Knockdown-Induced Fasting Phenotypes in Flatworms: Insights into Underlying Mechanisms of Feeding Behavior
Abstract
1. Introduction
2. Results
2.1. Loss of Function of Target Genes Disrupts Homeostasis in the M. lignano Worms
2.2. Silencing of the Target Genes Mainly Result in Reduced Cell Proliferation
2.3. RNAi Triggers Silencing of the Transgene Encoding GFP
2.4. Gene Knockdown Validation
3. Discussion
3.1. Visual Changes Indicates Traits of Starvation
3.2. Decreasing Cell Divisions Reveal Complex Disrupting Effects of Gene Knockdown
3.3. Loss-of-Signal in the Gut-Specific Transgenic Line Exhibits Termination of Intestine Activity
3.4. Muscle-Specific Staining Shows No Signs of Mechanical Inability to Feed
3.5. Scenario Consideration of the Target Genes Knockdown Effects
3.5.1. Muscles Seems Not Involved Directly in Worm Starvation
3.5.2. Neural System Still Could Play with Hunger
3.5.3. Target Genes Are Essential for Intestine Functioning in M. lignano
3.6. Target Genes: GO Terms and Data from RNAi Assays on Other Worm Models
3.6.1. Kri1
3.6.2. Wbp2nl
3.6.3. Mlig-tuf1 and Mlig-tuf2 Lacking Homologs in Other Species
3.7. Neoblast- and Intestine-Enriched TFs in Regenerating Flatworms
3.8. Further Perspectives
4. Materials and Methods
4.1. Study Organism
4.2. Target Gene Selection
4.3. dsRNA Production and Knockdown Procedure
4.4. Genetic Knockdown Validation
4.5. Phalloidin and EdU Staining
4.6. Microscopy Analysis, Morphometry Measurements, and Fluorescence Intensity Analysis
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| TFs | Transcriptional factors |
| APOB | Apolipoprotein B |
| RNAi | RNA interference |
| EdU | 5-Ethynyl-2′-deoxyuridine (EdU) |
| dsRNA | double strand RNA |
| GO | Gene Ontology |
References
- Jennings, J.B. Studies on Feeding, Digestion, and Food Storage in Free-Living Flatworms (Platyhelminthes: Turbellaria). Biol. Bull. 1957, 112, 63–80. [Google Scholar] [CrossRef]
- Forsthoefel, D.J.; Cejda, N.I.; Khan, U.W.; Newmark, P.A. Cell-Type Diversity and Regionalized Gene Expression in the Planarian Intestine. eLife 2020, 9, e52613. [Google Scholar] [CrossRef]
- Flores, N.M.; Oviedo, N.J.; Sage, J. Essential Role for the Planarian Intestinal GATA Transcription Factor in Stem Cells and Regeneration. Dev. Biol. 2016, 418, 179–188. [Google Scholar] [CrossRef]
- Wong, L.L.; Bruxvoort, C.G.; Cejda, N.I.; Delaney, M.R.; Otero, J.R.; Forsthoefel, D.J. Intestine-Enriched Apolipoprotein b Orthologs Are Required for Stem Cell Progeny Differentiation and Regeneration in Planarians. Nat. Commun. 2022, 13, 3803. [Google Scholar] [CrossRef]
- Henderson, J.M.; Nisperos, S.V.; Weeks, J.; Ghulam, M.; Marín, I.; Zayas, R.M. Identification of HECT E3 Ubiquitin Ligase Family Genes Involved in Stem Cell Regulation and Regeneration in Planarians. Dev. Biol. 2015, 404, 21–34. [Google Scholar] [CrossRef]
