Production and Characterization of a Pullulan-Based Facial Mask Incorporating Grape Seed Flour Extract for Cosmeceutical Applications
Abstract
1. Introduction
2. Results and Discussion
2.1. Extract Characterization
2.2. Films’ Characterization
2.3. Facial Mask Prototype
3. Materials and Methods
3.1. Grape Seed Flour Extract
3.2. Determination of Total Phenolic Compounds
3.3. Determination of Flavonoids Content
3.4. Quantification of trans-Resveratrol by HPLC-DAD
3.5. Antioxidant Activity Evaluation
3.5.1. DPPH Free Radical Scavenging Assay
3.5.2. β-Carotene Bleaching Assay
3.6. Evaluation of Antimicrobial and Anti-Quorum Sensing Activities
3.6.1. Disk Diffusion Assay
3.6.2. Resazurin Microtiter Method
3.6.3. Evaluation of the Anti-Quorum Sensing Activity
3.7. Evaluation of Tyrosinase Activity Inhibition
3.8. Evaluation of Elastase Activity Inhibition
3.9. Preparation of Films
3.10. Films’ Characterization
3.10.1. Grammage, Thickness and Apparent Density
3.10.2. Optical, Mechanical and Barrier Properties
3.10.3. Fourier-Transform Infrared Spectroscopy (FTIR)
3.10.4. Differential Scanning Calorimetry (DSC)
3.10.5. Determination of the Total Phenolic Compounds and Flavonoids
3.10.6. Quantification of trans-Resveratrol by HPLC-DAD
3.10.7. Evaluation of Antioxidant, Antimicrobial and Anti-Quorum Sensing Activities
3.11. Production of the Facial Mask Prototype
Water Solubility
3.12. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nilforoushzadeh, M.A.; Amirkhani, M.A.; Zarrintaj, P.; Moghaddam, A.S.; Mehrabi, T.; Alavi, S.; Sisakht, M.M. Skin care and rejuvenation by cosmeceutical facial mask. J. Cosmet. Dermatol. 2018, 17, 12730. [Google Scholar] [CrossRef]
- Patil, B.S.; Jayaprakasha, G.K.; Chidambara Murthy, K.N.; Vikram, A. Bioactive compounds: Historical perspectives, opportunities, and challenges. J. Agric. Food Chem. 2009, 57, 8142–8160. [Google Scholar] [CrossRef] [PubMed]
- Michalak, M. Plant-derived antioxidants: Significance in skin health and the ageing process. Int. J. Mol. Sci. 2022, 23, 585. [Google Scholar] [CrossRef] [PubMed]
- Tomás-Barberán, F.A.; Andrés-Lacueva, C. Polyphenols and health: Current state and progress. J. Agric. Food Chem. 2012, 60, 8773–8775. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, Y.; Godjevargova, T. Antimicrobial polymer films with grape seed and skin extracts for food packaging. Microorganisms 2024, 12, 1378. [Google Scholar] [CrossRef]
- Teixeira, A.; Baenas, N.; Dominguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, D.A.; Garcia-Viguera, C. Natural Bioactive Compounds from Winery By-Products as Health Promoters: A Review. Int. J. Mol. Sci. 2014, 15, 15638–15678. [Google Scholar] [CrossRef]
- Lin, M.H.; Hung, C.F.; Sung, H.C.; Yang, S.C.; Yu, H.P.; Fang, J.Y. The bioactivities of resveratrol and its naturally occurring derivatives on skin. J. Food Drug Anal. 2021, 29, 15–38. [Google Scholar] [CrossRef]
- Rimando, A.M.; Kalt, W.; Magee, J.B.; Dewey, J.; Ballington, J.R. Resveratrol, pterostilbene, and piceatannol in Vaccinium berries. J. Agric. Food Chem. 2004, 52, 4713–4719. [Google Scholar] [CrossRef]
- Fabbrocini, G.; Satibano, S.; Rosa, G.D.; Battimiello, V.; Fardella, N.; Ilardi, G.; Rotonda, M.I.L.; Longobardi, A.; Mazzella, M.; Siano, M.; et al. Resveratrol-containing gel for the treatment of acne vulgaris. Am. J. Clin. Dermatol. 2011, 12, 133–141. [Google Scholar] [CrossRef]
