Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = gatifloxacin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2764 KiB  
Article
First Report of Stenotrophomonas maltophilia from Canine Dermatological Infections: Unravelling Its Antimicrobial Resistance, Biofilm Formation, and Virulence Traits
by Ria Rajeev, Porteen Kannan, Sureshkannan Sundaram, Sandhya Bhavani Mohan, Sivachandiran Radjendirane, Chaudhary Jeetendrakumar Harnathbhai, Anbazhagan Subbaiyan, Viswanathan Naveenkumar, Nithya Quintoil Mohanadasse, Wilfred Ruban Savariraj, Charley A. Cull and Raghavendra G. Amachawadi
Antibiotics 2025, 14(7), 639; https://doi.org/10.3390/antibiotics14070639 - 23 Jun 2025
Viewed by 531
Abstract
Background/Objectives: The present study was aimed at documenting S. maltophilia occurrence in dogs with skin ailments, investigating its virulence, biofilm-forming ability, antimicrobial susceptibility, and zoonotic potential to inform preventive and therapeutic strategies against multidrug resistant S. maltophilia infections. Methods: Skin swabs [...] Read more.
Background/Objectives: The present study was aimed at documenting S. maltophilia occurrence in dogs with skin ailments, investigating its virulence, biofilm-forming ability, antimicrobial susceptibility, and zoonotic potential to inform preventive and therapeutic strategies against multidrug resistant S. maltophilia infections. Methods: Skin swabs (n = 300) were collected from dogs with dermatological ailments. Isolation was performed using selective media and confirmed with molecular methods, validated by MALDI Biotyper. Antimicrobial susceptibility testing and efflux activity assessment were conducted. Resistance genes related to sulfonamides, quinolones, and β-lactams were screened. Virulence was assessed by biofilm formation, motility, and virulence gene profiling. Results: In total, 15 S. maltophilia (5%) isolates were identified. All 15 isolates were susceptible to trimethoprim-sulfamethoxazole, enrofloxacin, gatifloxacin, levofloxacin, minocycline, and tigecycline, but resistant to cefpodoxime and aztreonam. The following resistance genes qnr (93.3%), blaOXA-48 (46.7%), blaKPC (33.3%), blaNDM (33.3%), blaCTX-M (20%), blaSHV (20%), and blaTEM (6.7%) were detected. All 15 isolates displayed high efflux activity. Overall, 9 isolates (60%) were strong biofilm producers, and 6 (40%) were moderate. Virulence genes such as virB, motA, rmlA, and fliC were present in all 15 isolates, with others varying in frequency. All isolates exhibited swimming motility. Heat map clustering showed diverse profiles, with no identical isolate patterns. Correlation analysis indicated positive associations between several antimicrobial resistance and virulence genes. Conclusions: This study underscores the zoonotic potential of S. maltophilia from dogs, advocating for a One Health approach to mitigate infection risks and limit the spread of virulent multidrug resistant pathogens. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and Infections in Veterinary Settings)
Show Figures

Graphical abstract

15 pages, 1742 KiB  
Article
Genomic Diversity of the tet(X)-Positive Myroides Species
by Chong Chen, Taotao Wu, Jing Liu and Yilin Lv
Microorganisms 2025, 13(6), 1180; https://doi.org/10.3390/microorganisms13061180 - 22 May 2025
Viewed by 428
Abstract
The rapid spread of tet(X) genes capable of inactivating tigecycline represents a critical challenge to global public health. This study aims to explore the distribution, genetic diversity, and transferability of tet(X) genes in Myroides, a genus of Gram-negative bacteria increasingly [...] Read more.
The rapid spread of tet(X) genes capable of inactivating tigecycline represents a critical challenge to global public health. This study aims to explore the distribution, genetic diversity, and transferability of tet(X) genes in Myroides, a genus of Gram-negative bacteria increasingly implicated in multidrug-resistant (MDR) bacterial infections. From 2021 to 2024, 646 samples of chicken, sheep, soil, and water were randomly collected, yielding nine chicken-derived tet(X)-positive Myroides sp. strains in Shandong, China. All of them were MDR to tetracycline, ceftazidime, gentamicin, amikacin, colistin, ciprofloxacin, gatifloxacin, and trimethoprim-sulfamethoxazole, with elevated minimum inhibitory concentrations (MICs) for tigecycline, florfenicol, and macrolides, but exhibited susceptibility to meropenem (100%), ampicillin-sulbactam (66.7%), and cefotaxime (33.3%). A genomic analysis of the isolates and 86 public tet(X)-positive Myroides genomes revealed the widespread distribution of tet(X) and macrolide-inactivating estT genes across 12 Myroides species, including 7 novel species. Eight tet(X) and eight estT variants were identified, half of which were novel. The phylogenetic analysis highlighted interspecies transmission risks, with ISCR2-mediated transposons of tet(X6) and estT-2 across Myroides, Riemerella, Empedobacter, Providencia, Acinetobacter, and Proteus species. These findings illuminate the genomic diversity driving antibiotic resistance in understudied bacterial taxa, with implications for global One Health strategies. Full article
(This article belongs to the Special Issue Antibiotic and Resistance Gene Pollution in the Environment)
Show Figures

