The Impact of Stress on the Functioning and Survival of Transplanted Kidneys—Biological Mechanisms, Clinical Implications, and Therapeutic Perspectives
Abstract
1. Introduction
2. The Importance of Stress in Transplant Medicine
3. Psychoneuroimmunology as an Integrative Perspective in Transplantation
4. Mechanisms Through Which Stress Could Affect the Fate of a Transplanted Kidney
4.1. Activation of the HPA Axis in Chronic Stress
4.2. Dysregulation of Immune Response
4.3. Endothelial Dysfunction and Microvascular Injury
4.4. Behavioral and Metabolic Mediators
4.5. Clinical Evidence of Stress Influence in KT Patients
5. Interventions to Reduce the Negative Impact of Stress
5.1. Psychotherapy
5.2. Educational and Patient Support Programs
5.3. Relaxation Techniques
5.4. Preliminary Evidence of the Effectiveness of Stress-Reducing Interventions
5.5. Changes in Inflammatory Markers After Psychological Interventions
6. Gaps in Knowledge and Direction for Future Research
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ABMR | Antibody-mediated rejection |
| ACTH | Adrenocorticotropic hormone |
| BBB | Blood–brain barrier |
| CBT | Cognitive-behavioral therapy |
| CKD | Chronic kidney disease |
| CNS | Central nervous system |
| CRH | Corticotropin-releasing hormone |
| ESRD | End-stage renal disease |
| GC | Glucocorticoids |
| HPA | Hypothalamic–pituitary–adrenal |
| IL | Interleukin |
| KT | Kidney transplant |
| MBSR | Mindfulness-Based Stress Reduction |
| NO | Nitric oxide |
| PAIS-SR | Psychosocial Adjustment to Illness Scale Self-Report |
| PMR | Progressive Muscle Relaxation |
| PTSD | Post-traumatic stress disorder |
| PSS | Perceived Stress Scale |
| QOLT | Quality of life therapy |
| SR | Steroid resistance |
| TCMR | T-cell-mediated rejection |
| TNF | Tumor necrosis factor |
References
- Cecka, J.M.; Terasaki, P.I. Early rejection episodes. Clin. Transpl. 1989, 425–434. [Google Scholar]
- Halloran, P.F.; Madill-Thomsen, K.S.; Böhmig, G.; Bromberg, J.; Budde, K.; Barner, M.; Mackova, M.; Chang, J.; Einecke, G.; Eskandary, F.; et al. Subthreshold rejection activity in many kidney transplants currently classified as having no rejection. Am. J. Transplant. 2025, 25, 72–87. [Google Scholar] [CrossRef]
- Ho, J.; Okoli, G.N.; Rabbani, R.; Lam, O.L.T.; Reddy, V.K.; Askin, N.; Rampersad, C.; Trachtenberg, A.; Wiebe, C.; Nickerson, P.; et al. Effectiveness of T cell-mediated rejection therapy: A systematic review and meta-analysis. Am. J. Transplant. 2022, 22, 772–785. [Google Scholar] [CrossRef]
- Hart, A.; Singh, D.; Brown, S.J.; Wang, J.H.; Kasiske, B.L. Incidence, risk factors, treatment, and consequences of antibody-mediated kidney transplant rejection: A systematic review. Clin. Transplant. 2021, 35, e14320. [Google Scholar] [CrossRef]
- Gaston, R.S. Cytokines and transplantation: A clinical perspective. Transplant. Sci. 1994, 4, S9–S19. [Google Scholar] [PubMed]
- Pirenne, J.; Pirenne-Noizat, F.; de Groote, D.; Vrindts, Y.; Lopez, M.; Gathy, R.; Jacquet, N.; Meurisse, M.; Honore, P.; Franchimont, P. Cytokines and organ transplantation. A review. Nucl. Med. Biol. 1994, 21, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.S.; Kopin, I.J. Evolution of concepts of stress. Stress 2007, 10, 109–120. [Google Scholar] [CrossRef]
- Selye, H. The Stress of Life, 2nd ed.; McGraw-Hill Professional: New York, NY, USA, 2000. [Google Scholar]
- Qin, H.Y.; Cheng, C.W.; Tang, X.D.; Bian, Z.X. Impact of psychological stress on irritable bowel syndrome. World J. Gastroenterol. 2014, 20, 14126–14131. [Google Scholar] [CrossRef]
- Sapolsky, R.M. Why Zebras Don’t Get Ulcers, 3rd ed.; St Martin’s Press: New York, NY, USA, 2004. [Google Scholar]
- Goldstein, D.S.; McEwen, B. Allostasis, Homeostats, and the Nature of Stress. Stress 2002, 5, 55–58. [Google Scholar] [CrossRef]