- Hecker, A.; Schellnegger, M.; Hofmann, E.; Luze, H.; Nischwitz, S.P.; Karmolz, L.P.; Kotzbeck, P. The impact of resveratrol on skin wound healing, scarring, and aging. Int. Wound J. 2021, 19, 9–28. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Cheraif, K.; Bakchiche, B.; Gherib, A.; Bardaweel, S.K.; Ayvaz, M.Ç.; Flamini, G.; Ascrizzi, R.; Ghareeb, M.A. Chemical composition, antioxidant, anti-tyrosinase, anti-cholinesterase and cytotoxic activities of essential oils of six Algerian plants. Molecules 2020, 25, 1710. [Google Scholar] [CrossRef] [PubMed]
- Uchida, R.; Ishikawa, S.; Tomoda, H. Inhibition of tyrosinase activity and melanin pigmentation by 2-hydroxytyrosol. Acta Pharm. Sin. B 2014, 4, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Shahbazi, Y. The properties of chitosan and gelatin films incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil as biodegradable materials for active food packaging. Int. J. Biol. Macromol. 2017, 99, 746–753. [Google Scholar] [CrossRef]
- Anbazhagan, D.; Mansor, M.; Yan, G.O.S.; Yusof, M.Y.M.; Hassan, H.; Sekaran, S.D. Detection of quorum sensing signal molecules and identification of an autoinducer synthase gene among biofilm forming clinical isolates of Acinetobacter spp. PLoS ONE 2012, 7, e36696. [Google Scholar] [CrossRef]
- González, R.H.; Nusblat, A.; Nudel, B.C. Detection and characterization of quorum sensing signal molecules in Acinetobacter strains. Microbiol. Res. 2001, 155, 271–277. [Google Scholar] [CrossRef]
- Defoirdt, T.; Brackman, G.; Coenye, T. Quorum sensing inhibitors: How strong is the evidence? Trends Microbiol. 2013, 21, 619–624. [Google Scholar] [CrossRef]
- Belizón, M.; Fernández-Ponce, M.T.; Casas, L.; Mantell, C.; Martínez De La Ossa-Fernández, E.J. Supercritical impregnation of antioxidant mango polyphenols into a multilayer PET/PP food-grade film. J. CO2 Util. 2018, 25, 56–67. [Google Scholar] [CrossRef]
- Singh, R.S.; Kaur, N.; Kennedy, J.F. Pullulan production from agro-industrial waste and its applications in food industry: A review. Carbohydr. Polym. 2019, 217, 46–57. [Google Scholar] [CrossRef]
- Spence, K.L.; Venditti, R.A.; Rojas, O.J.; Pawlak, J.J.; Hubbe, M.A. Water vapor barrier properties of coated and filled microfibrillated cellulose composite films. BioResources 2011, 6, 4370–4388. [Google Scholar] [CrossRef]
- Tong, Q.; Xiao, Q.; Lim, L.T. Effects of glycerol, sorbitol, xylitol and fructose plasticisers on mechanical and moisture barrier properties of pullulan-alginate-carboxymethylcellulose blend films. Int. J. Food Sci. Technol. 2013, 48, 870–878. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, F.; Luo, Y.; Ma, L.; Kou, X.; Huang, K. Antioxidant activity of a water-soluble polysaccharide purified from Pteridium aquilinum. Carbohydr. Res. 2009, 344, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Arcan, I.; Yemenicioglu, A. Incorporating phenolic compounds opens a new perspective to use zein films as flexible bioactive packaging materials. Food Res. Int. 2011, 44, 550–556. [Google Scholar] [CrossRef]
- Cui, H.; Surendhiran, D.; Li, C.; Lin, L. Biodegradable zein active film containing chitosan nanoparticle encapsulated with pomegranate peel extract for food packaging. Food Packag. Shelf Life 2020, 24, 100511. [Google Scholar] [CrossRef]
- Parekh, J.; Jadeja, D.; Chanda, S. Efficacy of aqueous and methanol extracts of some medicinal plants for potential antibacterial activity. Turk. J. Biol. 2005, 29, 203–210. [Google Scholar]
