Experimental Study and Molecular Modeling of Antibody Interactions with Different Fluoroquinolones
Abstract
1. Introduction
2. Results and Discussion
2.1. Study of Immune Interactions of GAT and Other FQs with Anti-S-GAT MAb
2.2. Molecular Modeling
2.3. Consideration of Experimental (ELISA) Data
3. Materials and Methods
3.1. Reagents and Materials
3.2. Synthesis of GAT–OVA Conjugate
3.3. Enzyme-Linked Immunosorbent Assay of GAT and Other FQs
3.4. Computational Protocol
3.5. Statistics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arora, R.; Arnaout, R. Repertoire-scale measures of antigen binding. Proc. Natl. Acad. Sci. USA 2022, 119, e2203505119. [Google Scholar] [CrossRef]
- Soler, M.; Lechuga, L.M. Chemistry for next-generation diagnostics. Key factors in the development of medical biosensors. Metode Sci. Stud. J. 2025, 15, e27225. [Google Scholar] [CrossRef]
- Høie, M.H.; Hummer, A.M.; Olsen, T.H.; Aguilar-Sanjuan, B.; Nielsen, M.; Deane, C.M. AntiFold: Improved structure-based antibody design using inverse folding. Bioinform. Adv. 2025, 5, vbae202. [Google Scholar] [CrossRef]
- Clifford, J.N.; Richardson, E.; Peters, B.; Nielsen, M. AbEpiTope-1.0: Improved antibody target prediction by use of AlphaFold and inverse folding. Sci. Adv. 2025, 11, eadu1823. [Google Scholar] [CrossRef] [PubMed]
- Vashist, S.K. Immunodiagnostics: Major advances and future insights. J. Biochips Tissue Chips 2013, 3, 1000105. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, Y.; Ding, S.; He, F.; Beier, R.C.; Li, J.; Jiang, H.; Feng, C.; Wan, Y.; Zhang, S.; et al. Development of a monoclonal antibody-based broad-specificity ELISA for fluoroquinolone antibiotics in foods and molecular modeling studies of cross-reactive compounds. Anal. Chem. 2007, 79, 4471–4483. [Google Scholar] [CrossRef]
- Choulier, L.; Andersson, K.; Hämäläinen, M.D.; van Regenmortel, M.H.; Malmqvist, M.; Altschuh, D. QSAR studies applied to the prediction of antigen-antibody interaction kinetics as measured by BIACORE. Protein Eng. 2002, 15, 373–382. [Google Scholar] [CrossRef]
- Dejaegere, A.; Choulier, L.; Lafont, V.; De Genst, E.; Altschuh, D. Variations in antigen-antibody association kinetics as a function of pH and salt concentration: A QSAR and molecular modeling study. Biochemistry 2005, 44, 14409–14418. [Google Scholar] [CrossRef]
- Xie, R.-K.; Long, H.-X.; Cheng, X.-M.; Wang, Y.-Q.; Lin, Y.; Yang, Y.; Zhu, B.; Lin, Z.-H. Quantitative sequence-kinetics relationship in antigen-antibody interaction kinetics based on a set of descriptor. Chem. Biol. Drug Des. 2010, 76, 345–349. [Google Scholar] [CrossRef]
- Suay-García, B.; Climent, J.; Pérez-Gracia, M.T.; Falcó, A. A comprehensive update on the use of molecular topology applications for anti-infective drug discovery. Expert Opin. Drug Discov. 2025, 20, 465–474. [Google Scholar] [CrossRef]
- Fahim, A.M. Structure-based drug design; Computational strategies in drug discovery; Antihypertensive agents; Antiviral drugs; Molecular docking; QSAR; Pharmacological insights. Comput. Biol. Chem. 2025, 120, 108663. [Google Scholar] [CrossRef] [PubMed]
- Hammoudi, N.-E.-H.; Lalaoui, O.; Sobhi, W.; Erto, A.; Micoli, L.; Jeon, B.-H.; Benguerba, Y.; Elfalleh, W.; Ali, M.A.M.; Ibrahim, N.A.; et al. Advancing QSAR models in drug discovery for best practices, theoretical foundations, and applications in targeting nuclear factor-κB inhibitors—A bright future in pharmaceutical chemistry. Chemom. Intell. Lab. Syst. 2025, 267, 105544. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Gurunathan, B.; Surapaneni, K.M. Application of proteometric approach for identification of functional mutant sites to improve the binding affinity of anticancer biologic trastuzumab with its antigen human epidermal growth factor receptor 2. J. Mol. Recognit. 2020, 33, e2818. [Google Scholar] [CrossRef]