Figure 1

13 pages, 1798 KiB  
Article
Epidemiological and Antimicrobial Resistance Trends in Bacterial Keratitis: A Hospital-Based 10-Year Study (2014–2024)
by Qingquan Shi, Deshuo Mao, Zijun Zhang, Ahyan Ilman Qudsi, Mingda Wei, Zhen Cheng, Yang Zhang, Zhiqun Wang, Kexin Chen, Xizhan Xu, Xinxin Lu and Qingfeng Liang
Microorganisms 2025, 13(3), 670; https://doi.org/10.3390/microorganisms13030670 - 17 Mar 2025
Viewed by 812
Abstract
Bacterial keratitis (BK) is a severe ocular infection that can lead to vision loss, with antimicrobial resistance (AMR) posing a growing challenge. This study retrospectively analyzed 1071 bacterial isolates from corneal infections over a 10-year period (2014–2024) at a tertiary ophthalmic center in [...] Read more.
Bacterial keratitis (BK) is a severe ocular infection that can lead to vision loss, with antimicrobial resistance (AMR) posing a growing challenge. This study retrospectively analyzed 1071 bacterial isolates from corneal infections over a 10-year period (2014–2024) at a tertiary ophthalmic center in Beijing, categorizing them into three distinct phases: pre-COVID-19, during COVID-19, and post-COVID-19. The results indicated significant changes in pathogen distribution, including a marked decrease in Gram-positive cocci (from 69.8% pre-COVID-19 to 49.3% in post-COVID-19, p < 0.001), particularly in Staphylococcus epidermidis. In contrast, Gram-positive bacilli, particularly Corynebacterium spp., increased from 4.2% to 16.1% (p < 0.001). The susceptibility to gatifloxacin, moxifloxacin, and ciprofloxacin significantly declined in both Gram-positive cocci and bacilli during the COVID-19 period (all p < 0.01). Gatifloxacin resistance in Staphylococcus rose from pre-COVID-19 (15.2%) to COVID-19 (32.7%), remaining high post-COVID-19 (29.7%). A similar trend was observed in Streptococcus and Corynebacterium, where resistance rose sharply from 12.0% and 22.2% pre-COVID-19 to 42.9% during COVID-19, and remained elevated at 40.0% and 46.4% post-COVID-19, respectively (p < 0.01). These findings emphasize the rapid rise of fluoroquinolone resistance in several bacterial groups, underscoring the urgent need for continuous surveillance and improved antimicrobial stewardship to enhance treatment outcomes. Full article
(This article belongs to the Special Issue Ocular Microorganisms)
Show Figures