- Dimsdale, J.E. Psychological Stress and Cardiovascular Disease. J. Am. Coll. Cardiol. 2008, 51, 1237–1246. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Janicki-Deverts, D.; Miller, G.E. Psychological Stress and Disease. JAMA 2007, 298, 1685–1687. [Google Scholar] [CrossRef]
- Papalou, O.; Diamanti-Kandarakis, E. The role of stress in PCOS. Expert. Rev. Endocrinol. Metab. 2017, 12, 87–95. [Google Scholar] [CrossRef]
- Salim, S. Oxidative Stress and Psychological Disorders. Curr. Neuropharmacol. 2014, 12, 140–147. [Google Scholar] [CrossRef]
- Hänsel, A.; Hong, S.; Camara, R.J.; von Kaenel, R. Inflammation as a psychophysiological biomarker in chronic psychosocial stress. Neurosci. Biobehav. Rev. 2010, 35, 115–121. [Google Scholar] [CrossRef]
- Banks, W.A.; Kastin, A.J.; Gutierrez, E.G. Penetration of interleukin-6 across the murine blood-brain barrier. Neurosci. Lett. 1994, 179, 53–56. [Google Scholar] [CrossRef]
- Sonkar, G.K.; Singh, S.; Sonkar, S.K.; Singh, U.; Singh, R.G. Evaluation of serum interleukin 6 and tumour necrosis factor alpha levels, and their association with various non-immunological parameters in renal transplant recipients. Singap. Med. J. 2013, 54, 511–515. [Google Scholar] [CrossRef]
- Ford, D.M.; Budworth, L.; Lawton, R.; Teale, E.A.; O’Connor, D.B. In-hospital stress and patient outcomes: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0282789. [Google Scholar] [CrossRef] [PubMed]
- Daruna, J.H. Historical Antecedents. In Introduction to Psychoneuroimmunology, 2nd ed.; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Kiecolt-Glaser, J.K.; McGuire, L.; Robles, T.F.; Glaser, R. Psychoneuroimmunology and Psychosomatic Medicine: Back to the Future. Psychosom. Med. 2002, 64, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Bower, J.E.; Kuhlman, K.R. Psychoneuroimmunology: An Introduction to Immune-to-Brain Communication and Its Implications for Clinical Psychology. Annu. Rev. Clin. Psychol. 2023, 19, 331–359. [Google Scholar] [CrossRef] [PubMed]
- Klapheke, M.M. Transplantation psychoneuroimmunology: Building hypotheses. Med. Hypotheses 2000, 54, 969–978. [Google Scholar] [CrossRef]
- Felten, D.L.; Ackerman, K.D.; Wiegand, S.J.; Felten, S.Y. Noradrenergic sympathetic innervation of the spleen: I. Nerve fibers associate with lymphocytes and macrophages in specific compartments of the splenic white pulp. J. Neurosci. Res. 1987, 18, 28–36. [Google Scholar] [CrossRef]
- Talbot, S.; Foster, S.L.; Woolf, C.J. Neuroimmunity: Physiology and Pathology. Annu. Rev. Immunol. 2016, 34, 421–447. [Google Scholar] [CrossRef]
- Nance, D.M.; Sanders, V.M. Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav. Immun. 2007, 21, 736–745. [Google Scholar] [CrossRef]
- Herr, N.; Bode, C.; Duerschmied, D. The Effects of Serotonin in Immune Cells. Front. Cardiovasc. Med. 2017, 4, 48. [Google Scholar] [CrossRef]
- Johnson, E.W.; Hughes, T.K., Jr.; Smith, E.M. ACTH enhancement of T-lymphocyte cytotoxic responses. Cell Mol. Neurobiol. 2005, 25, 743–757. [Google Scholar] [CrossRef] [PubMed]
- Cain, D.W.; Cidlowski, J.A. Immune regulation by glucocorticoids. Nat. Rev. Immunol. 2017, 17, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Pállinger, E.; Csaba, G. A hormone map of human immune cells showing the presence of adrenocorticotropic hormone, triiodothyronine and endorphin in immunophenotyped white blood cells. Immunology 2008, 123, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Finocchiaro, L.M.; Arzt, E.S.; Fernández-Castelo, S.; Criscuolo, M.; Finkielman, S.; Nahmod, V.E. Serotonin and melatonin synthesis in peripheral blood mononuclear cells: Stimulation by interferon-gamma as part of an immunomodulatory pathway. J. Interferon Res. 1988, 8, 705–716. [Google Scholar] [CrossRef]
- Gumabay, F.M.; Novak, M.; Bansal, A.; Mitchell, M.; Famure, O.; Kim, S.J.; Mucsi, I. Pre-transplant history of mental health concerns, non-adherence, and post-transplant outcomes in kidney transplant recipients. J. Psychosom. Res. 2018, 105, 115–124. [Google Scholar] [CrossRef]