- Hess, R.; Faessler, J.; Yun, D.; Mama, A.; Saleh, D.; Grosch, J.H.; Wang, G.; Schwab, T.; Hubbuch, J. Predicting multimodal chromatography of therapeutic antibodies using multiscale modeling. J. Chromatogr. A 2024, 1718, 464706. [Google Scholar] [CrossRef]
- Pirouzbakht, M.; Zanganeh, S.; Afgar, A.; Mirzaee Khalilabadi, R.; Farsinejad, A.; Mirzaei-Parsa, M.J. Machine learning-driven QSAR modeling combined with molecular dynamics suggests high-affinity CD33-targeting peptides for leukemia therapy. Bioorg. Med. Chem. 2025, 129, 118332. [Google Scholar] [CrossRef]
- Richter, M.; Khrenova, M.; Kazakova, E.; Riabova, O.; Egorova, A.; Makarov, V.; Schmidtke, M. Dynamic features of virus protein 1 and substitutions in the 3-phenyl ring determine the potency and broad-spectrum activity of capsid-binding pyrazolo [3,4-d]pyrimidines against rhinoviruses. Antivir. Res. 2024, 231, 105993. [Google Scholar] [CrossRef] [PubMed]
- Tsedilin, A.; Schmidtke, M.; Monakhova, N.; Leneva, I.; Falynskova, I.; Khrenova, M.; Lane, T.R.; Ekins, S.; Makarov, V. Indole-core inhibitors of influenza a neuraminidase: Iterative medicinal chemistry and molecular modeling. Eur. J. Med. Chem. 2024, 277, 116768. [Google Scholar] [CrossRef]
- Bush, N.G.; Diez-Santos, I.; Abbott, L.R.; Maxwell, A. Quinolones: Mechanism, lethality and their contributions to antibiotic resistance. Molecules 2020, 25, 5662. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.; Chatterjee, S. Fluoroquinolone antibiotics: Occurrence, mode of action, resistance, environmental detection, and remediation—A comprehensive review. Environ. Pollut. 2022, 315, 120440. [Google Scholar] [CrossRef]
- Du, J.; Liu, Q.; Pan, Y.; Xu, S.; Li, H.; Tang, J. The Research status, potential hazards and toxicological mechanisms of fluoroquinolone antibiotics in the environment. Antibiotics 2023, 12, 1058. [Google Scholar] [CrossRef]
- Wolfson, J.S.; Hooper, D.C. The fluoroquinolones: Structures, mechanisms of action and resistance, and spectra of activity in vitro. Antimicrob. Agents Chemother. 1985, 28, 581–586. [Google Scholar] [CrossRef]
- Buglak, A.A.; Chebotaev, P.P.; Zherdev, A.V.; Hendrickson, O.D. QSAR and machine learning applied for the analysis of (fluoro)quinolone activity. Expert Opin. Drug Discov. 2025, 6, 1–23. [Google Scholar] [CrossRef]
- Blondeau, J.M. Gatifloxacin: A new fluoroquinolone. Expert. Opin. Investig. Drugs 2000, 9, 1877–1895. [Google Scholar] [CrossRef]
- Dalhoff, A.; Schmitz, F.J. In vitro antibacterial activity and pharmacodynamics of new quinolones. Eur. J. Clin. Microbiol. Infect. Dis. 2003, 22, 203–221. [Google Scholar] [CrossRef]
- Yang, X.; Li, Q.; Kwee, S.; Yang, J.; Zhang, Q.; Hu, X. An immunochromatographic strip sensor for marbofloxacin residues. PLoS ONE 2024, 19, e0299709. [Google Scholar] [CrossRef] [PubMed]
- Boonserm, P.; Puthong, S.; Wichai, T.; Noitang, S.; Khunrae, P.; Sooksai, S.; Komolpis, K. Investigation of major amino acid residues of anti-norfloxacin monoclonal antibodies responsible for binding with fluoroquinolones. Sci. Rep. 2021, 11, 17140. [Google Scholar] [CrossRef] [PubMed]