Figure 1

23 pages, 3203 KiB  
Article
Ultrasensitive Lateral Flow Immunoassay of Fluoroquinolone Antibiotic Gatifloxacin Using Au@Ag Nanoparticles as a Signal-Enhancing Label
by Olga D. Hendrickson, Nadezhda A. Byzova, Vasily G. Panferov, Elena A. Zvereva, Shen Xing, Anatoly V. Zherdev, Juewen Liu, Hongtao Lei and Boris B. Dzantiev
Biosensors 2024, 14(12), 598; https://doi.org/10.3390/bios14120598 - 6 Dec 2024
Cited by 3 | Viewed by 1477
Abstract
Gatifloxacin (GAT), an antibiotic belonging to the fluoroquinolone (FQ) class, is a toxicant that may contaminate food products. In this study, a method of ultrasensitive immunochromatographic detection of GAT was developed for the first time. An indirect format of the lateral flow immunoassay [...] Read more.
Gatifloxacin (GAT), an antibiotic belonging to the fluoroquinolone (FQ) class, is a toxicant that may contaminate food products. In this study, a method of ultrasensitive immunochromatographic detection of GAT was developed for the first time. An indirect format of the lateral flow immunoassay (LFIA) was performed. GAT-specific monoclonal antibodies and labeled anti-species antibodies were used in the LFIA. Bimetallic core@shell Au@Ag nanoparticles (Au@Ag NPs) were synthesized as a new label. Peroxidase-mimic properties of Au@Ag NPs allowed for the catalytic enhancement of the signal on test strips, increasing the assay sensitivity. A mechanism of Au@Ag NPs-mediated catalysis was deduced. Signal amplification was achieved through the oxidative etching of Au@Ag NPs by hydrogen peroxide. This resulted in the formation of gold nanoparticles and Ag+ ions, which catalyzed the oxidation of the peroxidase substrate. Such “chemical enhancement” allowed for reaching the instrumental limit of detection (LOD, calculated by Three Sigma approach) and cutoff of 0.8 and 20 pg/mL, respectively. The enhanced assay procedure can be completed in 21 min. The enhanced LFIA was tested for GAT detection in raw meat samples, and the recoveries from meat were 78.1–114.8%. This method can be recommended as a promising instrument for the sensitive detection of various toxicants. Full article
(This article belongs to the Special Issue Nanoparticle-Based Biosensors for Detection)
Show Figures

Figure 1

16 pages, 2056 KiB  
Article
Synthesis and Antimicrobial Activity of 3-Alkylidene-2-Indolone Derivatives
by He Huang, Yating Zhang, Qiu Du, Changji Zheng, Chenghua Jin and Siqi Li
Molecules 2024, 29(22), 5384; https://doi.org/10.3390/molecules29225384 - 15 Nov 2024
Cited by 3 | Viewed by 1607
Abstract
The escalating threat of antibiotic-resistant bacteria and fungi underscores an urgent need for new antimicrobial agents. This study aimed to synthesize and evaluate the antimicrobial activities of two series of 3-alkylidene-2-indolone derivatives. We synthesized 32 target compounds, among which 25 exhibited moderate to [...] Read more.
The escalating threat of antibiotic-resistant bacteria and fungi underscores an urgent need for new antimicrobial agents. This study aimed to synthesize and evaluate the antimicrobial activities of two series of 3-alkylidene-2-indolone derivatives. We synthesized 32 target compounds, among which 25 exhibited moderate to high antibacterial or antifungal activities. Notably, compounds 10f, 10g, and 10h demonstrated the highest antibacterial activity with a minimum inhibitory concentration (MIC) of 0.5 μg/mL, matching the activity of the positive control gatifloxacin against three Gram-positive bacterial strains: Staphylococcus aureus ATCC 6538, 4220, and Methicillin-resistant Staphylococcus aureus ATCC 43300. Moreover, the three most active compounds 10f, 10g, and 10h were evaluated for their in vitro cytotoxicity in the HepG2 cancer cell line and L-02; only compound 10h was found to exert some level of cytotoxicity. These findings suggest that the synthesized 3-alkylidene-2-indolone derivatives hold potential for further development as antibacterial agents. Full article
(This article belongs to the Special Issue Fused-Nitrogen-Containing Heterocycles (Second Edition))
Show Figures