- Sagmeister, M.S.; Harper, L.; Hardy, R.S. Cortisol excess in chronic kidney disease—A review of changes and impact on mortality. Front. Endocrinol. 2023, 13, 1075809. [Google Scholar] [CrossRef]
- Mills, P.J.; Berry, C.C.; Dimsdale, J.E.; Ziegler, M.G.; Nelesen, R.A.; Kennedy, B.P. Lymphocyte subset redistribution in response to acute experimental stress: Effects of gender, ethnicity, hypertension, and the sympathetic nervous system. Brain Behav. Immun. 1995, 9, 61–69. [Google Scholar] [CrossRef]
- Benschop, R.J.; Rodriguez-Feuerhahn, M.; Schedlowski, M. Catecholamine-induced leukocytosis: Early observations, current research, and future directions. Brain Behav. Immun. 1996, 10, 77–91. [Google Scholar] [CrossRef] [PubMed]
- Steptoe, A.; Hamer, M.; Chida, Y. The effects of acute psychological stress on circulating inflammatory factors in humans: A review and meta-analysis. Brain Behav. Immun. 2007, 21, 901–912. [Google Scholar] [CrossRef] [PubMed]
- Dhabhar, F.S.; Malarkey, W.B.; Neri, E.; McEwen, B.S. Stress-induced redistribution of immune cells--from barracks to boulevards to battlefields: A tale of three hormones-Curt Richter Award winner. Psychoneuroendocrinology 2012, 37, 1345–1368. [Google Scholar] [CrossRef]
- Bosch, J.A.; Berntson, G.G.; Cacioppo, J.T.; Marucha, P.T. Differential mobilization of functionally distinct natural killer subsets during acute psychologic stress. Psychosom. Med. 2005, 67, 366–375. [Google Scholar] [CrossRef]
- Schedlowski, M.; Jacobs, R.; Stratmann, G.; Richter, S.; Hädicke, A.; Tewes, U.; Wagner, T.O.; Schmidt, R.E. Changes of natural killer cells during acute psychological stress. J. Clin. Immunol. 1993, 13, 119–126. [Google Scholar] [CrossRef]
- Naliboff, B.D.; Benton, D.; Solomon, G.F.; Morley, J.E.; Fahey, J.L.; Bloom, E.T.; Makinodan, T.; Gilmore, S.L. Immunological changes in young and old adults during brief laboratory stress. Psychosom. Med. 1991, 53, 121–132. [Google Scholar] [CrossRef]
- Ehrchen, J.; Steinmüller, L.; Barczyk, K.; Tenbrock, K.; Nacken, W.; Eisenacher, M.; Nordhues, U.; Sorg, C.; Sunderkötter, C.; Roth, J. Glucocorticoids induce differentiation of a specifically activated, anti-inflammatory subtype of human monocytes. Blood 2007, 109, 1265–1274. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cousin, J.M.; Hughes, J.; Van Damme, J.; Seckl, J.R.; Haslett, C.; Dransfield, I.; Savill, J.; Rossi, A.G. Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes. J. Immunol. 1999, 162, 3639–3646. [Google Scholar] [CrossRef]
- Munck, A.; Náray-Fejes-Tóth, A. The ups and downs of glucocorticoid physiology Permissive and suppressive effects revisited. Mol. Cell Endocrinol. 1992, 90, C1–C4. [Google Scholar] [CrossRef]
- Bock, H.A. Steroid-resistant kidney transplant rejection: Diagnosis and treatment. J. Am. Soc. Nephrol. 2001, 12, S48–S52. [Google Scholar] [CrossRef] [PubMed]
- Herman, J.P.; McKlveen, J.M.; Ghosal, S.; Kopp, B.; Wulsin, A.; Makinson, R.; Scheimann, J.; Myers, B. Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. Compr. Physiol. 2016, 6, 603–621. [Google Scholar] [CrossRef]
- Ulrich-Lai, Y.M.; Figueiredo, H.F.; Ostrander, M.M.; Choi, D.C.; Engeland, W.C.; Herman, J.P. Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion-specific manner. Am. J. Physiol. Endocrinol. Metab. 2006, 291, E965–E973. [Google Scholar] [CrossRef]
- Reber, S.O.; Birkeneder, L.; Veenema, A.H.; Obermeier, F.; Falk, W.; Straub, R.H.; Neumann, I.D. Adrenal insufficiency and colonic inflammation after a novel chronic psycho-social stress paradigm in mice: Implications and mechanisms. Endocrinology 2007, 148, 670–682. [Google Scholar] [CrossRef]
- Kuebler, U.; Zuccarella-Hackl, C.; Arpagaus, A.; Wolf, J.M.; Farahmand, F.; von Känel, R.; Ehlert, U.; Wirtz, P.H. Stress-induced modulation of NF-κB activation, inflammation-associated gene expression, and cytokine levels in blood of healthy men. Brain Behav. Immun. 2015, 46, 87–95. [Google Scholar] [CrossRef]
