Plasma Protein Panel for Assessing the Risk of Alzheimer’s Disease by MRM-MS Analysis: The Study of Two Independent Clinical Cohorts
Abstract
1. Introduction
2. Results
2.1. Combining Two Clinical Cohorts and MRM Proteomic Analysis
2.2. Developing of Universal Protein Panel for Assessment of the RISK of Progression to AD
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Quantitative Proteomic Analysis by LC-MRM-MS
4.3. Data Analysis
4.4. Polygenic Risk and Gene–Protein Correlation Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AD | Alzheimer’s disease |
| AUC | Area under the ROC curve |
| Aβ | Amyloid-β |
| BNT | Boston naming test |
| CB | Candidate biomarker |
| CDT | Clock drawing test |
| CPTAC | Clinical Proteomic Tumor Analysis Consortium |
| CSF | Cerebrospinal fluid |
| MCI | Mild cognitive impairment |
| MMSE | Mini-mental state examination |
| MRM | Multiple reaction monitoring |
| MS | Mass spectrometry |
| p-tau | Phosphorylated tau |
| PEA | Proximity extension assay |
| ROC | Receiver operating characteristic |
References
- Hunter, T.R.; Santos, L.E.; Tovar-Moll, F.; De Felice, F.G. Alzheimer’s disease biomarkers and their current use in clinical research and practice. Mol. Psychiatry 2025, 30, 272–284. [Google Scholar] [CrossRef]
- Janelidze, S.; Teunissen, C.E.; Zetterberg, H.; Allué, J.A.; Sarasa, L.; Eichenlaub, U.; Bittner, T.; Ovod, V.; Verberk, I.M.W.; Toba, K.; et al. Head-to-Head Comparison of 8 Plasma Amyloid-β 42/40 Assays in Alzheimer Disease. JAMA Neurol. 2021, 78, 1375–1382. [Google Scholar] [CrossRef]
- Karikari, T.K.; Pascoal, T.A.; Ashton, N.J.; Janelidze, S.; Benedet, A.L.; Rodriguez, J.L.; Chamoun, M.; Savard, M.; Kang, M.S.; Therriault, J.; et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: A diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 2020, 19, 422–433. [Google Scholar] [CrossRef]
- Grande, G.; Valletta, M.; Rizzuto, D.; Xia, X.; Qiu, C.; Orsini, N.; Dale, M.; Andersson, S.; Fredolini, C.; Winblad, B.; et al. Blood-based biomarkers of Alzheimer’s disease and incident dementia in the community. Nat. Med. 2025, 31, 2027–2035. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. FDA Clears First Blood Test Used in Diagnosing Alzheimer’s Disease. Available online: https://www.fda.gov/news-events/press-announcements/fda-clears-first-blood-test-used-diagnosing-alzheimers-disease (accessed on 28 October 2025).
- Wang, J.; Huang, S.; Lan, G.; Lai, Y.; Wang, Q.; Chen, Y.; Xiao, Z.; Chen, X.; Bu, X.; Liu, Y.; et al. Diagnostic accuracy of plasma p-tau217/Aβ42 for Alzheimer’s disease in clinical and community cohorts. Alzheimers Dement. 2025, 21, e70038. [Google Scholar] [CrossRef]
- Palmqvist, S.; Warmenhoven, N.; Anastasi, F.; Pilotto, A.; Janelidze, S.; Tideman, P.; Stomrud, E.; Mattsson-Carlgren, N.; Smith, R.; Ossenkoppele, R.; et al. Plasma phospho-tau217 for Alzheimer’s disease diagnosis in primary and secondary care using a fully automated platform. Nat. Med. 2025, 31, 2036–2043. [Google Scholar] [CrossRef]
- Roche Diagnostics. FDA-Cleared pTau181 Alzheimer’s Blood Test. Press Release, October 2025. Available online: https://diagnostics.roche.com/us/en/news-listing/2025/fda-cleared-ptau181-alzheimers-blood-test.html (accessed on 28 October 2025).