Figure 1

5 pages, 5118 KiB  
Case Report
A Case of Parinaud Oculoglandular Syndrome in Which Bartonella DNA Was Detected in the Cornea and Conjunctiva by Polymerase Chain Reaction
by Junya Saito, Akira Machida, Daisuke Inoue, Masumi Suzuki Shimizu, Kohsuke Matsui, Kohei Harada, Mao Kusano, Yasser Helmy Mohamed and Masafumi Uematsu
Medicina 2024, 60(9), 1425; https://doi.org/10.3390/medicina60091425 - 31 Aug 2024
Cited by 1 | Viewed by 1779
Abstract
Background and Objectives: Parinaud oculoglandular syndrome (POS) is unilateral granulomatous follicular conjunctivitis with ipsilateral afferent lymphadenopathy, primarily caused by cat-scratch disease, tularemia, and sporotrichosis. We report a case of POS in which Bartonella DNA was detected using polymerase chain reaction (PCR) in [...] Read more.
Background and Objectives: Parinaud oculoglandular syndrome (POS) is unilateral granulomatous follicular conjunctivitis with ipsilateral afferent lymphadenopathy, primarily caused by cat-scratch disease, tularemia, and sporotrichosis. We report a case of POS in which Bartonella DNA was detected using polymerase chain reaction (PCR) in corneal and conjunctival specimens. Methods: A 29-year-old man, who started keeping a stray cat two months prior, became aware of right preauricular lymphadenopathy and right ocular conjunctival hyperemia one month prior. Subsequently, he developed a fever of approximately 37.9 °C, with a purulent ocular discharge appearing 1 week before being referred to our department for a detailed ophthalmological examination. The patient’s right eye showed hyperemia and edema in the bulbar conjunctiva, along with palpebral conjunctival hyperemia, follicles, and white ulcers. Two weeks later, his serum IgM titer for Bartonella henselae was 1:20, and Bartonella DNA was detected by PCR in the corneal and conjunctival specimens. Based on these findings, the patient was diagnosed with POS caused by cat-scratch disease (CSD). Oral doxycycline, rifampicin, topical gatifloxacin, betamethasone phosphate, and erythromycin eye ointments were prescribed. Results: After 2 weeks of oral treatment and 2 months of eye drop treatment, the deterioration of the cornea and conjunctiva improved when the patient recovered good visual acuity. Conclusions: PCR assays of corneal and conjunctival specimens are useful for the diagnosis of CSD presenting with POS. These results suggested that Bartonella may be directly involved in the ocular surface pathogenesis of POS. Full article
(This article belongs to the Collection Advances in Cornea, Cataract, and Refractive Surgery)
Show Figures

Figure 1

14 pages, 3479 KiB  
Article
Rapid Limit Test of Eight Quinolone Residues in Food Based on TLC-SERS, a New Limit Test Method
by Honglian Zhang, Min Zhang, Li Li, Wei Dong, Qiyong Ren, Feng Xu, Yuanrui Wang, Tao Xu and Jicheng Liu
Molecules 2023, 28(18), 6473; https://doi.org/10.3390/molecules28186473 - 6 Sep 2023
Cited by 7 | Viewed by 1776
Abstract
Residual quinolones in food that exceed their maximum residue limit (MRL) are harmful to human health. However, the existing methods used for testing these residues have limitations; so, we developed a new limit test method called TLC-SERS to rapidly determine the levels of [...] Read more.
Residual quinolones in food that exceed their maximum residue limit (MRL) are harmful to human health. However, the existing methods used for testing these residues have limitations; so, we developed a new limit test method called TLC-SERS to rapidly determine the levels of residues of the following: enrofloxacin (A), ciprofloxacin (B), ofloxacin (C), fleroxacin (D), sparfloxacin (E), enoxacin (F), gatifloxacin (G), and nadifloxacin (H). The residues ware preliminarily separated via TLC. The tested compounds’ position on a thin-layer plate were labeled using their relative Rf under 254 nm ultraviolet light, and an appropriate amount of nanometer silver solution was added to the position. The silver on the plate was irradiated with a 532 nm laser to obtain the SERSs of the compounds. The results show significant differences in the SERS of the eight quinolones: the LODs of H, A, D, E, C, G, F, and B were 9.0, 12.6, 8.9, 19.0, 8.0, 8.7, 19.0, and 12.6 ng/mL, respectively; and the RSD was ≤4.9% for the SERS of each quinolone. The limit test results of 20 samples are consistent with those obtained via UPLC–MS/MS. The results indicate that TLC-SERS is a specific, sensitive, stable, and accurate method, providing a new reference for the rapid limit test of harmful residues in foods. Full article
(This article belongs to the Collection Advances in Food Analysis)
Show Figures