- Reddien, P.W.; Alvarado, A.S. Fundamentals of Planarian Regeneration. Annu. Rev. Cell Dev. Biol. 2004, 20, 725–757. [Google Scholar] [CrossRef]
- Rink, J.C. Stem Cells, Patterning and Regeneration in Planarians: Self-Organization at the Organismal Scale. In Planarian Regeneration; Rink, J.C., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2018; Volume 1774, pp. 57–172. ISBN 978-1-4939-7800-7. [Google Scholar]
- Pellettieri, J. Regenerative Tissue Remodeling in Planarians–The Mysteries of Morphallaxis. Semin. Cell Dev. Biol. 2019, 87, 13–21. [Google Scholar] [CrossRef]
- Egger, B.; Gschwentner, R.; Hess, M.W.; Nimeth, K.T.; Adamski, Z.; Willems, M.; Rieger, R.; Salvenmoser, W. The Caudal Regeneration Blastema Is an Accumulation of Rapidly Proliferating Stem Cells in the Flatworm Macrostomum lignano. BMC Dev. Biol. 2009, 9, 41. [Google Scholar] [CrossRef]
- Egger, B.; Ladurner, P.; Nimeth, K.; Gschwentner, R.; Rieger, R. The Regeneration Capacity of the Flatworm Macrostomum lignano—On Repeated Regeneration, Rejuvenation, and the Minimal Size Needed for Regeneration. Dev. Genes Evol. 2006, 216, 565–577. [Google Scholar] [CrossRef]
- De Miguel-Bonet, M.D.M.; Ahad, S.; Hartenstein, V. Role of Neoblasts in the Patterned Postembryonic Growth of the Platyhelminth Macrostomum lignano. Neurogenesis 2018, 5, e1469944. [Google Scholar] [CrossRef]
- Bertemes, P.; Grosbusch, A.L.; Egger, B. No Head Regeneration Here: Regeneration Capacity and Stem Cell Dynamics of Theama Mediterranea (Polycladida, Platyhelminthes). Cell Tissue Res. 2020, 379, 301–321. [Google Scholar] [CrossRef]
- Grosbusch, A.L.; Bertemes, P.; Kauffmann, B.; Gotsis, C.; Egger, B. Do Not Lose Your Head over the Unequal Regeneration Capacity in Prolecithophoran Flatworms. Biology 2022, 11, 1588. [Google Scholar] [CrossRef]
- Orii, H.; Mochii, M.; Watanabe, K. A Simple “Soaking Method” for RNA Interference in the Planarian Dugesia Japonica. Dev. Genes Evol. 2003, 213, 138–141. [Google Scholar] [CrossRef]
- Wang, S.; Sun, Y.; Liu, X.; Guo, Y.; Huang, Y.; Zhang, S.; Tian, Q. Meis1 Controls the Differentiation of Eye Progenitor Cells and the Formation of Posterior Poles during Planarian Regeneration. Int. J. Mol. Sci. 2023, 24, 3505. [Google Scholar] [CrossRef]
- Tian, Q.; Sun, Y.; Gao, T.; Li, J.; Fang, H.; Zhang, S. Djnedd4L Is Required for Head Regeneration by Regulating Stem Cell Maintenance in Planarians. Int. J. Mol. Sci. 2021, 22, 11707. [Google Scholar] [CrossRef]
- Wudarski, J.; Egger, B.; Ramm, S.A.; Schärer, L.; Ladurner, P.; Zadesenets, K.S.; Rubtsov, N.B.; Mouton, S.; Berezikov, E. The Free-Living Flatworm Macrostomum lignano. EvoDevo 2020, 11, 5. [Google Scholar] [CrossRef]
- Fields, C.; Levin, M. Are Planaria Individuals? What Regenerative Biology Is Telling Us About the Nature of Multicellularity. Evol. Biol. 2018, 45, 237–247. [Google Scholar] [CrossRef]