- Palmqvist, S.; Whitson, H.E.; Allen, L.A.; Suarez-Calvet, M.; Galasko, D.; Karikari, T.K.; Okrahvi, H.R.; Paczynski, M.; Schindler, S.E.; Teunissen, C.E.; et al. Alzheimer’s Association Clinical Practice Guideline on the use of blood-based biomarkers in the diagnostic workup of suspected Alzheimer’s disease within specialized care settings. Alzheimers Dement. 2025, 21, e70535. [Google Scholar] [CrossRef]
- Imam, F.; Saloner, R.; Vogel, J.W.; Krish, V.; Abdel-Azim, G.; Ali, M.; An, L.; Anastasi, F.; Bennett, D.; Binette, A.P.; et al. The Global Neurodegeneration Proteomics Consortium: Biomarker and drug target discovery for common neurodegenerative diseases and aging. Nat. Med. 2025, 31, 2556–2566. [Google Scholar] [CrossRef]
- 2025 Alzheimer’s disease facts and figures. Alzheimers Dement. 2025, 21, e70235. [CrossRef]
- Poblador-Plou, B.; Calderón-Larrañaga, A.; Marta-Moreno, J.; Hancco-Saavedra, J.; Sicras-Mainar, A.; Soljak, M.; Prados-Torres, A. Comorbidity of dementia: A cross-sectional study of primary care older patients. BMC Psychiatry 2014, 14, 84. [Google Scholar] [CrossRef]
- Santiago, J.A.; Potashkin, J.A. The Impact of Disease Comorbidities in Alzheimer’s Disease. Front. Aging Neurosci. 2021, 13, 631770. [Google Scholar] [CrossRef]
- Tijms, B.M.; Vromen, E.M.; Mjaavatten, O.; Holstege, H.; Reus, L.M.; van der Lee, S.; Wesenhagen, K.E.J.; Lorenzini, L.; Vermunt, L.; Venkatraghavan, V.; et al. Cerebrospinal fluid proteomics in patients with Alzheimer’s disease reveals five molecular subtypes with distinct genetic risk profiles. Nat. Aging 2024, 4, 33–47. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, T.; Zeng, J.; Zhang, R.; Pu, L.; Qian, S.; Xu, S.; Jiang, Y.; Pan, L.; Dai, X.; et al. Methods and clinical biomarker discovery for targeted proteomics using Olink technology. Proteom. Clin. Appl. 2024, 18, e2300233. [Google Scholar] [CrossRef]
- Li, Y.; Tam, W.W.; Yu, Y.; Zhuo, Z.; Xue, Z.; Tsang, C.; Qiao, X.; Wang, X.; Wang, W.; Li, Y.; et al. The application of Aptamer in biomarker discovery. Biomark. Res. 2023, 11, 70. [Google Scholar] [CrossRef]
- Rooney, M.R.; Chen, J.; Ballantyne, C.M.; Hoogeveen, R.C.; Tang, O.; Grams, M.E.; Tin, A.; Ndumele, C.E.; Zannad, F.; Couper, D.J.; et al. Comparison of Proteomic Measurements Across Platforms in the Atherosclerosis Risk in Communities (ARIC) Study. Clin. Chem. 2023, 69, 68–79. [Google Scholar] [CrossRef]
- Katz, D.H.; Robbins, J.M.; Deng, S.; Tahir, U.A.; Bick, A.G.; Pampana, A.; Yu, Z.; Ngo, D.; Benson, M.D.; Chen, Z.-Z.; et al. Proteomic profiling platforms head to head: Leveraging genetics and clinical traits to compare aptamer- and antibody-based methods. Sci. Adv. 2022, 8, eabm5164. [Google Scholar] [CrossRef]
- Candia, J.; Cheung, F.; Kotliarov, Y.; Fantoni, G.; Sellers, B.; Griesman, T.; Huang, J.; Stuccio, S.; Zingone, A.; Ryan, B.M.; et al. Assessment of Variability in the SOMAscan Assay. Sci. Rep. 2017, 7, 14248. [Google Scholar] [CrossRef]