- Xystrakis, E.; Kusumakar, S.; Boswell, S.; Peek, E.; Urry, Z.; Richards, D.F.; Adikibi, T.; Pridgeon, C.; Dallman, M.; Loke, T.K.; et al. Reversing the defective induction of IL-10-secreting regulatory T cells in glucocorticoid-resistant asthma patients. J. Clin. Investig. 2006, 116, 146–155. [Google Scholar] [CrossRef]
- McColl, A.; Bournazos, S.; Franz, S.; Perretti, M.; Morgan, B.P.; Haslett, C.; Dransfield, I. Glucocorticoids induce protein S-dependent phagocytosis of apoptotic neutrophils by human macrophages. J. Immunol. 2009, 183, 2167–2175. [Google Scholar] [CrossRef]
- Barczyk, K.; Ehrchen, J.; Tenbrock, K.; Ahlmann, M.; Kneidl, J.; Viemann, D.; Roth, J. Glucocorticoids promote survival of anti-inflammatory macrophages via stimulation of adenosine receptor A3. Blood 2010, 116, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Oguz, Y.; Oktenli, C.; Ozata, M.; Ozgurtas, T.; Sanisoglu, Y.; Yenicesu, M.; Vural, A.; Bulucu, F.; Kocar, I.H. The midnight-to-morning urinary cortisol increment method is not reliable for the assessment of hypothalamic-pituitary-adrenal insufficiency in patients with end-stage kidney disease. J. Endocrinol. Invesitig. 2003, 26, 609–615. [Google Scholar] [CrossRef]
- N’Gankam, V.; Uehlinger, D.; Dick, B.; Frey, B.M.; Frey, F.J. Increased cortisol metabolites and reduced activity of 11beta-hydroxysteroid dehydrogenase in patients on hemodialysis. Kidney Int. 2002, 61, 1859–1866. [Google Scholar] [CrossRef] [PubMed]
- Clodi, M.; Riedl, M.; Schmaldienst, S.; Vychytil, A.; Kotzmann, H.; Kaider, A.; Bieglmayer, C.; Mayer, G.; Waldhäusl, W.; Luger, A. Adrenal function in patients with chronic renal failure. Am. J. Kidney Dis. 1998, 32, 52–55. [Google Scholar] [CrossRef]
- Vigna, L.; Buccianti, G.; Orsatti, A.; Cresseri, D.; Bianchi, M.L.; Cremagnani, L.; Cantalamessa, L. The impact of long-term hemodialysis on pituitary-adrenocortical function. Ren. Fail. 1995, 17, 629–637. [Google Scholar] [CrossRef]
- Raff, H.; Trivedi, H. Circadian rhythm of salivary cortisol, plasma cortisol, and plasma ACTH in end-stage renal disease. Endocr. Connect. 2012, 2, 23–31. [Google Scholar] [CrossRef]
- Ponticelli, C.; Glassock, R.J. Prevention of complications from use of conventional immunosuppressants: A critical review. J. Nephrol. 2019, 32, 851–870. [Google Scholar] [CrossRef]
- Shimba, A.; Cui, G.; Abe, S.; Hirota, K.; Miyauchi, E.; Takami, D.; Tani-Ichi, S.; Kato, R.; Tajima, M.; Kanahashi, T.; et al. Stress-induced glucocorticoids enhance acute inflammation by promoting the differentiation of Th17 cells. Cell Rep. 2025, 44, 116093. [Google Scholar] [CrossRef]
- Newton, R.; Shah, S.; Altonsy, M.O.; Gerber, A.N. Glucocorticoid and cytokine crosstalk: Feedback, feedforward, and co-regulatory interactions determine repression or resistance. J. Biol. Chem. 2017, 292, 7163–7172. [Google Scholar] [CrossRef] [PubMed]
- Cari, L.; De Rosa, F.; Nocentini, G.; Riccardi, C. Context-Dependent Effect of Glucocorticoids on the Proliferation, Differentiation, and Apoptosis of Regulatory T Cells: A Review of the Empirical Evidence and Clinical Applications. Int. J. Mol. Sci. 2019, 20, 1142. [Google Scholar] [CrossRef] [PubMed]
- Seissler, N.; Schmitt, E.; Hug, F.; Sommerer, C.; Zeier, M.; Schaier, M.; Steinborn, A. Methylprednisolone treatment increases the proportion of the highly suppressive HLA-DR(+)-Treg-cells in transplanted patients. Transpl. Immunol. 2012, 27, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.L.; He, Y.R.; Liu, Y.J.; He, H.Y.; Gu, Z.Y.; Liu, Y.M.; Liu, W.J.; Luo, Z.; Ju, M.J. The immunomodulation role of Th17 and Treg in renal transplantation. Front. Immunol. 2023, 14, 1113560. [Google Scholar] [CrossRef]