Figure 1

18 pages, 3528 KiB  
Article
Gatifloxacin Loaded Nano Lipid Carriers for the Management of Bacterial Conjunctivitis
by Poorva H. Joshi, Ahmed Adel Ali Youssef, Mihir Ghonge, Corinne Varner, Siddharth Tripathi, Narendar Dudhipala and Soumyajit Majumdar
Antibiotics 2023, 12(8), 1318; https://doi.org/10.3390/antibiotics12081318 - 15 Aug 2023
Cited by 8 | Viewed by 2908
Abstract
Bacterial conjunctivitis (BC) entails inflammation of the ocular mucous membrane. Early effective treatment of BC can prevent the spread of the infection to the intraocular tissues, which could lead to bacterial endophthalmitis or serious visual disability. In 2003, gatifloxacin (GTX) eyedrops were introduced [...] Read more.
Bacterial conjunctivitis (BC) entails inflammation of the ocular mucous membrane. Early effective treatment of BC can prevent the spread of the infection to the intraocular tissues, which could lead to bacterial endophthalmitis or serious visual disability. In 2003, gatifloxacin (GTX) eyedrops were introduced as a new broad-spectrum fluoroquinolone to treat BC. Subsequently, GTX use was extended to other ocular bacterial infections. However, due to precorneal loss and poor ocular bioavailability, frequent administration of the commercial eyedrops is necessary, leading to poor patient compliance. Thus, the goal of the current investigation was to formulate GTX in a lipid-based drug delivery system to overcome the challenges with the existing marketed eyedrops and, thus, improve the management of bacterial conjunctivitis. GTX-NLCs and SLNs were formulated with a hot homogenization–probe sonication method. The lead GTX-NLC formulation was characterized and assessed for in vitro drug release, antimicrobial efficacy (against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa), and ex vivo permeation. The lead formulation exhibited desired physicochemical characteristics, an extended release of GTX over a 12 h period, and was stable over three months at the three storage conditions (refrigerated, room temperature, and accelerated). The transcorneal flux and permeability of GTX from the GTX-NLC formulation were 5.5- and 6.0-fold higher in comparison to the commercial eyedrops and exhibited a similar in vitro antibacterial activity. Therefore, GTX-NLCs could serve as an alternative drug delivery platform to improve treatment outcomes in BC. Full article
(This article belongs to the Special Issue Antimicrobial Nanoformulations against Bacterial Infections)
Show Figures

Figure 1

13 pages, 1821 KiB  
Review
Fluoroquinolone-Associated Movement Disorder: A Literature Review
by Jamir Pitton Rissardo and Ana Letícia Fornari Caprara
Medicines 2023, 10(6), 33; https://doi.org/10.3390/medicines10060033 - 25 May 2023
Cited by 6 | Viewed by 7978
Abstract
Background: Fluoroquinolones (FQNs) are related to several central nervous system side effects. This review aims to evaluate the clinical-epidemiological profile, pathophysiological mechanisms, and management of FQNs-associated movement disorders (MDs). Methods: Two reviewers identified and assessed relevant reports in six databases without language restriction [...] Read more.
Background: Fluoroquinolones (FQNs) are related to several central nervous system side effects. This review aims to evaluate the clinical-epidemiological profile, pathophysiological mechanisms, and management of FQNs-associated movement disorders (MDs). Methods: Two reviewers identified and assessed relevant reports in six databases without language restriction between 1988 and 2022. Results: A total of 45 reports containing 51 cases who developed MDs secondary to FQNs were reported. The MDs included 25 myoclonus, 13 dyskinesias, 7 dystonias, 2 cerebellar syndromes, 1 ataxia, 1 tic, and 2 undefined cases. The FQNs reported were ciprofloxacin, ofloxacin, gatifloxacin, moxifloxacin, levofloxacin, gemifloxacin, and pefloxacin. The mean and median age were 64.54 (SD: 15.45) and 67 years (range: 25–87 years). The predominant sex was male (54.16%). The mean and median time of MD onset were 6.02 (SD: 10.87) and 3 days (range: 1–68 days). The mean and median recovery time after MD treatment was 5.71 (SD: 9.01) and 3 days (range: 1–56 days). A complete recovery was achieved within one week of drug withdrawal in 80.95% of the patients. Overall, 95.83% of the individuals fully recovered after management. Conclusions: Future cases need to describe the long-term follow-up of the individuals. Additionally, FQN-induced myoclonus should include electrodiagnostic studies. Full article
Show Figures