- Fu, Q.; Remes, P.M.; Lee, J.; Jacob, C.; Li, D.; Vegesna, M.; Raedschelders, K.; Haghani, A.; Mengesha, E.; Debbas, P.; et al. Angew. Chem. Int. Ed. 2025, 64, e202507610. [Google Scholar] [CrossRef]
- Shin, D.; Rhee, S.J.; Shin, D.; Joo, E.-J.; Jung, H.Y.; Roh, S.; Lee, S.-H.; Kim, H.; Bang, M.; Lee, K.Y.; et al. Integrating proteomic and clinical data to discriminate major psychiatric disorders: Applications for major depressive disorder, bipolar disorder, and schizophrenia. Clin. Transl. Med. 2022, 12, e929. [Google Scholar] [CrossRef]
- Abbatiello, S.E.; Schilling, B.; Mani, D.R.; Zimmerman, L.J.; Hall, S.C.; MacLean, B.; Albertolle, M.; Allen, S.; Burgess, M.; Cusack, M.P.; et al. Large-scale interlaboratory study to develop, analytically validate and apply highly multiplexed, quantitative peptide assays to measure cancer-relevant proteins in plasma. Mol. Cell. Proteom. 2015, 14, 2357–2374. [Google Scholar] [CrossRef]
- Percy, A.J.; Mohammed, Y.; Yang, J.; Borchers, C.H. A standardized kit for automated quantitative assessment of candidate protein biomarkers in human plasma. Bioanalysis 2015, 7, 2991–3004. [Google Scholar] [CrossRef]
- Bhowmick, P.; Roome, S.; Borchers, C.H.; Goodlett, D.R.; Mohammed, Y. An Update on MRMAssayDB: A Comprehensive Resource for Targeted Proteomics Assays in the Community. J. Proteome Res. 2021, 20, 2105–2115. [Google Scholar] [CrossRef]
- Strelnikova, P.A.; Zakharova, N.V.; Kononikhin, A.S.; Bugrova, A.E.; Indeykina, M.I.; Mitkevich, V.A.; Nikolaev, E.N. Blood plasma proteomic markers of Alzheimer’s disease, current status and application prospects. Expert Rev. Proteom. 2025, 22, 11–18. [Google Scholar] [CrossRef]
- Kiddle, S.J.; Sattlecker, M.; Proitsi, P.; Simmons, A.; Westman, E.; Bazenet, C.; Nelson, S.K.; Williams, S.; Hodges, A.; Johnston, C.; et al. Candidate blood proteome markers of Alzheimer’s disease onset and progression: A systematic review and replication study. J. Alzheimers Dis. 2014, 38, 515–531. [Google Scholar] [CrossRef]
- Rehiman, S.H.; Lim, S.M.; Neoh, C.F.; Majeed, A.B.A.; Chin, A.-V.; Tan, M.P.; Kamaruzzaman, S.B.; Ramasamy, K. Proteomics as a reliable approach for discovery of blood-based Alzheimer’s disease biomarkers: A systematic review and meta-analysis. Ageing Res. Rev. 2020, 60, 101066. [Google Scholar] [CrossRef]
- Zakharova, N.V.; Bugrova, A.E.; Indeykina, M.I.; Fedorova, Y.B.; Kolykhalov, I.V.; Gavrilova, S.I.; Kononikhin, A.S. Proteomic markers and early prediction of Alzheimer’s Disease. Biochemistry 2022, 87, 762–776. [Google Scholar] [CrossRef]
- Kivisäkk, P.; Magdamo, C.; Trombetta, B.A.; Noori, A.; Kuo, Y.E.K.; Chibnik, L.B.; Carlyle, B.C.; Serrano-Pozo, A.; Scherzer, C.R.; Hyman, B.T.; et al. Plasma biomarkers for prognosis of cognitive decline in patients with mild cognitive impairment. Brain Commun. 2022, 4, fcac155. [Google Scholar] [CrossRef]