- Shan, B.; Cai, Y.Z.; Brooks, J.D.; Corke, H. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int. J. Food Microbiol. 2007, 117, 112–119. [Google Scholar] [CrossRef]
- Muhs, A.; Lyles, J.T.; Parlet, C.P.; Nelson, K.; Kavanaugh, J.S.; Quave, C.L. Virulence inhibitors from Brazilian peppertree block quorum sensing and abate dermonecrosis in skin infection models. Sci. Rep. 2017, 7, 42275. [Google Scholar] [CrossRef]
- Huang, Y.L.; Chen, C.C.; Chen, Y. Identification and quantification of major polyphenols in grape seed. J. Nat. Prod. 2001, 64, 903–906. [Google Scholar] [CrossRef]
- Luís, Â.; Neiva, D.; Pereira, H.; Gominho, J.; Domingues, F.; Duarte, A.P. Stumps of Eucalyptus globulus as a source of antioxidant and antimicrobial polyphenols. Molecules 2014, 19, 16428–16446. [Google Scholar] [CrossRef]
- Gonçalves, J.; Ramos, R.; Luís, Â.; Rocha, S.; Rosado, T.; Gallardo, E.; Duarte, A.P. Assessment of the bioaccessibility and bioavailability of the phenolic compounds of Prunus avium L. by in vitro digestion and cell model. ACS Omega 2019, 4, 7605–7613. [Google Scholar] [CrossRef]
- Scherer, R.; Godoy, H.T. Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem. 2009, 112, 654–658. [Google Scholar] [CrossRef]
- Luís, Â.; Duarte, A.; Gominho, J.; Domingues, F.; Duarte, A.P. Chemical composition, antioxidant, antibacterial and anti-quorum sensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils. Ind. Crops Prod. 2016, 79, 274–282. [Google Scholar] [CrossRef]
- Sigma-Aldrich. Tyrosinase Assay Kit. Available online: https://www.sigmaaldrich.com/PT/en/product/sigma/mak550 (accessed on 7 November 2025).
- Sigma-Aldrich. Neutrophil Elastase Activity Assay Kit (Fluorometric). Available online: https://www.sigmaaldrich.com/PT/en/product/sigma/mak246 (accessed on 7 November 2025).
- Ramos, A.; Rodilla, J.M.; Ferreira, R.; Luís, Â. Enhancing hydrophobicity of nanocellulose-based films by coating with natural wax from Halimium viscosum. Appl. Sci. 2025, 15, 7576. [Google Scholar] [CrossRef]
- ISO 536:1995; Paper and Board—Determination of Grammage. International Organization for Standardization: Geneva, Switzerland, 1995.
- ISO 534:2011; Paper and Board—Determination of Thickness, Density and Specific Volume. International Organization for Standardization: Geneva, Switzerland, 2011.
- Luís, Â.; Domingues, F.; Ramos, A. Production of hydrophobic zein-based films bioinspired by the lotus leaf surface: Characterization and bioactive properties. Microorganisms 2019, 7, 267. [Google Scholar] [CrossRef] [PubMed]
- ISO 22891:2013; Paper—Determination of Transmittance by Diffuse Reflectance Measurement. International Organization for Standardization: Geneva, Switzerland, 2013.
- ISO 1924-2:2008; Paper and Board—Determination of Tensile Properties—Part 2: Constant Rate of Elongation Method (20 mm/min). International Organization for Standardization: Geneva, Switzerland, 2008.
- Luís, Â.; Pereira, L.; Domingues, F.; Ramos, A. Development of a carboxymethyl xylan film containing licorice essential oil with antioxidant properties to inhibit the growth of foodborne pathogens. LWT-Food Sci. Technol. 2019, 111, 218–225. [Google Scholar] [CrossRef]
- ASTM E96/E96M-22; Standard Test Methods for Gravimetric Determination of Water Vapor Transmission Rate of Materials. ASTM International: West Conshohocken, PA, USA, 2022.