- Grudniewska, M.; Mouton, S.; Simanov, D.; Beltman, F.; Grelling, M.; de Mulder, K.; Arindrarto, W.; Weissert, P.M.; van der Elst, S.; Berezikov, E. Transcriptional Signatures of Somatic Neoblasts and Germline Cells in Macrostomum lignano. eLife 2016, 5, e20607. [Google Scholar] [CrossRef]
- Mouton, S.; Mougel, A.; Ustyantsev, K.; Dissous, C.; Melnyk, O.; Berezikov, E.; Vicogne, J. Optimized Protocols for RNA Interference in Macrostomum lignano. G3 2024, 14, jkae037. [Google Scholar] [CrossRef]
- Wudarski, J.; Simanov, D.; Ustyantsev, K.; de Mulder, K.; Grelling, M.; Grudniewska, M.; Beltman, F.; Glazenburg, L.; Demircan, T.; Wunderer, J.; et al. Efficient Transgenesis and Annotated Genome Sequence of the Regenerative Flatworm Model Macrostomum lignano. Nat. Commun. 2017, 8, 2120. [Google Scholar] [CrossRef]
- Yun, K.E.; Kim, J.; Kim, M.; Park, E.; Kim, H.-L.; Chang, Y.; Ryu, S.; Kim, H.-N. Major Lipids, Apolipoproteins, and Alterations of Gut Microbiota. J. Clin. Med. 2020, 9, 1589. [Google Scholar] [CrossRef]
- Antes, T.J.; Goodart, S.A.; Chen, W.; Levy-Wilson, B. Human Apolipoprotein B Gene Intestinal Control Region. Biochemistry 2001, 40, 6720–6730. [Google Scholar] [CrossRef]
- Ustyantsev, K.V.; Vavilova, V.Y.; Blinov, A.G.; Berezikov, E.V. Macrostomum lignano as a Model to Study the Genetics and Genomics of Parasitic Flatworms. Vavilov J. Genet. Breed. 2021, 25, 108. [Google Scholar] [CrossRef]
- Mouton, S.; Ustyantsev, K.; Beltman, F.; Glazenburg, L.; Berezikov, E. TIM29 Is Required for Enhanced Stem Cell Activity during Regeneration in the Flatworm Macrostomum lignano. Sci. Rep. 2021, 11, 1166. [Google Scholar] [CrossRef]
- Ustyantsev, K.V.; Berezikov, E.V. Computational Analysis of Spliced Leader Trans-Splicing in the Regenerative Flatworm Macrostomum lignano Reveals Its Prevalence in Conserved and Stem Cell Related Genes. Vavilov J. Genet. Breed. 2021, 25, 101–107. [Google Scholar] [CrossRef]
- Mouton, S.; Wudarski, J.; Grudniewska, M.; Berezikov, E. The Regenerative Flatworm Macrostomum lignano, a Model Organism with High Experimental Potential. Int. J. Dev. Biol. 2018, 62, 551–558. [Google Scholar] [CrossRef]
- Biryukov, M.; Dmitrieva, A.; Vavilova, V.; Ustyantsev, K.; Bazarova, E.; Sukhikh, I.; Berezikov, E.; Blinov, A. Mlig-SKP1 Gene Is Required for Spermatogenesis in the Flatworm Macrostomum lignano. Int. J. Mol. Sci. 2022, 23, 15110. [Google Scholar] [CrossRef]
- Grudniewska, M.; Mouton, S.; Grelling, M.; Wolters, A.H.G.; Kuipers, J.; Giepmans, B.N.G.; Berezikov, E. A Novel Flatworm-Specific Gene Implicated in Reproduction in Macrostomum lignano. Sci. Rep. 2018, 8, 3192. [Google Scholar] [CrossRef]
- De Mulder, K.; Pfister, D.; Kuales, G.; Egger, B.; Salvenmoser, W.; Willems, M.; Steger, J.; Fauster, K.; Micura, R.; Borgonie, G.; et al. Stem Cells Are Differentially Regulated during Development, Regeneration and Homeostasis in Flatworms. Dev. Biol. 2009, 334, 198–212. [Google Scholar] [CrossRef]