- Acaroz, U.; Dietrich, R.; Knauer, M.; Märtlbauer, E. Development of a generic enzyme-immunoassay for the detection of fluoro(quinolone)-residues in foodstuffs based on a highly sensitive monoclonal antibody. Food Anal. Methods 2020, 13, 780–792. [Google Scholar] [CrossRef]
- Mukunzi, D.; Isanga, J.; Suryoprabowo, S.; Liu, L.; Kuang, H. Rapid and sensitive immunoassays for the detection of lomefloxacin and related drug residues in bovine milk samples. Food Agric. Immunol. 2017, 28, 599–611. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, K.; Li, X.; Lu, L.; Sun, M.; Li, N.; Madushika, L.; Yuan, J.; Ling, S.; Wang, S. Development of sensitive and specific immunochromatographic strips with nanoparticles for rapid detection of flumequine. Food Chem. X 2025, 29, 102771. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Qi, Y.; Zhou, J.; Chen, Y.; Liang, C.; Liu, Z.; Zhang, X.; Wang, A. Development of a fluorescent immunochromatographic assay based on quantum dots for the detection of fleroxacin. RSC Adv. 2021, 11, 22005–22013. [Google Scholar] [CrossRef]
- Wang, L.; Xie, W.; Jiao, W.; Zhang, C.; Li, X.; Xu, Z.; Huang, X.; Lei, H.; Shen, X. Conformational adaptability determining antibody recognition to distomer: Structure analysis of enantioselective antibody against chiral drug gatifloxacin. RSC Adv. 2021, 11, 39534. [Google Scholar] [CrossRef]
- Hendrickson, O.D.; Byzova, N.A.; Panferov, V.G.; Zvereva, E.A.; Xing, S.; Zherdev, A.V.; Liu, J.; Lei, H.; Dzantiev, B.B. Ultrasensitive lateral flow immunoassay of fluoroquinolone antibiotic gatifloxacin using Au@Ag nanoparticles as a signal-enhancing label. Biosensors 2024, 14, 598. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–27891. [Google Scholar] [CrossRef]
- Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Best, R.B.; Zu, X.; Shim, J.; Lopes, P.E.; Mittal, J.; Feig, M.; Mackerell, A.D., Jr. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Theory Comput. 2012, 8, 3257–3273. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2010, 31, 671–690. [Google Scholar] [CrossRef]
- Phillips, J.C.; Hardy, D.J.; Maia, J.D.C.; Stone, J.E.; Ribeiro, J.V.; Bernardi, R.C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W.; et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 2020, 153, 044130. [Google Scholar] [CrossRef]
- Sethi, A.; Eargle, J.; Black, A.A.; Luthey-Schulten, Z. Dynamical networks in tRNA:protein complexes. Proc. Natl. Acad. Sci. USA 2009, 106, 6620–6625. [Google Scholar] [CrossRef]
- Glykos, N.M. Software news and updates. Carma: A molecular dynamics analysis program. J. Comput. Chem. 2006, 27, 1765–1768. [Google Scholar] [CrossRef]




| Compound | IC50, ng/mL | CR, % |
|---|---|---|
| GAT | 0.27 ± 0.04 | 100 |
| CIN | >10,000 | <0.01 |
| CIP | 9.85 ± 0.31 | 2.74 ± 0.08 |
| CLI | >10,000 | <0.01 |
| DAN | >10,000 | <0.01 |
| DIF | >10,000 | <0.01 |
| ENO | >10,000 | <0.01 |
| ENR | >10,000 | <0.01 |
| FLU | >10,000 | <0.01 |
| GAR | >10,000 | <0.01 |
| LOM | 1.54 ± 0.13 | 17.5 ± 0.5 |
| MAR | >10,000 | <0.01 |
| MOX | >10,000 | <0.01 |
| NAD | >10,000 | <0.01 |
| OFL | >10,000 | <0.01 |
| NAL | >10,000 | <0.01 |
| ORB | >10,000 | <0.01 |
| OXO | >10,000 | <0.01 |
| PAZ | >10,000 | <0.01 |
| PEF | >10,000 | <0.01 |
| PIP | >10,000 | <0.01 |
| RUF | >10,000 | <0.01 |
| SAR | 11.2 ± 4.0 | 2.41 ± 0.9 |
| S-OFL | >10,000 | <0.01 |
| SPA | >10,000 | <0.01 |
| TOS | >10,000 | <0.01 |
| Hapten | Lowest Binding Energy, kcal/mol | Mean Binding Energy, kcal/mol | Clusters, % |
