Synthesis and Structure Determination of 2-Cyano-3-(1-phenyl-3-(thiophen-2-yl)-1H-pyrazol-4-yl)acrylamide
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of 3
2.2. NMR Spectroscopy
2.3. X-ray Structure
3. Materials and Methods
3.1. General
3.2. Synthesis of 3
3.3. Data Collection and Refinement Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ren, Z.-L.; Liu, H.; Jiao, D.; Hu, H.-T.; Wang, W.; Gong, J.-X.; Wang, A.-L.; Cao, H.-Q.; Lv, X.-H. Design, synthesis, and antifungal activity of novel cinnamon-pyrazole carboxamide derivatives. Drug Dev. Res. 2018, 79, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Ni, Y.; Chen, J.; Tu, Z.; Wu, X.; Chen, D.; Yao, H.; Jiang, S. Discovery of trans-3-(pyridin-3-yl)acrylamide-derived sulfamides as potent nicotinamide phosphoribosyltransferase (NAMPT) inhibitors for the potential treatment of cancer. Bioorg. Med. Chem. Lett. 2019, 29, 1502–1506. [Google Scholar] [CrossRef] [PubMed]
- Alafeefy, A.M.; Isik, S.; Abdel-Aziz, H.A.; Ashour, A.E.; Vullo, D.; Al-Jaber, N.A.; Supuran, C.T. Carbonic anhydrase inhibitors: Benzenesulfonamides incorporating cyanoacrylamide moieties are low nanomolar/subnanomolar inhibitors of the tumor-associated isoforms IX and XII. Bioorg. Med. Chem. 2013, 21, 1396–1403. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wahab, B.F.; Farahat, A.A.; Awad, E.A.; El-Hiti, G.A. Synthesis and antimicrobial activity of some novel substituted 3-(thiophen-2-yl)pyrazole-based heterocycles. Lett. Drug Design Discov. 2017, 14, 1316–1323. [Google Scholar] [CrossRef]
- Faria, J.V.; Vegi, P.F.; Miguita, A.G.C.; dos Santos, M.S.; Boechat, N.; Bernardino, A.M.R. Recently reported biological activities of pyrazole compounds. Bioorg. Med. Chem. 2017, 21, 5891–5903. [Google Scholar] [CrossRef]
- Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.N.; Al-Aizari, F.A.; Ansar, M. Synthesis and pharmacological activities of pyrazole derivatives: A review. Molecules 2018, 23, 134. [Google Scholar] [CrossRef] [Green Version]
- Kanwal, I.; Rasool, N.; Zaidi, S.H.M.; Zakaria, Z.A.; Bilal, M.; Hashmi, M.A.; Mubarik, A.; Ahmad, G.; Shah, S.A.A. Synthesis of functionalized thiophene based pyrazole amides via various catalytic approaches: Structural features through computational applications and nonlinear optical properties. Molecules 2022, 27, 360. [Google Scholar] [CrossRef]
- Prabhudevaa, M.G.; Renukab, N.; Kumar, K.A. Synthesis of thiophene-pyrazole conjugates as potent antimicrobial and radical scavengers. Curr. Chem. Lett. 2018, 7, 73–80. [Google Scholar] [CrossRef]
- da Cruz, R.M.D.; Mendonça-Junior, F.J.B.; de Mélo, N.B.; Scotti, L.; de Araújo, R.S.A.; de Almeida, R.N.; de Moura, R.O. Thiophene-based compounds with potential anti-inflammatory activity. Pharmaceuticals 2021, 14, 692. [Google Scholar] [CrossRef]