- Foley, K.E.; Winder, Z.; Sudduth, T.L.; Martin, B.J.; Nelson, P.T.; Jicha, G.A.; Harp, J.P.; Weekman, E.M.; Wilcock, D.M. Alzheimer’s disease and inflammatory biomarkers positively correlate in plasma in the UK-ADRC cohort. Alzheimers Dement. 2024, 20, 1374–1386. [Google Scholar] [CrossRef] [PubMed]
- Kononikhin, A.S.; Zakharova, N.V.; Semenov, S.D.; Bugrova, A.E.; Brzhozovskiy, A.G.; Indeykina, M.I.; Fedorova, Y.B.; Kolykhalov, I.V.; Strelnikova, P.A.; Ikonnikova, A.Y.; et al. Prognosis of Alzheimer’s Disease Using Quantitative Mass Spectrometry of Human Blood Plasma Proteins and Machine Learning. Int. J. Mol. Sci. 2022, 23, 7907. [Google Scholar] [CrossRef]
- Chen, M.; Xia, W. Proteomic Profiling of Plasma and Brain Tissue from Alzheimer’s Disease Patients Reveals Candidate Network of Plasma Biomarkers. J. Alzheimers Dis. 2020, 76, 349–368. [Google Scholar] [CrossRef]
- Budny, V.; Ruminot, I.; Wybitul, M.; Treyer, V.; Barros, L.F.; Tackenberg, C. Fueling the brain—The role of apolipoprotein E in brain energy metabolism and its implications for Alzheimer’s disease. Transl. Psychiatry 2025, 15, 316. [Google Scholar] [CrossRef]
- Ikonnikova, A.; Morozova, A.; Antonova, O.; Ochneva, A.; Fedoseeva, E.; Abramova, O.; Emelyanova, M.; Filippova, M.; Morozova, I.; Zorkina, Y.; et al. Evaluation of the Polygenic Risk Score for Alzheimer’s Disease in Russian Patients with Dementia Using a Low-Density Hydrogel Oligonucleotide Microarray. Int. J. Mol. Sci. 2023, 24, 14765. [Google Scholar] [CrossRef]
- Percy, A.J.; Borchers, C.H. Detailed Method for Performing the ExSTA Approach in Quantitative Bottom-Up Plasma Proteomics. Methods Mol. Biol. 2021, 2228, 353–384. [Google Scholar] [CrossRef]
- Mohammed, Y.; Pan, J.; Zhang, S.; Han, J.; Borchers, C.H. ExSTA: External standard addition method for accurate high-throughput quantitation in targeted proteomics experiments. Proteom. Clin. Appl. 2018, 12, 1600180. [Google Scholar] [CrossRef]
- MacLean, B.; Tomazela, D.M.; Shulman, N.; Chambers, M.; Finney, G.L.; Frewen, B.; Kern, R.; Tabb, D.L.; Liebler, D.C.; MacCoss, M.J. Skyline: An open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 2010, 26, 966–968. [Google Scholar] [CrossRef] [PubMed]
- MacLean, B.X.; Pratt, B.S.; Egertson, J.D.; MacCoss, M.J.; Smith, R.D.; Baker, E.S. Using Skyline to analyze data-containing liquid chromatography, ion mobility spectrometry, and mass spectrometry dimensions. J. Am. Soc. Mass Spectrom. 2018, 29, 2182–2188. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. ICH Guideline M10 on Bioanalytical Method Validation and Study Sample Analysis. In ICH Harmonised Guideline; ICH: Geneva, Switzerland, 2022; Volume 44, Available online: https://database.ich.org/sites/default/files/M10_Guideline_Step4_2022_0524.pdf (accessed on 14 September 2025).