- Wang, Y.L.; Tang, Z.Q.; Gao, W.; Jiang, Y.; Zhang, X.H.; Peng, L. Influence of Th1, Th2, and Th3 cytokines during the early phase after liver transplantation. Transplant. Proc. 2003, 35, 3024–3025. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, H.; Hu, K.; Lv, G.; Fu, Y.; Ayana, D.A.; Zhao, P.; Jiang, Y. The imbalance between Tregs, Th17 cells and inflammatory cytokines among renal transplant recipients. BMC Immunol. 2015, 16, 56. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Pu, J.; Chen, H.; Sun, L.; Fei, S.; Han, Z.; Tao, J.; Ju, X.; Wang, Z.; Tan, R.; et al. Role of microvascular pericyte dysfunction in antibody-mediated rejection following kidney transplantation. Ren. Fail. 2025, 47, 2458749. [Google Scholar] [CrossRef]
- Zielińska, K.A.; Van Moortel, L.; Opdenakker, G.; De Bosscher, K.; Van den Steen, P.E. Endothelial Response to Glucocorticoids in Inflammatory Diseases. Front. Immunol. 2016, 7, 592. [Google Scholar] [CrossRef]
- Simoncini, T.; Maffei, S.; Basta, G.; Barsacchi, G.; Genazzani, A.R.; Liao, J.K.; De Caterina, R. Estrogens and glucocorticoids inhibit endothelial vascular cell adhesion molecule-1 expression by different transcriptional mechanisms. Circ. Res. 2000, 87, 19–25. [Google Scholar] [CrossRef]
- Gelati, M.; Corsini, E.; Dufour, A.; Massa, G.; Giombini, S.; Solero, C.L.; Salmaggi, A. High-dose methylprednisolone reduces cytokine-induced adhesion molecules on human brain endothelium. Can. J. Neurol. Sci. 2000, 27, 241–244. [Google Scholar] [CrossRef]
- Limbourg, F.P.; Huang, Z.; Plumier, J.C.; Simoncini, T.; Fujioka, M.; Tuckermann, J.; Schütz, G.; Moskowitz, M.A.; Liao, J.K. Rapid nontranscriptional activation of endothelial nitric oxide synthase mediates increased cerebral blood flow and stroke protection by corticosteroids. J. Clin. Investig. 2002, 110, 1729–1738. [Google Scholar] [CrossRef]
- Sher, L.D.; Geddie, H.; Olivier, L.; Cairns, M.; Truter, N.; Beselaar, L.; Essop, M.F. Chronic stress and endothelial dysfunction: Mechanisms, experimental challenges, and the way ahead. Am. J. Physiol. Heart Circ. Physiol. 2020, 319, H488–H506. [Google Scholar] [CrossRef] [PubMed]
- Golbidi, S.; Frisbee, J.C.; Laher, I. Chronic stress impacts the cardiovascular system: Animal models and clinical outcomes. Am. J. Physiol. Heart Circ. Physiol. 2015, 308, H1476–H1498. [Google Scholar] [CrossRef]
- Wallerath, T.; Witte, K.; Schäfer, S.C.; Schwarz, P.M.; Prellwitz, W.; Wohlfart, P.; Kleinert, H.; Lehr, H.A.; Lemmer, B.; Förstermann, U. Down-regulation of the expression of endothelial NO synthase is likely to contribute to glucocorticoid-mediated hypertension. Proc. Natl. Acad. Sci. USA 1999, 96, 13357–13362. [Google Scholar] [CrossRef]
- Wilbert-Lampen, U.; Straube, F.; Trapp, A.; Deutschmann, A.; Plasse, A.; Steinbeck, G. Effects of corticotropin-releasing hormone (CRH) on monocyte function, mediated by CRH-receptor subtype R1 and R2: A potential link between mood disorders and endothelial dysfunction? J. Cardiovasc. Pharmacol. 2006, 47, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Song, J.P.; Chen, X.; Yang, G.; Geng, X.R. Corticotropin releasing hormone activates CD14+ cells to induce endothelial barrier dysfunction. Cell Biol. Int. 2013, 37, 1055–1060. [Google Scholar] [CrossRef] [PubMed]
- Esposito, K.; Nappo, F.; Marfella, R.; Giugliano, G.; Giugliano, F.; Ciotola, M.; Quagliaro, L.; Ceriello, A.; Giugliano, D. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: Role of oxidative stress. Circulation 2002, 106, 2067–2072. [Google Scholar] [CrossRef] [PubMed]
- Corr, M.; Walker, A.; Maxwell, A.P.; McKay, G.J. Non-adherence to immunosuppressive medications in kidney transplant recipients- a systematic scoping review. Transplant. Rev. 2025, 39, 100900. [Google Scholar] [CrossRef] [PubMed]
- Wiebe, C.; Nevins, T.E.; Robiner, W.N.; Thomas, W.; Matas, A.J.; Nickerson, P.W. The Synergistic Effect of Class II HLA Epitope-Mismatch and Nonadherence on Acute Rejection and Graft Survival. Am. J. Transplant. 2015, 15, 2197–2202. [Google Scholar] [CrossRef]