- Yi, F.; Zhao, W.; Wang, Z.; Bi, X. Silver-mediated [3 + 2] cycloaddition of alkynes and N-isocyanoiminotriphenylphosphorane: Access to monosubstituted pyrazoles. Org. Lett. 2019, 21, 3158–3161. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Jia, X. Phosphine-free [3+2] cycloaddition of propargylamines with dialkyl azodicarboxylates: An efficient access to pyrazole backbone. Synthesis 2018, 50, 3499–3505. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.; Feng, J.; Hou, Y.; Rao, M.; Cheng, J. Copper-catalyzed aerobic cyclization of β,γ-unsaturated hydrazones with concomitant C=C bond cleavage. Org. Lett. 2020, 22, 7981–7985. [Google Scholar] [CrossRef] [PubMed]
- Panda, N.; Jena, A.K. Fe-catalyzed one-pot synthesis of 1,3-di- and 1,3,5-trisubstituted pyrazoles from hydrazones and vicinal diols. J. Org. Chem. 2012, 77, 9401–9406. [Google Scholar] [CrossRef] [PubMed]
- Minetto, G.; Raveglia, L.F.; Sega, A.; Taddei, M. Microwave-assisted Paal–Knorr reaction—Three-step regiocontrolled synthesis of polysubstituted furans, pyrroles and thiophenes. Eur. J. Org. Chem. 2005, 2005, 5277–5288. [Google Scholar] [CrossRef]
- Kaleta, Z.; Makowski, B.T.; Soos, T.; Dembinski, R. Thionation using fluorous Lawesson’s reagent. Org. Lett. 2006, 8, 1625–1628. [Google Scholar] [CrossRef]
- Ma, L.; Yuan, L.; Xu, C.; Li, G.; Tao, M.; Zhang, W. An efficient synthesis of 2-aminothiophenes via the Gewald reaction catalyzed by an N-methylpiperazine-functionalized polyacrylonitrile fiber. Synthesis 2013, 45, 45–52. [Google Scholar] [CrossRef]
- Revelant, G.; Dunand, S.; Hesse, S.; Kirsch, G. Microwave-assisted synthesis of 5-substituted 2-aminothiophenes starting from arylacetaldehydes. Synthesis 2011, 2011, 2935–2940. [Google Scholar] [CrossRef]
- Wang, T.; Huang, X.-G.; Liu, J.; Li, B.; Wu, J.-J.; Chen, K.-X.; Zhu, W.-L.; Xu, X.-Y.; Zeng, B.-B. An Efficient one-pot synthesis of substituted 2-aminothiophenes via three-component Gewald reaction catalyzed by L-proline. Synlett 2010, 2010, 1351–1354. [Google Scholar] [CrossRef]
- Huang, G.; Li, J.; Li, J.; Li, J.; Sun, M.; Zhou, P.; Chen, L.; Huang, Y.; Jiang, S.; Li, Y. Access to substituted thiophenes through xanthate-mediated vinyl C(sp2)-Br bond cleavage and heterocyclization of bromoenynes. J. Org. Chem. 2020, 85, 13037–13049. [Google Scholar] [CrossRef]
- Gabriele, B.; Mancuso, R.; Veltri, L.; Maltese, V.; Salerno, G. Synthesis of substituted thiophenes by palladium-catalyzed heterocyclodehydration of 1-mercapto-3-yn-2-ols in conventional and nonconventional solvents. J. Org. Chem. 2012, 77, 9905–9909. [Google Scholar] [CrossRef]
- Zhang, G.; Yi, H.; Chen, H.; Bian, C.; Liu, C.; Lei, A. Trisulfur radical anion as the key intermediate for the synthesis of thiophene via the interaction between elemental sulfur and NaOtBu. Org. Lett. 2014, 16, 6156–6159. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.F.; Saddiq, A.A.; Abdelhamid, I.A. Attacking the mitochondria of colorectal carcinoma by novel 2-cyanoacrylamides linked to ethyl 1,3-diphenylpyrazole-4-carboxylates moiety as a new trend for chemotherapy. Bioorg. Chem. 2020, 103, 104195. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, A.A.; Abdel-Wahab, B.F.; Hegazy, A.S.; Kariuki, B.M.; El-Hiti, G.A. The crystal structure of 5-(2-(4-fluorophenyl)hydrazono)-4-methyl-2-((3-(5-methyl-1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)methylene)hydrazono)-2,5-dihydrothiazole dimethylformamide monosolvate, C30H25FN10S.C3H7NO. Z. Kristallogr.-New Cryst. Struct. 2020, 235, 915–917. [Google Scholar] [CrossRef]
- Alotaibi, A.A.; Abdel-Wahab, B.F.; Hegazy, A.S.; Kariuki, B.M.; El-Hiti, G.A. The crystal structure of 2-(3-(4-bromophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-8H-indeno[1,2-d]thiazole, C25H17BrFN3S. Z. Kristallogr.-New Cryst. Struct. 2020, 235, 897–899. [Google Scholar] [CrossRef]
- Alotibi, M.F.; Abdel-Wahab, B.F.; Yousif, E.; Hegazy, A.S.; Kariuki, B.M.; El-Hiti, G.A. Crystal structure of (E)-3-(3-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)-1-phenylprop-2-en-1-one, C27H21N5O. Z. Kristallogr.-New Cryst. Struct. 2020, 235, 479–481. [Google Scholar] [CrossRef] [Green Version]
- Baashen, M.A.; Abdel-Wahab, B.F.; Hegazy, A.S.; Kariuki, B.M.; El-Hiti, G.A. The crystal structure of 1-phenyl-N-(4,5,6,7-tetrabromo-1,3-dioxoisoindolin-2-yl)-5-(thiophen-2-yl)-1H-pyrazole-3-carboxamide-dimethylformamdie (1/1) C22H10Br4N4O3S. Z. Kristallogr.-New Cryst. Struct. 2021, 236, 431–433. [Google Scholar] [CrossRef]
- El-Hiti, G.A.; Abdel-Wahab, B.F.; Baashen, M.; Ghabbour, H.A. Crystal structure of ethyl 5-amino-3-(methylthio)-1-(1-phenyl-5-(thiophen-2-yl)-1H-pyrazole-3-carbonyl)-1H-pyrazole-4-carboxylate, C21H19N5O3S2. Z. Kristallogr.-New Cryst. Struct. 2016, 231, 1051–1052. [Google Scholar] [CrossRef] [Green Version]
- Bratenko, M.K.; Sidorchuk, I.I.; Khalaturnik, M.V.; Vovk, M.V. Synthesis and antimicrobial activity of new azomethines synthesized from 4-formyl-1-phenyl-3-aryl(heteryl)pyrazoles. Pharm. Chem. J. 1999, 33, 81–83. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kariuki, B.M.; Abdel-Wahab, B.F.; Mohamed, H.A.; El-Hiti, G.A. Synthesis and Structure Determination of 2-Cyano-3-(1-phenyl-3-(thiophen-2-yl)-1H-pyrazol-4-yl)acrylamide. Molbank 2022, 2022, M1372. https://doi.org/10.3390/M1372
Kariuki BM, Abdel-Wahab BF, Mohamed HA, El-Hiti GA. Synthesis and Structure Determination of 2-Cyano-3-(1-phenyl-3-(thiophen-2-yl)-1H-pyrazol-4-yl)acrylamide. Molbank. 2022; 2022(2):M1372. https://doi.org/10.3390/M1372
Chicago/Turabian StyleKariuki, Benson M., Bakr F. Abdel-Wahab, Hanan A. Mohamed, and Gamal A. El-Hiti. 2022. "Synthesis and Structure Determination of 2-Cyano-3-(1-phenyl-3-(thiophen-2-yl)-1H-pyrazol-4-yl)acrylamide" Molbank 2022, no. 2: M1372. https://doi.org/10.3390/M1372
APA StyleKariuki, B. M., Abdel-Wahab, B. F., Mohamed, H. A., & El-Hiti, G. A. (2022). Synthesis and Structure Determination of 2-Cyano-3-(1-phenyl-3-(thiophen-2-yl)-1H-pyrazol-4-yl)acrylamide. Molbank, 2022(2), M1372. https://doi.org/10.3390/M1372