- Fortin, J.-P. neuroCombat. GitHub Repository. Available online: https://github.com/Jfortin1/neuroCombat (accessed on 6 November 2025).
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272, Erratum in: Nat. Methods 2020, 17, 352. [Google Scholar] [CrossRef]
- Waskom, M.L. Seaborn: Statistical data visualization. J. Open Source Softw. 2021, 6, 3021. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- McKinney, W. Data structures for statistical computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; Volume 445, pp. 51–56. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, B.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]



| Protein Name | Gene Code | UniProt ID | Cohorts (n) | q-Value (FDR) |
|---|---|---|---|---|
| Afamin a | AFM | P43652 | 4 [25,27] | 1.75 × 10−8 |
| Apolipoprotein A-IV b | APOA4 | P06727 | 6 [25,27] | 1.77 × 10−7 |
| Attractin | ATRN | O75882 | 2 [26,27] | 1.10 × 10−5 |
| Apolipoprotein A-I | APOA1 | P02647 | 4 [25,27] | 1.58 × 10−5 |
| Cholinesterase | BCHE | P06276 | - | 1.58 × 10−5 |
| Serotransferrin | TF | P02787 | 4 [25,26,27] | 1.58 × 10−5 |
| Alpha-2-antiplasmin | SERPINF2 | P08697 | - | 2.00 × 10−5 |
| Gelsolin | GSN | P06396 | 1 [26] | 2.06 × 10−5 |
| Serum paraoxonase/arylesterase 1 | PON1 | P27169 | 2 [26] | 2.74 × 10−5 |
| Alpha-1-acid glycoprotein 1 | ORM1 | P02763 | 3 [25,26] | 2.74 × 10−5 |
| Haptoglobin | HP | P00738 | 4 [25,26,27] | 2.74 × 10−5 |
| Alpha-1-antichymotrypsin | SERPINA3 | P01011 | 4 [25,26] | 2.81 × 10−4 |
| Complement component C9 | C9 | P02748 | 1 [32] | 2.93 × 10−4 |
| Complement C1q subcomponent subunit B | C1QB | P02746 | - | 1.01 × 10−3 |
| Apolipoprotein A-II | APOA2 | P02652 | 1 [32] | 1.67 × 10−3 |
| Lysozyme C | LYZ | P61626 | 2 [26,32] | 1.67 × 10−3 |
| Fibrinogen beta chain | FGB | P02675 | 5 [25,26,27] | 2.26 × 10−3 |
| Serum albumin | ALB | P02768 | 5 [25,26,27] | 2.26 × 10−3 |
| Complement C5 | C5 | P01031 | 1 [26] | 3.42 × 10−3 |
| Fibrinogen gamma chain | FGG | P02679 | 6 [25,26,27] | 3.55 × 10−3 |
| Leucine-rich alpha-2-glycoprotein | LRG1 | P02750 | 2 [26,32] | 4.33 × 10−3 |
| Coagulation factor XII | F12 | P00748 | 1 [32] | 4.67 × 10−3 |
| Alpha-1-antitrypsin | SERPINA1 | P01009 | 5 [25,26] | 7.09 × 10−3 |
| Pigment epithelium-derived factor | SERPINF1 | P36955 | 3 [25,26,27] | 1.14 × 10−2 |
| Apolipoprotein E | APOE | P02649 | 6 [25,26,27] | 1.63 × 10−2 |
| Apolipoprotein B-100 | APOB | P04114 | 3 [25,26,27] | 1.63 × 10−2 |
| Hyaluronan-binding protein 2 | HABP2 | Q14520 | - | 1.63 × 10−2 |