- Sellarés, J.; de Freitas, D.G.; Mengel, M.; Reeve, J.; Einecke, G.; Sis, B.; Hidalgo, L.G.; Famulski, K.; Matas, A.; Halloran, P.F. Understanding the causes of kidney transplant failure: The dominant role of antibody-mediated rejection and nonadherence. Am. J. Transplant. 2012, 12, 388–399. [Google Scholar] [CrossRef]
- Achille, M.A.; Ouellette, A.; Fournier, S.; Vachon, M.; Hébert, M.J. Impact of stress, distress and feelings of indebtedness on adherence to immunosuppressants following kidney transplantation. Clin. Transplant. 2006, 20, 301–306. [Google Scholar] [CrossRef]
- Ali, A.; Al-Taee, H.A.; Jasim, M.S. Adherence to Immunosuppressive Medication in Iraqi Kidney Transplant Recipients During the First Year of Transplant. A Single-Center Experience. Exp. Clin. Transplant. 2022, 20, 107–112. [Google Scholar] [CrossRef]
- Prather, A.A.; Gao, Y.; Betancourt, L.; Kordahl, R.C.; Sriram, A.; Huang, C.Y.; Hays, S.R.; Kukreja, J.; Calabrese, D.R.; Venado, A.; et al. Disturbed sleep after lung transplantation is associated with worse patient-reported outcomes and chronic lung allograft dysfunction. JHLT Open 2024, 7, 100170. [Google Scholar] [CrossRef]
- Yang, J.L.; Liu, X.; Jiang, H.; Pan, F.; Ho, C.S.; Ho, R.C. The Effects of High-fat-diet Combined with Chronic Unpredictable Mild Stress on Depression-like Behavior and Leptin/LepRb in Male Rats. Sci. Rep. 2016, 6, 35239. [Google Scholar] [CrossRef]
- de Vries, A.P.; Bakker, S.J.; van Son, W.J.; Homan van der Heide, J.J.; The, T.H.; de Jong, P.E.; Gans, R.O. Insulin resistance as putative cause of chronic renal transplant dysfunction. Am. J. Kidney Dis. 2003, 41, 859–867. [Google Scholar] [CrossRef]
- Assadi, S.N. What are the effects of psychological stress and physical work on blood lipid profiles? Medicine 2017, 96, e6816. [Google Scholar] [CrossRef]
- Sánchez Lázaro, I.J.; Almenar Bonet, L.; Moro López, J.; Sánchez Lacuesta, E.; Martínez-Dolz, L.; Agüero Ramón-Llín, J.; Andrés Lalaguna, L.; Cano Pérez, O.; Ortiz Martínez, V.; Buendía Fuentes, F.; et al. Influence of traditional cardiovascular risk factors in the recipient on the development of cardiac allograft vasculopathy after heart transplantation. Transplant. Proc. 2008, 40, 3056–3057. [Google Scholar] [CrossRef]
- Bagley, J.; Williams, L.; Hyde, M.; Birriel, C.R.; Iacomini, J. Hyperlipidemia and Allograft Rejection. Curr. Transplant. Rep. 2019, 6, 90–98. [Google Scholar] [CrossRef]
- Swamy, M.; Beck-Garcia, K.; Beck-Garcia, E.; Hartl, F.A.; Morath, A.; Yousefi, O.S.; Dopfer, E.P.; Molnár, E.; Schulze, A.K.; Blanco, R.; et al. A Cholesterol-Based Allostery Model of T Cell Receptor Phosphorylation. Immunity 2016, 44, 1091–1101. [Google Scholar] [CrossRef]
- Bagley, J.; Yuan, J.; Chandrakar, A.; Iacomini, J. Hyperlipidemia Alters Regulatory T Cell Function and Promotes Resistance to Tolerance Induction Through Costimulatory Molecule Blockade. Am. J. Transplant. 2015, 15, 2324–2335. [Google Scholar] [CrossRef]
- Bonacina, F.; Coe, D.; Wang, G.; Longhi, M.P.; Baragetti, A.; Moregola, A.; Garlaschelli, K.; Uboldi, P.; Pellegatta, F.; Grigore, L.; et al. Myeloid apolipoprotein E controls dendritic cell antigen presentation and T cell activation. Nat. Commun. 2018, 9, 3083. [Google Scholar] [CrossRef]
- Jiang, J.; Wu, L.; Xiong, L.; Zhao, B.; Tian, S.; Wang, H.; Lv, X. An analysis of the stress levels, influencing factors and countermeasures of kidney transplant recipients in a certain hospital. Front. Public. Health 2025, 13, 1690720. [Google Scholar] [CrossRef] [PubMed]
- Barutcu Atas, D.; Aydin Sunbul, E.; Velioglu, A.; Tuglular, S. The association between perceived stress with sleep quality, insomnia, anxiety and depression in kidney transplant recipients during Covid-19 pandemic. PLoS ONE 2021, 16, e0248117. [Google Scholar] [CrossRef]
- Látos, M.; Lázár, G.; Horváth, Z.; Wittmann, V.; Szederkényi, E.; Hódi, Z. Psychological rejection of the transplanted organ and graft dysfunction in kidney transplant patients. Transpl. Res. Risk Manag. 2016, 8, 15–24. [Google Scholar] [CrossRef]