- Luís, Â.; Ramos, A.; Domingues, F. Pullulan films containing rockrose essential oil for potential food packaging applications. Antibiotics 2020, 9, 681. [Google Scholar] [CrossRef]
- Luís, Â.; Ramos, A.; Domingues, F. Pullulan–apple fiber biocomposite films: Optical, mechanical, barrier, antioxidant and antibacterial properties. Polymers 2021, 13, 870. [Google Scholar] [CrossRef]
- Bilohan, M.; Ramos, A.; Domingues, F.; Luís, Â. Production and characterization of pullulan/paper/zein laminates as active food packaging materials. J. Food Process Preserv. 2022, 46, e17083. [Google Scholar] [CrossRef]
- Nafchi, A.M.; Tabatabaei, R.H.; Pashania, B.; Rajabi, H.Z.; Karim, A.A. Effects of ascorbic acid and sugars on solubility, thermal, and mechanical properties of egg white protein gels. Int. J. Biol. Macromol. 2013, 62, 397–404. [Google Scholar] [CrossRef]




| Parameters | Grape Seed Flour Extract |
|---|---|
| Extraction Yield (%) | 28.80 ± 0.80 |
| Total Phenolics (mg GAE/g extract) | 430.00 ± 90.00 |
| Flavonoids (mg QE/g extract) | 11.87 ± 1.71 |
| trans-Resveratrol (µg/g extract) | 5.75 ± 0.36 |
| Parameters | Grape Seed Flour Extract | Gallic Acid a/BHT b | |
|---|---|---|---|
| DPPH | IC50 (mg/L) | 23.20 ± 8.51 | 2.23 ± 0.02 a* |
| AAI | 2.21 ± 0.08 | 22.77 ± 0.25 a**** | |
| Antioxidant Activity | Very Strong | Very Strong a | |
| β-Carotene/Linoleic Acid | IC50 (mg/L) | 935.27 ± 22.53 | 76.95 ± 6.17 b**** |
| Tyrosinase Inhibition | IC50 (mg/L) | 168.82 ± 6.57 | - |
| Elastase Inhibition | IC50 (mg/L) | 6.34 ± 0.87 | - |
| Strains | Grape Seed Flour Extract | Tetracycline a/Amphotericin B b/ Resveratrol c | ||
|---|---|---|---|---|
| Diameter of Inhibition Zone (mm) | MIC (mg/mL) | Diameter of Inhibition Zone (mm) | MIC (µg/mL) | |
| Staphylococcus aureus ATCC 25923 | 16.99 ± 0.83 | >10 | 30.25 ± 0.50 a | 0.06 a |
| S. aureus SA 01/10 | 15.11 ± 0.17 | 2.5 | 14.33 ± 0.21 a | 0.12 a |
| S. aureus SA 02/10 | 15.57 ± 0.74 | 2.5 | 15.34 ± 0.33 a | 0.12 a |
| S. aureus SA 03/10 | 13.27 ± 0.24 | >10 | 17.78 ± 0.40 a | 0.12 a |
| S. aureus SA 08 | 20.92 ± 2.21 | 2.5 | 16.37 ± 0.39 a | 0.12 a |
| MRSA 10/08 | 15.18 ± 0.60 | 2.5 | 10.18 ± 0.12 a | 0.50 a |
| MRSA 12/08 | 14.40 ± 0.35 | 10 | 12.26 ± 0.14 a | 0.50 a |
| Escherichia coli ATCC 25922 | 6.59 ± 1.01 | >10 | 23.25 ± 0.50 a | 0.06 a |
| Pseudomonas aeruginosa ATCC 27853 | 9.68 ± 1.74 | >10 | 11.50 ± 0.58 a | 0.25 a |
| Acinetobacter baumannii LMG 1025 | 12.14 ± 1.70 | 5 | 25.63 ± 0.25 a | 0.06 a |
| Candida albicans ATCC 90028 | 6.00 ± 0.00 | 0.08 | 20.33 ± 0.58 b | 0.25 b |
| Candida tropicalis ATCC 750 | 13.53 ± 1.43 | 0.156 | 21.50 ± 0.58 b | 0.50 b |