| Alpha-2-HS-glycoprotein | AHSG | P02765 | 2 [27] | 2.30 × 10−2 |
| Apolipoprotein C-II | APOC2 | P02655 | 1 [32] | 2.57 × 10−2 |
| Phospholipid transfer protein | PLTP | P55058 | - | 2.64 × 10−2 |
| Kallistatin | SERPINA4 | P29622 | 2 [32] | 2.64 × 10−2 |
| Pregnancy zone protein | PZP | P20742 | 2 [26] | 2.98 × 10−2 |
| Complement factor I | CFI | P05156 | 3 [25,26] | 3.14 × 10−2 |
| Complement factor B | CFB | P00751 | 4 [25,27] | 3.96 × 10−2 |
| Alpha-1B-glycoprotein | A1BG | P04217 | 3 [25,26,27] | 4.05 × 10−2 |
| Apolipoprotein C-III | APOC3 | P02656 | 1 [32] | 4.48 × 10−2 |
| Fibrinogen alpha chain | FGA | P02671 | 4 [25,26,27] | 4.58 × 10−2 |
| Fibronectin | FN1 | P02751 | 5 [25,26,27] | 4.65 × 10−2 |
| Apolipoprotein M | APOM | O95445 | 1 [32] | 4.65 × 10−2 |
| Vitamin K-dependent protein S | PROS1 | P07225 | 1 [26] | 4.65 × 10−2 |
| Retinol-binding protein 4 | RBP4 | P02753 | 1 [27] | 4.65 × 10−2 |
| Lipopolysaccharide-binding protein | LBP | P18428 | - | 5.42 × 10−2 |
| Cystatin-C | CST3 | P01034 | 1 [26] | 7.90 × 10−2 |
| Protein Name | Gene Code | UniProt ID | q-Value (AD/Control) | Regulation in AD |
|---|---|---|---|---|
| Serotransferrin | TF | P02787 | 1.58 × 10−5 | Down |
| Thyroxine-binding globulin | SERPINA7 | P05543 | 9.31 × 10−1 | - |
| Pregnancy zone protein | PZP | P20742 | 2.98 × 10−2 | Down |
| Transthyretin | TTR | P02766 | 9.45 × 10−1 | - |
| Cholinesterase | BCHE | P06276 | 1.58 × 10−5 | Down |
| Coagulation factor XII | F12 | P00748 | 4.67 × 10−3 | Down |
| Apolipoprotein A-IV | APOA4 | P06727 | 1.77 × 10−7 | Down |
| Lipopolysaccharide-binding protein | LBP | P18428 | 5.42 × 10−2 | Down |
| Alpha-1B-glycoprotein | A1BG | P04217 | 4.05 × 10−2 | Up |
| Apolipoprotein E | APOE | P02649 | 1.63 × 10−2 | Down |
| Alpha-1-acid glycoprotein 1 | ORM1 | P02763 | 2.74 × 10−5 | Up |
| Fibronectin | FN1 | P02751 | 4.65 × 10−2 | Up |
| Haptoglobin | HP | P00738 | 2.74 × 10−5 | Up |
| Control | MCI | AD | ||||
| MHRC | MH1 | MHRC | MH1 | MHRC | MH1 | |
| N (samples) | 51 | 49 | 58 | 78 | 46 | 49 |
| Age (years) | 66.8 ± 8.0 | 71.0 ± 6.2 | 71.7 ± 7.4 | 72.7 ± 7.1 | 73.5 ± 7.8 | 73.7 ± 7.1 |
| Sex (%, F) | 66.7 | 93.9 | 72.4 | 84.6 | 47.8 | 63.3 |
| APOE (%, e4+) | 9.5 | 40.0 | 18.8 | 20.0 | 43.5 | 42.8 |
| e2/e2 | 0 | 0 | 0 | 0 | 0 | 2.0 |
| e2/e3 | 11.9 | 26.7 | 12.5 | 7.7 | 4.3 | 6.1 |
| e3/e3 | 78.6 | 33.3 | 68.7 | 72.3 | 52.2 | 49.1 |
| e2/e4 | 2.4 | 6.7 | 0 | 1.5 | 2.2 | 0 |
| e3/e4 | 7.1 | 33.3 | 18.8 | 16.9 | 15.2 | 36.7 |
| e4/e4 | 0 | 0 | 0 | 1.5 | 26.1 | 6.1 |