- Nassar, M.K.; Nagy, E.; Elshial, M.M.; Samy, M.M.; Eltamaly, M.A.; Elfarahati, M.N.; Tharwat, S. Psychosocial and quality of life assessment in kidney transplant recipients: A focus on anxiety, depression, and clinical correlates. BMC Nephrol. 2025, 26, 501. [Google Scholar] [CrossRef] [PubMed]
- Nghiem, D.M.; Gomez, J.; Gloston, G.F.; Torres, D.S.; Marek, R.J. Psychological Assessment Instruments for Use in Liver and Kidney Transplant Evaluations: Scarcity of Evidence and Recommendations. J. Pers. Assess. 2020, 102, 183–195. [Google Scholar] [CrossRef]
- Olbrisch, M.E.; Benedict, S.M.; Ashe, K.; Levenson, J.L. Psychological assessment and care of organ transplant patients. J. Consult. Clin. Psychol. 2002, 70, 771–783. [Google Scholar] [CrossRef]
- Rodrigue, J.R.; Mandelbrot, D.A.; Pavlakis, M. A psychological intervention to improve quality of life and reduce psychological distress in adults awaiting kidney transplantation. Nephrol. Dial. Transplant. 2011, 26, 709–715. [Google Scholar] [CrossRef]
- Khoury, B.; Sharma, M.; Rush, S.E.; Fournier, C. Mindfulness-based stress reduction for healthy individuals: A meta-analysis. J. Psychosom. Res. 2015, 78, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Stonnington, C.M.; Darby, B.; Santucci, A.; Mulligan, P.; Pathuis, P.; Cuc, A.; Hentz, J.G.; Zhang, N.; Mulligan, D.; Sood, A. A resilience intervention involving mindfulness training for transplant patients and their caregivers. Clin. Transplant. 2016, 30, 1466–1472. [Google Scholar] [CrossRef] [PubMed]
- Fowler, K.J. Life After Kidney Transplantation: The Time for a New Narrative. Transpl. Int. 2025, 38, 14074. [Google Scholar] [CrossRef] [PubMed]
- Brijmohan, A.; Famure, O.; Sihota, K.; Shea, M.; Marzario, B.; Mitchell, M. Psychosocial needs assessment post kidney transplant: Feasibility of a post-transplant specific support group. CANNT J. 2015, 25, 14–21. [Google Scholar]
- Hsiao, C.Y.; Lin, L.W.; Su, Y.W.; Yeh, S.H.; Lee, L.N.; Tsai, F.M. The Effects of an Empowerment Intervention on Renal Transplant Recipients: A Randomized Controlled Trial. J. Nurs. Res. 2016, 24, 201. [Google Scholar] [CrossRef]
- Amerena, P.; Wallace, P. Psychological experiences of renal transplant patients: A qualitative analysis. Couns. Psychother. Res. 2009, 9, 273–279. [Google Scholar] [CrossRef]
- Toussaint, L.; Nguyen, Q.A.; Roettger, C.; Dixon, K.; Offenbächer, M.; Kohls, N.; Hirsch, J.; Sirois, F. Effectiveness of Progressive Muscle Relaxation, Deep Breathing, and Guided Imagery in Promoting Psychological and Physiological States of Relaxation. Evid. Based Complement. Altern. Med. 2021, 2021, 5924040. [Google Scholar] [CrossRef]
- Muhammad Khir, S.; Wan Mohd Yunus, W.M.A.; Mahmud, N.; Wang, R.; Panatik, S.A.; Mohd Sukor, M.S.; Nordin, N.A. Efficacy of Progressive Muscle Relaxation in Adults for Stress, Anxiety, and Depression: A Systematic Review. Psychol. Res. Behav. Manag. 2024, 17, 345–365. [Google Scholar] [CrossRef]
- Uzun Yağız, Ş.; Avcı Işık, S. Effects of progressive muscle relaxation exercises on the vital signs and fatigue in kidney transplant patients: A randomized controlled trial. Int. Urol. Nephrol. 2024, 56, 3111–3121. [Google Scholar] [CrossRef]
- Hopper, S.I.; Murray, S.L.; Ferrara, L.R.; Singleton, J.K. Effectiveness of diaphragmatic breathing for reducing physiological and psychological stress in adults: A quantitative systematic review. JBI Database Syst. Rev. Implement. Rep. 2019, 17, 1855–1876. [Google Scholar] [CrossRef]
- Gross, C.R.; Kreitzer, M.J.; Thomas, W.; Reilly-Spong, M.; Cramer-Bornemann, M.; Nyman, J.A.; Frazier, P.; Ibrahim, H.N. Mindfulness-based stress reduction for solid organ transplant recipients: A randomized controlled trial. Altern. Ther. Health Med. 2010, 16, 30–38. [Google Scholar] [PubMed]
