Abstract
The ε4 allele of the apolipoprotein E (APOE) gene strongly increases Alzheimer’s disease (AD) risk, though its molecular mechanisms remain unclear. AD-associated genetic signals also extend to neighboring genes TOMM40 and APOC1, suggesting a complex cis-regulatory landscape. To investigate chromatin architecture and its impact on gene regulation across this region, we performed chromosome conformation capture in human cell lines and postmortem brain tissues, consistently identifying TOMM40–APOE and APOE–APOC1 interactions. We further developed a digital PCR assay to quantify APOE–APOC1 interaction strength and measured APOC1 mRNA via RT-qPCR. Enhanced chromatin interaction correlated with elevated APOC1 transcription in AD specimens. Genotypic analysis showed that ε3/ε4 carriers had strong chromatin interaction and transcriptional activation, whereas ε4/ε4 homozygotes exhibited minimal chromatin remodeling despite similar APOC1 expression, suggesting a decoupling of chromatin architecture and transcriptional output. These findings underscore the interplay of AD status, APOE genotype, and locus-specific chromatin dynamics in disease susceptibility. Integration of 3D genome topology with transcriptomic profiling offers a framework to study APOE-related disorders and supports broader application across neurodegenerative loci for genotype-guided therapy development.