| MMSE | 29.6 ± 0.7 | 28.4 ± 1.5 | 27.7 ± 2.5 | 27.1 ± 3.4 | 16.3 ± 5.9 | 8.1 ± 6.4 |
| CDT | 9.9 ± 0.27 | 8.7 ± 0.63 | 9.3 ± 1.16 | 6.2 ± 2.37 | 5.2 ± 2.69 | 1.4 ± 1.91 |
| BNT | 53.4 ± 1.6 | Nm | 49.0 ± 4.7 | Nm | 26.9 ± 17 | Nm |
| МоСА | Nm | 26.8 ± 1.0 | Nm | 22.6 ± 2.7 | Nm | 7.1 ± 4.6 |
| Cardiovascular diseases (%) | 69.7 | 82.3 | 67.2 | 78.2 | 73.9 | 93.9 |
| Diabetes mellitus (%) | 2.3 | 11.8 | 13.8 | 15.3 | 8.7 | 14.3 |
| Gastrointestinal pathologies (%) | 27.9 | 29.4 | 22.4 | 57.7 | 32.6 | 55.1 |
| Genitourinary pathologies (%) | 20.9 | n.a. | 37.9 | n.a. | 34.7 | n.a. |
| Thyroid pathologies (%) | 11.6 | n.a. | 12.1 | n.a. | 28.3 | n.a. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Strelnikova, P.A.; Kononikhin, A.S.; Zakharova, N.V.; Bugrova, A.E.; Indeykina, M.I.; Fedorova, Y.B.; Kolykhalov, I.V.; Morozova, A.Y.; Andryushchenko, A.V.; Fedoseeva, E.D.; et al. Plasma Protein Panel for Assessing the Risk of Alzheimer’s Disease by MRM-MS Analysis: The Study of Two Independent Clinical Cohorts. Int. J. Mol. Sci. 2026, 27, 15. https://doi.org/10.3390/ijms27010015
Strelnikova PA, Kononikhin AS, Zakharova NV, Bugrova AE, Indeykina MI, Fedorova YB, Kolykhalov IV, Morozova AY, Andryushchenko AV, Fedoseeva ED, et al. Plasma Protein Panel for Assessing the Risk of Alzheimer’s Disease by MRM-MS Analysis: The Study of Two Independent Clinical Cohorts. International Journal of Molecular Sciences. 2026; 27(1):15. https://doi.org/10.3390/ijms27010015
Chicago/Turabian StyleStrelnikova, Polina A., Alexey S. Kononikhin, Natalia V. Zakharova, Anna E. Bugrova, Maria I. Indeykina, Yana B. Fedorova, Igor V. Kolykhalov, Anna Y. Morozova, Alisa V. Andryushchenko, Elena D. Fedoseeva, and et al. 2026. "Plasma Protein Panel for Assessing the Risk of Alzheimer’s Disease by MRM-MS Analysis: The Study of Two Independent Clinical Cohorts" International Journal of Molecular Sciences 27, no. 1: 15. https://doi.org/10.3390/ijms27010015
APA StyleStrelnikova, P. A., Kononikhin, A. S., Zakharova, N. V., Bugrova, A. E., Indeykina, M. I., Fedorova, Y. B., Kolykhalov, I. V., Morozova, A. Y., Andryushchenko, A. V., Fedoseeva, E. D., Emelyanova, M. A., Gryadunov, D. A., Gavrilova, S. I., Mitkevich, V. A., Kostyuk, G. P., Chaika, Y. A., Makarov, A. A., & Nikolaev, E. N. (2026). Plasma Protein Panel for Assessing the Risk of Alzheimer’s Disease by MRM-MS Analysis: The Study of Two Independent Clinical Cohorts. International Journal of Molecular Sciences, 27(1), 15. https://doi.org/10.3390/ijms27010015