Figure 1

11 pages, 1015 KiB  
Article
Simultaneous Quantification of Some Fluoroquinolone Residues in Real Wastewater Effluents Using CZE
by Sherif A. Abdel-Gawad and Ali Altharawi
Separations 2023, 10(5), 292; https://doi.org/10.3390/separations10050292 - 5 May 2023
Cited by 8 | Viewed by 1838
Abstract
Since active pharmaceutical ingredients (APIs) are directly related to human health, monitoring and quantifying them in the environment is a crucial and challenging issue. Using capillary-zone electrophoresis (CZE), four frequently used fluoroquinolones (FQs), ciprofloxacin, sparfloxacin, moxifloxacin, and gatifloxacin, were efficiently isolated and measured [...] Read more.
Since active pharmaceutical ingredients (APIs) are directly related to human health, monitoring and quantifying them in the environment is a crucial and challenging issue. Using capillary-zone electrophoresis (CZE), four frequently used fluoroquinolones (FQs), ciprofloxacin, sparfloxacin, moxifloxacin, and gatifloxacin, were efficiently isolated and measured in pharmaceutical industrial wastewater. Solid-phase extraction (SPE) was developed and used as an efficient sample pretreatment procedure. The capillary electrophoretic procedure’s various parameters were tuned to produce the optimal separation pattern for the drugs under consideration. All of the drugs under study were quantified in a concentration range of 0.5 to 50 µg/mL. After full assay validation in compliance with ICH-Q2B criteria, real wastewater samples were subjected to effective SPE, and the proposed assay was successfully used to determine the examined FQs in real wastewater samples. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Figure 1

9 pages, 889 KiB  
Article
Antibiotic Susceptibility and Minimum Inhibitory Concentration for Stenotrophomonas maltophilia Ocular Infections
by Margaret Ming-Chih Ho, Ming-Hui Sun, Wei-Chi Wu, Chi-Chun Lai, Lung-Kun Yeh, Yih-Shiou Hwang, Ching-Hsi Hsiao and Kuan-Jen Chen
Antibiotics 2022, 11(11), 1457; https://doi.org/10.3390/antibiotics11111457 - 22 Oct 2022
Cited by 4 | Viewed by 3039
Abstract
Stenotrophomonas maltophilia (S. maltophilia) is a Gram-negative, opportunistic pathogen that can lead to ocular infections, such as keratitis and endophthalmitis. The purpose of this study was to determine the antibiotic susceptibility and minimum inhibitory concentrations (MICs) of S. maltophilia isolates from [...] Read more.
Stenotrophomonas maltophilia (S. maltophilia) is a Gram-negative, opportunistic pathogen that can lead to ocular infections, such as keratitis and endophthalmitis. The purpose of this study was to determine the antibiotic susceptibility and minimum inhibitory concentrations (MICs) of S. maltophilia isolates from ocular infections and to evaluate the differences in antibiotic MICs between keratitis and endophthalmitis isolates. The disc diffusion method revealed that S. maltophilia isolates exhibited 91% susceptibility to levofloxacin and moxifloxacin and 61% susceptibility to trimethoprim–sulfamethoxazole (TMP–SMX). The E-test indicated that S. maltophilia isolates exhibited 40%, 100%, 72%, 91%, 91%, and 93% susceptibility to ceftazidime, tigecycline, TMP–SMX, levofloxacin, gatifloxacin, and moxifloxacin, respectively. The MIC90 values of amikacin, ceftazidime, cefuroxime, tigecycline, TMP–SMX, levofloxacin, gatifloxacin, and moxifloxacin were >256, >256, >256, 3, >32, 1, 2, and 0.75 µg/mL, respectively. The geometric mean MICs of ceftazidime, TMP–SMX, levofloxacin, gatifloxacin, and moxifloxacin were significantly lower for the keratitis isolates than for the endophthalmitis isolates (p = 0.0047, 0.003, 0.0029, 0.0003, and 0.0004, respectively). Fluoroquinolones showed higher susceptibility and lower MICs for the S. maltophilia isolates when compared with other antibiotics. Fluoroquinolones can be recommended for treating S. maltophilia ocular infections. Tigecycline and TMP–SMX could be alternative antibiotics for S. maltophilia ocular infections. Full article
Show Figures

