Method for the Ethynylation of Aldehydes and Ketones. Org. Lett. 2015, 17, 2808–2811. [Google Scholar] [CrossRef] [PubMed]
Entry | Catalyst | Solvent | Additive | Time, h. | Yield, % a |
---|---|---|---|---|---|
1 | CuCl | MeCN/CCl4 | TMEDA | 8 | trace b |
2 | CuCl | THF/CCl4 | TMEDA | 10 | 42 |
3 | CuCl | CH2OHCH2OH/CCl4 | TMEDA | 10 | 27 b |
4 | CuCl | iPrOH/CCl4 | TMEDA | 12 | 65 |
5 | CuCl | EtOH/CCl4 | TMEDA | 12 | 70 |
6 | CuCl | MeOH/CCl4 | TMEDA | 12 | 82 |
7 | CuCl | MeOH/CCl4 | 12 | trace b | |
8 | CuJ | MeOH/CCl4 | TMEDA | 12 | 64 |
9 | CuBr | MeOH/CCl4 | TMEDA | 12 | 56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tirkasheva, S.I.; Ziyadullaev, O.E.; Muzalevskiy, V.M.; Parmanov, A.B. 8,13-Dimethylicosa-9,11-diyne-8,13-diol. Molbank 2022, 2022, M1484. https://doi.org/10.3390/M1484
Tirkasheva SI, Ziyadullaev OE, Muzalevskiy VM, Parmanov AB. 8,13-Dimethylicosa-9,11-diyne-8,13-diol. Molbank. 2022; 2022(4):M1484. https://doi.org/10.3390/M1484
Chicago/Turabian StyleTirkasheva, Sarvinoz I., Odiljon E. Ziyadullaev, Vasiliy M. Muzalevskiy, and Askar B. Parmanov. 2022. "8,13-Dimethylicosa-9,11-diyne-8,13-diol" Molbank 2022, no. 4: M1484. https://doi.org/10.3390/M1484
APA StyleTirkasheva, S. I., Ziyadullaev, O. E., Muzalevskiy, V. M., & Parmanov, A. B. (2022). 8,13-Dimethylicosa-9,11-diyne-8,13-diol. Molbank, 2022(4), M1484. https://doi.org/10.3390/M1484