- Pfister, D.; De Mulder, K.; Hartenstein, V.; Kuales, G.; Borgonie, G.; Marx, F.; Morris, J.; Ladurner, P. Flatworm Stem Cells and the Germ Line: Developmental and Evolutionary Implications of Macvasa Expression in Macrostomum lignano. Dev. Biol. 2008, 319, 146–159. [Google Scholar] [CrossRef]
- Pfister, D.; De Mulder, K.; Philipp, I.; Kuales, G.; Hrouda, M.; Eichberger, P.; Borgonie, G.; Hartenstein, V.; Ladurner, P. The Exceptional Stem Cell System of Macrostomum lignano: Screening for Gene Expression and Studying Cell Proliferation by Hydroxyurea Treatment and Irradiation. Front. Zool. 2007, 4, 9. [Google Scholar] [CrossRef]
- Mouton, S.; Willems, M.; Braeckman, B.P.; Egger, B.; Ladurner, P.; Schärer, L.; Borgonie, G. The Free-Living Flatworm Macrostomum lignano: A New Model Organism for Ageing Research. Exp. Gerontol. 2009, 44, 243–249. [Google Scholar] [CrossRef]
- Mouton, S.; Willems, M.; Houthoofd, W.; Bert, W.; Braeckman, B.P. Lack of Metabolic Ageing in the Long-Lived Flatworm Schmidtea Polychroa. Exp. Gerontol. 2011, 46, 755–761. [Google Scholar] [CrossRef]
- Nimeth, K.T.; Mahlknecht, M.; Mezzanato, A.; Peter, R.; Rieger, R.; Ladurner, P. Stem Cell Dynamics during Growth, Feeding, and Starvation in the Basal Flatworm Macrostomum Sp. (Platyhelminthes). Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2004, 230, 91–99. [Google Scholar] [CrossRef]
- Rieger, R.M.; Salvenmoser, W.; Legniti, A.; Tyler, S. Phalloidin-Rhodamine Preparations of Macrostomum Hystricinum Marinum (Plathelminthes): Morphology and Postembryonic Development of the Musculature. Zoomorphology 1994, 114, 133–147. [Google Scholar] [CrossRef]
- Mi, H.; Ebert, D.; Muruganujan, A.; Mills, C.; Albou, L.-P.; Mushayamaha, T.; Thomas, P.D. PANTHER Version 16: A Revised Family Classification, Tree-Based Classification Tool, Enhancer Regions and Extensive API. Nucleic Acids Res. 2021, 49, D394–D403. [Google Scholar] [CrossRef]
- Thomson, E.; Tollervey, D. The Final Step in 5.8S rRNA Processing Is Cytoplasmic in Saccharomyces Cerevisiae. Mol. Cell. Biol. 2010, 30, 976–984. [Google Scholar] [CrossRef]
- Tafforeau, L.; Zorbas, C.; Langhendries, J.-L.; Mullineux, S.-T.; Stamatopoulou, V.; Mullier, R.; Wacheul, L.; Lafontaine, D.L.J. The Complexity of Human Ribosome Biogenesis Revealed by Systematic Nucleolar Screening of Pre-rRNA Processing Factors. Mol. Cell 2013, 51, 539–551. [Google Scholar] [CrossRef]
- Wu, S.; Edskes, H.K.; Wickner, R.B. Human Proteins Curing Yeast Prions. Proc. Natl. Acad. Sci. USA 2023, 120, e2314781120. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, J.; Xie, Y.; Zhu, W.; Tao, M.; Chen, Y.; Xie, W.; Bade, R.; Jiang, S.; Liu, X.; et al. Mutant Kri1l Causes Abnormal Retinal Development via Cell Cycle Arrest and Apoptosis Induction. Cell Death Discov. 2024, 10, 251. [Google Scholar] [CrossRef]
