4,4-Bis(2-ethylhexyl)-6-(9-(2-ethylhexyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazol-6-yl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2-carbaldehyde
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Riede, M.; Spoltore, D.; Leo, K. Organic Solar Cells—The Path to Commercial Success. Adv. Energy Mater. 2021, 11, 2002653. [Google Scholar] [CrossRef]
- Roncali, J. Molecular Engineering of the Band Gap of π-Conjugated Systems: Facing Technological Applications. Macromol. Rapid Commun. 2007, 28, 1761–1775. [Google Scholar] [CrossRef]
- Chen, J.; Cao, Y. Development of Novel Conjugated Donor Polymers for High-Efficiency Bulk-Heterojunction Photovoltaic Devices. Acc. Chem. Res. 2009, 42, 1709–1718. [Google Scholar] [CrossRef] [PubMed]
- Roncali, J.; Leriche, P.; Blanchard, P. Molecular Materials for Organic Photovoltaics: Small is Beautiful. Adv. Mater. 2014, 26, 3821–3838. [Google Scholar] [CrossRef] [Green Version]
- Collins, S.D.; Ran, N.A.; Heiber, M.C.; Nguyen, T.-Q. Small is Powerful: Recent Progress in Solution-Processed Small Molecule Solar Cells. Adv. Energy Mater. 2017, 7, 1602242. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, J.; Zhang, Z.-G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells. Adv. Mater. 2015, 27, 1170–1174. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, J.; Chow, P.C.Y.; Jiang, K.; Zhang, J.; Zhu, Z.; Zhang, J.; Huang, F.; Yan, H. Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells. Chem. Rev. 2018, 118, 3447–3507. [Google Scholar] [CrossRef]
- Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; et al. Single-Junction Organic Photovoltaic Cell with 19% Efficiency. Adv. Mater. 2021, 33, 2102420. [Google Scholar] [CrossRef]
- Po, R.; Bianchi, G.; Carbonera, C.; Pellegrino, A. “All That Glisters Is Not Gold”: An Analysis of the Synthetic Complexity of Efficient Polymer Donors for Polymer Solar Cells. Macromolecules 2015, 48, 453–461. [Google Scholar] [CrossRef]
- Knyazeva, E.A.; Rakitin, O.A. Influence of structural factors on the photovoltaic properties of dye-sensitized solar cells. Russ. Chem. Rev. 2016, 85, 1146–1183. [Google Scholar] [CrossRef]
- Nakayama, K.; Okura, T.; Okuda, Y.; Matsui, J.; Masuhara, A.; Yoshida, T.; White, M.S.; Yumusak, C.; Stadler, P.; Scharber, M.; et al. Single-Component Organic Solar Cells Based on Intramolecular Charge Transfer Photoabsorption. Materials 2021, 14, 1200. [Google Scholar] [CrossRef] [PubMed]
- Terenti, N.; Giurgi, G.-I.; Crişan, A.P.; Anghel, C.; Bogdan, A.; Pop, A.; Stroia, I.; Terec, A.; Szolga, L.; Grosu, I.; et al. Structure–properties of small donor–acceptor molecules for homojunction single-material organic solar cells. J. Mater. Chem. C 2022, 10, 5716–5726. [Google Scholar] [CrossRef]
- Slodek, A.; Zych, D.; Kotowicz, S.; Szafraniec-Gorol, G.; Zimosz, S.; Schab-Balcerzak, E.; Siwy, M.; Grzelak, J.; Maćkowski, S. “Small in size but mighty in force”—The first principle study of the impact of A/D units in A/D-phenyl-π-phenothiazine-π-dicyanovinyl systems on photophysical and optoelectronic properties. Dyes Pigments 2021, 189, 109248. [Google Scholar] [CrossRef]
- Bu, L.; Rémond, M.; Colinet, P.; Jeanneau, E.; Le Bahers, T.; Chaput, F.; Andraud, C.; Bretonnière, Y. Sensitive 1,1-dicyanovinyl push-pull dye for primary amine sensing in solution by fluorescence. Dyes Pigments 2022, 202, 110258. [Google Scholar] [CrossRef]
- Almenningen, D.M.; Hansen, H.E.; Vold, M.F.; Buene, A.F.; Venkatraman, V.; Sunde, S.; Hoff, B.H.; Gautun, O.R. Effect of thiophene-based π-spacers on N-arylphenothiazine dyes for dye-sensitized solar cells. Dyes Pigments 2021, 185, 108951. [Google Scholar] [CrossRef]
- Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.; Hanaya, M. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 2015, 51, 15894–15897. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, E.; Mikhailov, M.S.; Gudim, N.S.; Knyazeva, E.A.; Mikhalchenko, L.V.; Robertson, N.; Rakitin, O.A. Structural features of indoline donors in D–A-π-A type organic sensitizers for dye-sensitized solar cells. Mol. Syst. Des. Eng. 2021, 6, 730–738. [Google Scholar] [CrossRef]
- Gudim, N.S.; Knyazeva, E.A.; Mikhalchenko, L.V.; Mikhailov, M.S.; Zhang, L.; Robertson, N.; Rakitin, O.A. Novel D-A-π-A1 Type Organic Sensitizers from 4,7-Dibromobenzo[d][1,2,3]thiadiazole and Indoline Donors for Dye-Sensitized Solar Cells. Molecules 2022, 27, 4197. [Google Scholar] [CrossRef]
- Mone, M.; Yang, K.; Murto, P.; Zhang, F.; Wang, E. Low-gap zinc porphyrin as an efficient dopant for photomultiplication type photodetectors. Chem. Commun. 2020, 56, 12769–12772. [Google Scholar] [CrossRef]
- Budy, S.M.; Suresh, S.; Spraul, B.K.; Smith, D.W. High-Temperature Chromophores and Perfluorocyclobutyl Copolymers for Electro-optic Applications. J. Phys. Chem. C 2008, 112, 8099–8104. [Google Scholar] [CrossRef]
- Xia, P.F.; Feng, X.J.; Lu, J.; Tsang, S.; Movileanu, R.; Tao, Y.; Wong, M.S. Donor-Acceptor Oligothiophenes as Low Optical Gap Chromophores for Photovoltaic Applications. Adv. Mater. 2008, 20, 4810–4815. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhailov, M.S.; Ustimenko, O.O.; Knyazeva, E.A.; Rakitin, O.A. 4,4-Bis(2-ethylhexyl)-6-(9-(2-ethylhexyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazol-6-yl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2-carbaldehyde. Molbank 2022, 2022, M1486. https://doi.org/10.3390/M1486
Mikhailov MS, Ustimenko OO, Knyazeva EA, Rakitin OA. 4,4-Bis(2-ethylhexyl)-6-(9-(2-ethylhexyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazol-6-yl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2-carbaldehyde. Molbank. 2022; 2022(4):M1486. https://doi.org/10.3390/M1486
Chicago/Turabian StyleMikhailov, Maxim S., Olga O. Ustimenko, Ekaterina A. Knyazeva, and Oleg A. Rakitin. 2022. "4,4-Bis(2-ethylhexyl)-6-(9-(2-ethylhexyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazol-6-yl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2-carbaldehyde" Molbank 2022, no. 4: M1486. https://doi.org/10.3390/M1486
APA StyleMikhailov, M. S., Ustimenko, O. O., Knyazeva, E. A., & Rakitin, O. A. (2022). 4,4-Bis(2-ethylhexyl)-6-(9-(2-ethylhexyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazol-6-yl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2-carbaldehyde. Molbank, 2022(4), M1486. https://doi.org/10.3390/M1486