Abstract
Acute Respiratory Distress Syndrome (ARDS) is a severe complication of acute lung injury (ALI) characterized by acute hypoxemic respiratory failure and diffuse alveolar damage, with a high mortality rate and a current lack of treatments beyond supportive care. Its complex pathophysiology involves immune cell activation, pro-inflammatory cytokine release, and disruption of the alveolar–capillary barrier, leading to pulmonary edema and fibrosis. This review explores the potential of small interfering RNA (siRNA) therapy as a novel pathogenetic treatment for ARDS. The mechanism of RNA interference is described, highlighting its high specificity for silencing target genes. The paper then evaluates various animal models used in ARDS preclinical research, noting the advantages of large animals (pigs) for their physiological similarity to humans and the suitability of rodents for studying long-term fibrotic stages. Finally, the review summarizes promising in vivo studies where siRNA-mediated knockdown of several genes (e.g., TIMP1, BTK, LCN2, HDAC7, CCL2, NOX4, TNFα and TLR4) significantly reduced inflammation, improved lung histology, and increased survival. The collective evidence underscores siRNA’s considerable potential for developing targeted therapies against ARDS, moving beyond symptomatic care to address the root molecular mechanisms of the disease.