Figure 1

16 pages, 29619 KiB  
Article
New Potential Pharmacological Targets of Plant-Derived Hydroxyanthraquinones from Rubia spp.
by Petko Alov, Merilin Al Sharif, Hristo Najdenski, Tania Pencheva, Ivanka Tsakovska, Maya Margaritova Zaharieva and Ilza Pajeva
Molecules 2022, 27(10), 3274; https://doi.org/10.3390/molecules27103274 - 19 May 2022
Cited by 1 | Viewed by 2390
Abstract
The increased use of polyphenols nowadays poses the need for identification of their new pharmacological targets. Recently, structure similarity-based virtual screening of DrugBank outlined pseudopurpurin, a hydroxyanthraquinone from Rubia cordifolia spp., as similar to gatifloxacin, a synthetic antibacterial agent. This suggested the bacterial [...] Read more.
The increased use of polyphenols nowadays poses the need for identification of their new pharmacological targets. Recently, structure similarity-based virtual screening of DrugBank outlined pseudopurpurin, a hydroxyanthraquinone from Rubia cordifolia spp., as similar to gatifloxacin, a synthetic antibacterial agent. This suggested the bacterial DNA gyrase and DNA topoisomerase IV as potential pharmacological targets of pseudopurpurin. In this study, estimation of structural similarity to referent antibacterial agents and molecular docking in the DNA gyrase and DNA topoisomerase IV complexes were performed for a homologous series of four hydroxyanthraquinones. Estimation of shape- and chemical feature-based similarity with (S)-gatifloxacin, a DNA gyrase inhibitor, and (S)-levofloxacin, a DNA topoisomerase IV inhibitor, outlined pseudopurpurin and munjistin as the most similar structures. The docking simulations supported the hypothesis for a plausible antibacterial activity of hydroxyanthraquinones. The predicted docking poses were grouped into 13 binding modes based on spatial similarities in the active site. The simultaneous presence of 1-OH and 3-COOH substituents in the anthraquinone scaffold were emphasized as relevant features for the binding modes’ variability and ability of the compounds to strongly bind in the DNA-enzyme complexes. The results reveal new potential pharmacological targets of the studied polyphenols and help in their prioritization as drug candidates and dietary supplements. Full article
(This article belongs to the Special Issue Drug Development Inspired by Natural Products)
Show Figures

Graphical abstract

10 pages, 2287 KiB  
Article
Advantages of Cubosomal Formulation for Gatifloxacin Delivery in the Treatment of Bacterial Keratitis: In Vitro and In Vivo Approach Using Clinical Isolate of Methicillin-Resistant Staphylococcus aureus
by Mohamed Nasr, Sameh Saber, Alaa Y. Bazeed, Heba A. Ramadan, Asmaa Ebada, Adela Laura Ciorba, Simona Cavalu and Heba I. Elagamy
Materials 2022, 15(9), 3374; https://doi.org/10.3390/ma15093374 - 8 May 2022
Cited by 10 | Viewed by 2254
Abstract
The objective of this study was to enhance the corneal permeation of gatifloxacin (GTX) using cubosomal nanoparticle as a delivery system. Cubosomal nanoparticle loaded with GTX was prepared and subjected for in vitro and in vivo investigations. The prepared GTX-loaded cubosomal particles exhibited [...] Read more.
The objective of this study was to enhance the corneal permeation of gatifloxacin (GTX) using cubosomal nanoparticle as a delivery system. Cubosomal nanoparticle loaded with GTX was prepared and subjected for in vitro and in vivo investigations. The prepared GTX-loaded cubosomal particles exhibited nanoparticle size of 197.46 ± 9.40 nm and entrapment efficiency of 52.8% ± 2.93. The results of ex vivo corneal permeation of GTX-loaded cubosomal dispersion show approximately 1.3-fold increase compared to GTX aqueous dispersion. The incorporation of GTX into cubosomal particles resulted in a fourfold reduction in the minimum inhibitory concentration (MIC) value for the GTX cubosomal particles relative to GTX aqueous dispersion. Furthermore, the enhanced corneal penetration of GTX-loaded cubosomal dispersion compared was evident by a significant decrease in the area % of corneal opacity in MRSA infected rats. Moreover, these results were confirmed by photomicrographs of histological structures of corneal tissues from rats treated with GTX-cubosomal dispersion which did not present any change compared to that of the normal rat corneas. In conclusion, treatment of ocular bacterial infections and reduction in the probability of development of new resistant strains of MRSA could be accomplished with GTX-loaded cubosomal nanoparticles. Full article
Show Figures