- Jia, X.-E.; Ma, K.; Xu, T.; Gao, L.; Wu, S.; Fu, C.; Zhang, W.; Wang, Z.; Liu, K.; Dong, M.; et al. Mutation of Kri1l Causes Definitive Hematopoiesis Failure via PERK-Dependent Excessive Autophagy Induction. Cell Res. 2015, 25, 946–962. [Google Scholar] [CrossRef]
- Huettmann, C.; Stelljes, M.; Sivalingam, S.; Fobker, M.; Vrachimis, A.; Exler, A.; Wenning, C.; Wempe, C.; Penke, M.; Buness, A.; et al. Iron Deficiency Caused by Intestinal Iron Loss—Novel Candidate Genes for Severe Anemia. Genes 2021, 12, 1869. [Google Scholar] [CrossRef]
- Berman, J.R.; Kenyon, C. Germ-Cell Loss Extends C. Elegans Life Span through Regulation of DAF-16 by Kri-1 and Lipophilic-Hormone Signaling. Cell 2006, 124, 1055–1068. [Google Scholar] [CrossRef]
- Zheng, H.; Li, L.; Wang, D.; Zhang, S.; Li, W.; Cheng, M.; Ge, C.; Chen, J.; Qiang, Y.; Chen, F.; et al. FoxO Is Required for Neoblast Differentiation during Planarian Regeneration. Int. J. Biol. Macromol. 2025, 288, 138729. [Google Scholar] [CrossRef]
- Freour, T.; Barragan, M.; Ferrer-Vaquer, A.; Rodríguez, A.; Vassena, R. WBP2NL/PAWP mRNA and Protein Expression in Sperm Cells Are Not Related to Semen Parameters, Fertilization Rate, or Reproductive Outcome. J. Assist. Reprod. Genet. 2017, 34, 803–810. [Google Scholar] [CrossRef]
- Hamilton, L.E.; Suzuki, J.; Acteau, G.; Shi, M.; Xu, W.; Meinsohn, M.-C.; Sutovsky, P.; Oko, R. WBP2 Shares a Common Location in Mouse Spermatozoa with WBP2NL/PAWP and like Its Descendent Is a Candidate Mouse Oocyte-Activating Factor. Biol. Reprod. 2018, 99, 1171–1183. [Google Scholar] [CrossRef]
- Chen, S.; Wang, H.; Huang, Y.-F.; Li, M.-L.; Cheng, J.-H.; Hu, P.; Lu, C.-H.; Zhang, Y.; Liu, N.; Tzeng, C.-M.; et al. WW Domain-Binding Protein 2: An Adaptor Protein Closely Linked to the Development of Breast Cancer. Mol. Cancer 2017, 16, 128. [Google Scholar] [CrossRef]
- Nourashrafeddin, S.; Aarabi, M.; Modarressi, M.H.; Rahmati, M.; Nouri, M. The Evaluation of WBP2NL-Related Genes Expression in Breast Cancer. Pathol. Oncol. Res. 2015, 21, 293–300. [Google Scholar] [CrossRef]
- Tabatabaeian, H.; Rao, A.; Ramos, A.; Chu, T.; Sudol, M.; Lim, Y.P. The Emerging Roles of WBP2 Oncogene in Human Cancers. Oncogene 2020, 39, 4621–4635. [Google Scholar] [CrossRef]
- Lim, S.K.; Tabatabaeian, H.; Lu, S.Y.; Kang, S.-A.; Sundaram, G.M.; Sampath, P.; Chan, S.W.; Hong, W.J.; Lim, Y.P. Hippo/MST Blocks Breast Cancer by Downregulating WBP2 Oncogene Expression via miRNA Processor Dicer. Cell Death Dis. 2020, 11, 669. [Google Scholar] [CrossRef]
- Demircan, T.; Berezikov, E. The Hippo Pathway Regulates Stem Cells During Homeostasis and Regeneration of the Flatworm Macrostomum lignano. Stem Cells Dev. 2013, 22, 2174–2185. [Google Scholar] [CrossRef]
- Andersen, R.A. Algal Culturing Techniques; Elsevier: Amsterdam, The Netherlands, 2005; ISBN 978-0-08-045650-8. [Google Scholar]
