Abstract
Lead (Pb) disrupts mitochondrial function, but its impact on the mitochondrial dynamics and biogenesis during early brain development remains insufficiently understood. This study aimed to investigate the effects of pre- and neonatal Pb exposure on the processes involved in mitochondrial network formation in the brains of rat offspring, simulating environmental exposure. We quantified mRNA expression (qRT-PCR) and protein levels (ELISA) of key mitochondrial fusion (Mfn1, Mfn2, Opa1), fission (Drp1, Fis1) regulators, as well as biogenesis markers (PGC-1α, TFAM, NRF1) in the hippocampus, forebrain cortex, and cerebellum of rats exposed to Pb. Mitochondrial ultrastructure was evaluated using transmission electron microscopy (TEM), and the expression of mitochondrial electron transport chain (ETC) genes was analysed (qRT-PCR). Furthermore, to examine the involvement of the cGAS–STING pathway in Pb-induced neuroinflammation, we measured the expression of ISGs (qRT-PCR), TBK1 phosphorylation (Western blot), and 2′,3′-cGAMP synthesis (ELISA). Our results showed that Pb exposure markedly reduced PGC-1α and region-specific NRF1 levels, broadly supressed fusion proteins (Mfn1, Mfn2, Opa1), increased Fis1, and depleted Drp1. ETC gene expression (mtNd1, mtCyb and mtCo1) were upregulated in a brain-structure-dependent manner. These molecular changes were accompanied by pronounced mitochondrial morphological abnormalities. Despite upregulation of Mx1, Ifi44, and Sting1, along with synthesis of 2′3′-cGAMP, TBK1 activation was not detected. All these findings demonstrate that early-life Pb exposure, even low-dose, disrupts mitochondrial biogenesis and the fusion–fission machinery, thus impairs brain energy homeostasis, and implicates mitochondria as central mediators of Pb-induced neuroinflammation and neurodevelopmental toxicity.