Figure 1

15 pages, 1584 KiB  
Article
Antimicrobial Resistance and Transconjugants Characteristics of sul3 Positive Escherichia coli Isolated from Animals in Nanning, Guangxi Province
by Qinmei Li, Zheng Li, Yuhan Wang, Yunru Chen, Junying Sun, Yunqiao Yang and Hongbin Si
Animals 2022, 12(8), 976; https://doi.org/10.3390/ani12080976 - 10 Apr 2022
Cited by 6 | Viewed by 2750
Abstract
Sulfonamides are the second most popular antibiotic in many countries, which leads to the widespread emergence of sulfonamides resistance. sul3 is a more recent version of the gene associated with sulfonamide resistance, whose research is relatively little. In order to comprehend the prevalence [...] Read more.
Sulfonamides are the second most popular antibiotic in many countries, which leads to the widespread emergence of sulfonamides resistance. sul3 is a more recent version of the gene associated with sulfonamide resistance, whose research is relatively little. In order to comprehend the prevalence of sul3 positive E. coli from animals in Nanning, a total of 146 strains of E. coli were identified from some farms and pet hospitals from 2015 to 2017. The drug resistance and prevalence of sul3 E. coli were analyzed by polymerase chain reaction (PCR) identification, multi-site sequence typing (MLST), drug sensitivity test, and drug resistance gene detection, and then the plasmid containing sul3 was conjugated with the recipient strain (C600). The effect of sul3 plasmid on the recipient was analyzed by stability, drug resistance, and competitive test. In this study, forty-six sul3 positive E. coli strains were separated. A total of 12 ST types were observed, and 1 of those was a previously unknown type. The ST350 is the most numerous type. All isolates were multidrug-resistant E. coli, with high resistant rates to penicillin, ceftriaxone sodium, streptomycin, tetracycline, ciprofloxacin, gatifloxacin, and chloramphenicol (100%, 73.9%, 82.6%, 100%, 80.4%, 71.7%, and 97.8%, respectively). They had at least three antibiotic resistance genes (ARGs) in addition to sul3. The plasmids transferred from three sul3-positive isolates to C600, most of which brought seven antimicrobial resistance (AMR) and increased ARGs to C600. The transferred sul3 gene and the plasmid carrying sul3 could be stably inherited in the recipient bacteria for at least 20 days. These plasmids had no effect on the growth of the recipient bacteria but greatly reduced the competitiveness of the strain at least 60 times in vitro. In Nanning, these sul3-positive E. coli had such strong AMR, and the plasmid carrying sul3 had the ability to transfer multiple resistance genes that long-term monitoring was necessary. Since the transferred plasmid would greatly reduce the competitiveness of the strain in vitro, we could consider limiting the spread of drug-resistant isolates in this respect. Full article
Show Figures

Graphical abstract

10 pages, 1371 KiB  
Article
Comparative Study of Ocular Pharmacokinetics of Topical 0.3% Gatifloxacin Eye Gel and Solution in Rabbits
by Manli Liu, Xin Zhao, Yao Yang, Qiang Yang, Jieting Zeng, Yujie Li, Xiaofeng Lin and Fang Duan
Antibiotics 2022, 11(4), 502; https://doi.org/10.3390/antibiotics11040502 - 10 Apr 2022
Viewed by 2390
Abstract
Few articles have reported drug concentrations of different ophthalmic dosage forms in the ocular tissues. This study aimed to determine the ocular pharmacokinetics of gatifloxacin 0.3% eye gel (GTX-Gel) and gatifloxacin 0.3% eye solution (GTX-Sol) at different time intervals after topical instillation in [...] Read more.
Few articles have reported drug concentrations of different ophthalmic dosage forms in the ocular tissues. This study aimed to determine the ocular pharmacokinetics of gatifloxacin 0.3% eye gel (GTX-Gel) and gatifloxacin 0.3% eye solution (GTX-Sol) at different time intervals after topical instillation in rabbits. A total of 126 healthy New Zealand rabbits were included, of which six rabbits did not receive antibiotics (control group). The remaining rabbits were randomly divided into four groups. GTX-Gel and GTX-Sol (50 μL) were topically instilled every hour in groups A1 and B1, respectively, and every two hours in groups A2 and B2, respectively, for 12 h. Ocular tissues were collected 2, 4, 8, 12, and 24 h after administration. Gatifloxacin concentration was measured using high-performance liquid chromatography coupled with tandem mass spectrometry. The drug reached peak concentrations (Cmax) in all tissues at 8–12 h. With the same administration frequency, the Cmax was higher with GTX-Gel than with GTX-Sol (p < 0.05). Except for the iris-ciliary body, other ocular tissues did not show significant difference (p > 0.05) in gatifloxacin concentration between either pair of groups. Gatifloxacin ophthalmic gel was found to attain significantly higher concentrations than the ophthalmic solution in ocular tissues. Full article
(This article belongs to the Special Issue Anti-infectious Drugs in Ophthalmology)
Show Figures

Figure 1

Back to TopTop