- Ladurner, P.; Schärer, L.; Salvenmoser, W.; Rieger, R.M. A New Model Organism among the Lower Bilateria and the Use of Digital Microscopy in Taxonomy of Meiobenthic Platyhelminthes: Macrostomum lignano, n. Sp. (Rhabditophora, Macrostomorpha). J. Zool. Syst. Evol. Res. 2005, 43, 114–126. [Google Scholar] [CrossRef]
- Zadesenets, K.S.; Ershov, N.I.; Bondar, N.P.; Rubtsov, N.B. Unraveling the Unusual Subgenomic Organization in the Neopolyploid Free-Living Flatworm Macrostomum lignano. Mol. Biol. Evol. 2023, 40, msad250. [Google Scholar] [CrossRef]
- Wudarski, J.; Ustyantsev, K.; Reinoite, F.; Berezikov, E. Random Integration Transgenesis in a Free-Living Regenerative Flatworm Macrostomum lignano. In Whole-Body Regeneration: Methods and Protocols; Blanchoud, S., Galliot, B., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2022; pp. 493–508. ISBN 978-1-07-162172-1. [Google Scholar]
- Zadesenets, K.S.; Ershov, N.I.; Berezikov, E.; Rubtsov, N.B. Chromosome Evolution in the Free-Living Flatworms: First Evidence of Intrachromosomal Rearrangements in Karyotype Evolution of Macrostomum lignano (Platyhelminthes, Macrostomida). Genes 2017, 8, 298. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the Unification of Biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- The Gene Ontology Consortium; Aleksander, S.A.; Balhoff, J.; Carbon, S.; Cherry, J.M.; Drabkin, H.J.; Ebert, D.; Feuermann, M.; Gaudet, P.; Harris, N.L.; et al. The Gene Ontology Knowledgebase in 2023. Genetics 2023, 224, iyad031. [Google Scholar] [CrossRef]
- Lu, S.; Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; Gwadz, M.; Hurwitz, D.I.; Marchler, G.H.; Song, J.S.; et al. CDD/SPARCLE: The Conserved Domain Database in 2020. Nucleic Acids Res. 2020, 48, D265–D268. [Google Scholar] [CrossRef]
- Marchler-Bauer, A.; Derbyshire, M.K.; Gonzales, N.R.; Lu, S.; Chitsaz, F.; Geer, L.Y.; Geer, R.C.; He, J.; Gwadz, M.; Hurwitz, D.I.; et al. CDD: NCBI’s Conserved Domain Database. Nucleic Acids Res. 2015, 43, D222–D226. [Google Scholar] [CrossRef]
- Wudarski, J.; Ustyantsev, K.; Glazenburg, L.; Berezikov, E. Influence of Temperature on Development, Reproduction and Regeneration in the Flatworm Model Organism, Macrostomum lignano. Zool. Lett. 2019, 5, 7. [Google Scholar] [CrossRef]
- Harr, J.C.; Gonzalez-Sandoval, A.; Gasser, S.M. Histones and Histone Modifications in Perinuclear Chromatin Anchoring: From Yeast to Man. EMBO Rep. 2016, 17, 139–155. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate Normalization of Real-Time Quantitative RT-PCR Data by Geometric Averaging of Multiple Internal Control Genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef]
- Girich, E.V.; Trinh, P.T.H.; Nesterenko, L.E.; Popov, R.S.; Kim, N.Y.; Rasin, A.B.; Menchinskaya, E.S.; Kuzmich, A.S.; Chingizova, E.A.; Minin, A.S.; et al. Absolute Stereochemistry and Cytotoxic Effects of Vismione E from Marine Sponge-Derived Fungus Aspergillus Sp. 1901NT-1.2.2. Int. J. Mol. Sci. 2023, 24, 8150. [Google Scholar] [CrossRef]