|---|---|---|---|
| Cross-reactive | |||
| S-GAT | −10.02 | −9.98 | 100 |
| S-LOM | −9.13 | −9.06 | 100 |
| R-LOM | −9.13 | −9.04 | 100 |
| CIP | −8.53 | −8.5 | 100 |
| SAR | −9.67 | −9.62 | 100 |
| Non-cross-reactive | |||
| CIN | −6.1 | −6.08 | 100 |
| CLI | −7.84 | −7.79 | 62 |
| −7.67 | −7.61 | 38 | |
| CLI * | −8.28 | −7.88 | 100 |
| DAN | −8.65 | −8.63 | 100 |
| DAN ** | −7.52 | −7.47 | 82 |
| −7.47 | −7.4 | 4 | |
| −7.4 | −7.39 | 14 | |
| DIF | −8.63 | −8.27 | 85 |
| −8.2 | −8.17 | 15 | |
| ENO | −8.24 | −8.12 | 100 |
| ENR | −8.13 | −8 | 38 |
| −7.95 | −7.85 | 17 | |
| −7.82 | −7.75 | 44 | |
| −7.31 | −7.31 | 1 | |
| FLU | −6.68 | −6.68 | 100 |
| FLU * | −6.49 | −6.49 | 100 |
| GAR | −9.05 | −8.83 | 92 |
| −8.47 | −8.45 | 7 | |
| −8.12 | −8.12 | 1 | |
| MAR | −8.09 | −8.05 | 100 |
| MAR ** | −8.01 | −7.88 | 100 |
| MOX | −8.43 | −8.31 | 94 |
| −7.58 | −7.56 | 6 | |
| NAD | −7.79 | −7.47 | 97 |
| −7.12 | −7.12 | 3 | |
| NAD * | −7.64 | −7.41 | 56 |
| −7.49 | −7.42 | 42 | |
| −7.11 | −7.11 | 2 | |
| NAL | −5.59 | −5.58 | 100 |
| R-OFL | −7.97 | −7.93 | 100 |
| S-OFL | −8.04 | −8.01 | 99 |
| −7.1 | −7.1 | 1 | |
| ORB | −8.54 | −8.32 | 100 |
| OXO | −6.17 | −6.17 | 100 |
| PAZ | −8.59 | −8.5 | 100 |
| PEF | −7.29 | −7.24 | 87 |
| −7.06 | −7.06 | 5 | |
| −7.03 | −7.02 | 8 | |
| PIP | −8.23 | −8.17 | 100 |
| RUF | −7.45 | −7.41 | 17 |
| −7.43 | −7.41 | 64 | |
| −7.41 | −7.38 | 19 | |
| SPA | −7.94 | −7.87 | 60 |
| −7.55 | −7.49 | 30 | |
| −7.37 | −7.36 | 3 | |
| −7.34 | −7.29 | 7 | |
| TOS | −8.71 | −8.58 | 100 |
| TOS * | −9.2 | −9.15 | 100 |
| Hapten | Betweenness |
|---|---|
| S-GAT | 10,189 |
| S-LOM | 15,231 |
| R-LOM | 11,178 |
| CIP | 4169 |
| SAR | 5028 |
| CIN | 450 |
| CLI | 735 |
| CLI * | 851 |
| DAN | 3252 |
| DAN ** | 2167 |
| DIF | 7905 |
| ENO | 3232 |
| ENR | 462 |
| FLU | 456 |
| FLU * | 0 |
| GAR | 710 |
| MAR | 462 |
| MAR ** | 462 |
| MOX | 1362 |
| NAD | 1062 |
| NAD * | 882 |
| NAL | 0 |
| R-OFL | 3227 |
| S-OFL | 211 |
| ORB | 11,033 |
| OXO | 0 |
| PAZ | 1840 |
| PEF | 460 |
| PIP | 3339 |
| RUF | 644 |
| SPA | 858 |
| TOS | 628 |
| TOS * | 462 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meteleshko, Y.I.; Khrenova, M.G.; Byzova, N.A.; Xing, S.; Lei, H.; Zherdev, A.V.; Dzantiev, B.B.; Hendrickson, O.D. Experimental Study and Molecular Modeling of Antibody Interactions with Different Fluoroquinolones. Int. J. Mol. Sci. 2025, 26, 11862. https://doi.org/10.3390/ijms262411862
Meteleshko YI, Khrenova MG, Byzova NA, Xing S, Lei H, Zherdev AV, Dzantiev BB, Hendrickson OD. Experimental Study and Molecular Modeling of Antibody Interactions with Different Fluoroquinolones. International Journal of Molecular Sciences. 2025; 26(24):11862. https://doi.org/10.3390/ijms262411862
Chicago/Turabian StyleMeteleshko, Yulia I., Maria G. Khrenova, Nadezhda A. Byzova, Shen Xing, Hongtao Lei, Anatoly V. Zherdev, Boris B. Dzantiev, and Olga D. Hendrickson. 2025. "Experimental Study and Molecular Modeling of Antibody Interactions with Different Fluoroquinolones" International Journal of Molecular Sciences 26, no. 24: 11862. https://doi.org/10.3390/ijms262411862
APA StyleMeteleshko, Y. I., Khrenova, M. G., Byzova, N. A., Xing, S., Lei, H., Zherdev, A. V., Dzantiev, B. B., & Hendrickson, O. D. (2025). Experimental Study and Molecular Modeling of Antibody Interactions with Different Fluoroquinolones. International Journal of Molecular Sciences, 26(24), 11862. https://doi.org/10.3390/ijms262411862