- Santorelli, S.F.; Kabat-Zinn, J. Mindfulness-Based Stress Reduction Professional Training: MBSR Curriculum Guide and Supporting Materials; Center for Mindfulness in Medicine, Health Care and Society: Worcester, MA, USA, 2002. [Google Scholar]
- Lim, K.W.; Ng, K.P.; Ooi, S.H.; Siow, W.S.; Tan, S.B. Symptom reduction in kidney transplant patients from 20-minute mindful breathing: A randomized controlled trial. BMC Nephrol. 2025, 26, 194. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Li, Y.; Zhou, M. Effects of Positive Psychological Interventions on Psychological Outcomes, Quality of Life, and Inflammation Biomarkers in Inflammatory Bowel Disease Patients: A Meta-Analysis of Randomized Controlled Trials. Gastroenterol. Nurs. 2024, 47, 455–466. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, M.S.; Bovbjerg, D.H.; Renna, M.E.; Lekander, M.; Mennin, D.S.; Zachariae, R. Effects of psychological interventions on systemic levels of inflammatory biomarkers in humans: A systematic review and meta-analysis. Brain Behav. Immun. 2018, 74, 68–78. [Google Scholar] [CrossRef]
- Chen, H.Y.; Chiang, C.K.; Wang, H.H.; Hung, K.Y.; Lee, Y.J.; Peng, Y.S.; Wu, K.D.; Tsai, T.J. Cognitive-behavioral therapy for sleep disturbance in patients undergoing peritoneal dialysis: A pilot randomized controlled trial. Am. J. Kidney Dis. 2008, 52, 314–323. [Google Scholar] [CrossRef]

| Author (Year) | Type of Research | Number of Participants | Type of Intervention | Final Results |
|---|---|---|---|---|
| Gross et al., 2010 [107] | A randomized controlled trial | 138 recipients of kidney, kidney/pancreas, liver, heart, or lung transplants | MBSR for 8 weeks | Reduced symptoms of anxiety and depression, improved quality of life |
| Hsiao et al., 2016 [101] | A randomized controlled trial | 122 patients have undergone a renal transplant within the past 20 years | 6 meetings with the Empowerment Support Group | Increased levels of empowerment and improved self-care behaviors |
| Lim et al., 2025 [109] | A randomized controlled trial | 60 kidney transplant recipients | 20 min mindful breathing for 4 weeks | Greater reduction in the total ESAS score |
| Rodrigue et al., 2011 [96] | A randomized controlled trial | 62 patients awaiting kidney transplantation | 6 sessions of quality of life therapy or supportive therapy | QOLT was more effective in improving the quality of life than ST |
| Stonnington et al., 2016 [98] | A clinical study | 31 recipients of heart, liver, kidney/pancreas, and stem cell transplant | MBRT for 6 weeks | Improved quality of life, reduced symptoms of stress, depression, and anxiety |
| Uzun Yağız and Avcı, 2024 [105] | A randomized controlled trial | 52 kidney transplant patients | PMR exercises for 4 weeks | Reduced fatigue |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piechowiak, P.; Lisowska, K.A. The Impact of Stress on the Functioning and Survival of Transplanted Kidneys—Biological Mechanisms, Clinical Implications, and Therapeutic Perspectives. Int. J. Mol. Sci. 2025, 26, 12041. https://doi.org/10.3390/ijms262412041
Piechowiak P, Lisowska KA. The Impact of Stress on the Functioning and Survival of Transplanted Kidneys—Biological Mechanisms, Clinical Implications, and Therapeutic Perspectives. International Journal of Molecular Sciences. 2025; 26(24):12041. https://doi.org/10.3390/ijms262412041
Chicago/Turabian StylePiechowiak, Paulina, and Katarzyna Aleksandra Lisowska. 2025. "The Impact of Stress on the Functioning and Survival of Transplanted Kidneys—Biological Mechanisms, Clinical Implications, and Therapeutic Perspectives" International Journal of Molecular Sciences 26, no. 24: 12041. https://doi.org/10.3390/ijms262412041
APA StylePiechowiak, P., & Lisowska, K. A. (2025). The Impact of Stress on the Functioning and Survival of Transplanted Kidneys—Biological Mechanisms, Clinical Implications, and Therapeutic Perspectives. International Journal of Molecular Sciences, 26(24), 12041. https://doi.org/10.3390/ijms262412041