- Collins, T.J. ImageJ for Microscopy. BioTechniques 2007, 43, S25–S30. [Google Scholar] [CrossRef]
- Kelley, L.C.; Wang, Z.; Hagedorn, E.J.; Wang, L.; Shen, W.; Lei, S.; Johnson, S.A.; Sherwood, D.R. Live-Cell Confocal Microscopy and Quantitative 4D Image Analysis of Anchor-Cell Invasion through the Basement Membrane in Caenorhabditis elegans. Nat. Protoc. 2017, 12, 2081–2096. [Google Scholar] [CrossRef]
- Couto, N.F.D.; Queiroz-Oliveira, T.; Horta, M.F.; Castro-Gomes, T.; Andrade, L.O. Measuring Intracellular Vesicle Density and Dispersion Using Fluorescence Microscopy and ImageJ/FIJI. Bio Protoc. 2020, 10, e3703. [Google Scholar] [CrossRef]




| Subline/Group | N | L, µm | W, µm | Body Area, µm2 | Gonads’ Area, µm2 |
|---|---|---|---|---|---|
| DV1_8 | |||||
| Control | 9 | 1475.5 ±138.8 | 356.4 ±36.7 | 530,642.7 ±43,774.7 | 77,589.1 ±15,892.5 |
| Mlig-kri1 | 22 | 1205.9 ±151.9 * | 297.2 ±44.3 * | 405,492.7 ±86,069.3 * | 64,158.2 ±19,317.6 |
| Mlig-tuf1 | 24 | 1242.6 ±114.1 * | 253.6 ±39.2 * | 383,684.4 ±72,438.6 * | 47,225.3 ±14,455.8 * |
| Mlig-tuf2 | 22 | 1291.8 ±177.5 * | 257.4 ±38.6 * | 404,942.7 ±66,601.4 * | 45,379.0 ±8668.3 * |
| Mlig-wbp2nl | 21 | 1344.0 ±132.4 | 263.6 ±31.2 * | 433,123.2 ±74,015.0 * | 48,747.4 ±12,744.4 * |
| DV1_10 | |||||
| Control | 9 | 1560.9 ±101.4 | 315.6 ±41.9 | 517,302.3 ±68,565.8 | 106,516.2 ±27,555.0 |
| Mlig-kri1 | 22 | 1232.8 ±131.5 * | 306.4 ±31.7 | 436,435.0 ±77,102.0 * | 53,749.4 ±11,138.9 *,** |
| Mlig-tuf1 | 22 | 1190.3 ±110.9 * | 301.9 ±34.1 | 410,264.0 ±39,223.4 * | 52,436.7 ±9465.5 *,** |
| Mlig-tuf2 | 20 | 1156.0 ±157.6 * | 298.0 ±50.5 | 379,303.5 ±68,304.4 * | 53,564.6 ±9568.8 * |
| Mlig-wbp2nl | 22 | 1263.2 ±243.8 * | 323.1 ±55.2 | 449,492.7 ±97,078.8 | 57,707.9 ±10,427.5 *,** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biryukov, M.; Dmitrieva, A.; Chepurnov, G.; Zadesenets, K.S. Knockdown-Induced Fasting Phenotypes in Flatworms: Insights into Underlying Mechanisms of Feeding Behavior. Int. J. Mol. Sci. 2025, 26, 11934. https://doi.org/10.3390/ijms262411934
Biryukov M, Dmitrieva A, Chepurnov G, Zadesenets KS. Knockdown-Induced Fasting Phenotypes in Flatworms: Insights into Underlying Mechanisms of Feeding Behavior. International Journal of Molecular Sciences. 2025; 26(24):11934. https://doi.org/10.3390/ijms262411934
Chicago/Turabian StyleBiryukov, Mikhail, Anastasia Dmitrieva, Grigory Chepurnov, and Kira S. Zadesenets. 2025. "Knockdown-Induced Fasting Phenotypes in Flatworms: Insights into Underlying Mechanisms of Feeding Behavior" International Journal of Molecular Sciences 26, no. 24: 11934. https://doi.org/10.3390/ijms262411934
APA StyleBiryukov, M., Dmitrieva, A., Chepurnov, G., & Zadesenets, K. S. (2025). Knockdown-Induced Fasting Phenotypes in Flatworms: Insights into Underlying Mechanisms of Feeding Behavior. International Journal of Molecular Sciences, 26(24), 11934. https://doi.org/10.3390/ijms262411934