| Anti-QS | 1.85 ± 0.35 | - | 8.93 ± 0.23 c | - |
| Properties | Film with Grape Seed Flour Extract |
|---|---|
| Total Phenolics (mg GAE/m2) | 1641.27 ± 146.19 |
| Flavonoids (mg QE/m2) | 192.17 ± 8.48 |
| trans-Resveratrol (µg/m2) | 72.09 ± 0.49 |
| DPPH (% Inhibition) | 85.13 ± 3.88 |
| β-Carotene/Linoleic Acid (% Inhibition) | 98.24 ± 0.81 |
| Strains | Diameter of Inhibition Zone (mm) | |
|---|---|---|
| Control Film | Film with Grape Seed Flour Extract | |
| Staphylococcus aureus ATCC 25923 | 6.00 ± 0.00 | 10.23 ± 0.01 |
| S. aureus SA 01/10 | 6.00 ± 0.00 | 9.11 ± 0.35 |
| S. aureus SA 02/10 | 6.00 ± 0.00 | 8.41 ± 0.52 |
| S. aureus SA 03/10 | 6.00 ± 0.00 | 8.45 ± 0.60 |
| S. aureus SA 08 | 6.00 ± 0.00 | 12.73 ± 0.59 |
| MRSA 10/08 | 6.00 ± 0.00 | 9.11 ± 0.26 |
| MRSA 12/08 | 6.00 ± 0.00 | 8.42 ± 0.83 |
| Escherichia coli ATCC 25922 | 6.00 ± 0.00 | 6.00 ± 0.00 |
| Pseudomonas aeruginosa ATCC 27853 | 6.00 ± 0.00 | 6.00 ± 0.00 |
| Acinetobacter baumannii LMG 1025 | 6.00 ± 0.00 | 6.00 ± 0.00 |
| Candida albicans ATCC 90028 | 6.00 ± 0.00 | 6.00 ± 0.00 |
| Candida tropicalis ATCC 750 | 6.00 ± 0.00 | 6.00 ± 0.00 |
| Anti-QS | 0.00 ± 0.00 | 0.00 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, E.; Encarnação, B.; Cascalheira, J.F.; Gallardo, E.; Ferreira, S.; Ramos, A.; Domingues, F.; Luís, Â. Production and Characterization of a Pullulan-Based Facial Mask Incorporating Grape Seed Flour Extract for Cosmeceutical Applications. Int. J. Mol. Sci. 2025, 26, 11845. https://doi.org/10.3390/ijms262411845
Ferreira E, Encarnação B, Cascalheira JF, Gallardo E, Ferreira S, Ramos A, Domingues F, Luís Â. Production and Characterization of a Pullulan-Based Facial Mask Incorporating Grape Seed Flour Extract for Cosmeceutical Applications. International Journal of Molecular Sciences. 2025; 26(24):11845. https://doi.org/10.3390/ijms262411845
Chicago/Turabian StyleFerreira, Ester, Bárbara Encarnação, José Francisco Cascalheira, Eugenia Gallardo, Susana Ferreira, Ana Ramos, Fernanda Domingues, and Ângelo Luís. 2025. "Production and Characterization of a Pullulan-Based Facial Mask Incorporating Grape Seed Flour Extract for Cosmeceutical Applications" International Journal of Molecular Sciences 26, no. 24: 11845. https://doi.org/10.3390/ijms262411845
APA StyleFerreira, E., Encarnação, B., Cascalheira, J. F., Gallardo, E., Ferreira, S., Ramos, A., Domingues, F., & Luís, Â. (2025). Production and Characterization of a Pullulan-Based Facial Mask Incorporating Grape Seed Flour Extract for Cosmeceutical Applications. International Journal of Molecular Sciences, 26(24), 11845. https://doi.org/10.3390/ijms262411845

