Static Cold Storage and Machine Perfusion: Redefining the Role of Preservation and Perfusate Solutions
Abstract
1. Introduction
2. SCS and Preservation Solutions: A Knowledge Bridge Towards HOPE Improvement
2.1. Protective Sensors and Static Hypothermic Preservation: AMPK and HIF
2.2. Energy Metabolism as Damage Sensor in SCS

2.3. Polyethylene Glycol 35 Solutions, a Suitable Link Between SCS and HOPE
2.4. Lipoperoxidation and Mitochondrial ALDH2 Activation and Nitric Oxide
3. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ALDH2 | aldehyde dehydrogenase |
| AMPK | AMP-activated protein kinase |
| Belzer MPS | Belzer Machine Perfusion Solution |
| DCD | Linear dichroism |
| eNOS | endothelial nitric oxide synthase |
| GCX | endothelial glycocalyx |
| HES | hydroxyethyl starch |
| HOPE | hypothermic oxygenated perfusion |
| HTK | histidine–tryptophan–ketoglutarate |
| IGL-1/IGL-2 | Institut Georges Lopez 1/2 |
| IRI | ischemia–reperfusion injury |
| NMP | normothermic machine perfusion |
| NO | nitric oxide |
| PEG | polyethylene glycol |
| SCS | static cold storage |
| UW | University of Wisconsin |
References
- Zhai, Y.; Petrowsky, H.; Hong, J.C.; Busuttil, R.W.; Kupiec-Weglinski, J.W. Ischaemia–reperfusion injury in liver transplantation—From bench to bedside. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Southard, J.H. James Southard: Pioneer in organ preservation: Co-Inventor, UW organ preservation solution. Transplantation 2020, 104, 1764–1766. [Google Scholar] [CrossRef] [PubMed]
- Belzer, F.O.; Southard, J.H. Principles of solid organ preservation by cold storage. Transplantation 1988, 45, 673–6766. [Google Scholar] [CrossRef] [PubMed]
- Moen, J.; Claesson, K.; Pienaar, H.; Lindell, S.; Ploeg, R.J.; McAnulty, J.F.; Vreugdenhil, P.; Southard, J.H.; Belzer, F.O. Preservation of dog liver, kidney, and pancreas using the belzer-uw solution with a high-sodium and low-potassium content1. Transplantation 1989, 47, 940–944. [Google Scholar] [CrossRef]
- Boudjema, K.; Van Gulik, T.M.; Lindell, S.L.; Vreugdenhil, P.S.; Southard, J.H.; Belzer, F.O. Effect of oxidized and reduced glutathione in liver preservation. Transplantation 1990, 50, 948–950. [Google Scholar] [CrossRef]
- Southard, J.H.; den Butter, B.; Marsh, D.C.; Lindell, S.; Belzer, F.O. The role of oxygen free radicals in organ preservation. Klin. Wochenschr. 1991, 69, 1073–1076. [Google Scholar] [CrossRef]
- Mack, J.E.; Kerr, J.A.; Vreugdenhill, P.K.; Belzer, F.O.; Southard, J.H. Effect of polyethylene glycol on lipid peroxidation in cold-stored rat hepatocytes. Cryobiology 1991, 28, 1–7. [Google Scholar] [CrossRef]
- D’Alessandro, A.M.; Kalayoglu, M.; Sollinger, H.W.; Pirsch, J.; Southard, J.H.; Belzer, F.O. Current status of organ preservation with University of Wisconsin. Arch. Pathol. Lab. Med. 1991, 115, 306–310. [Google Scholar]
- Steininger, R.; Roth, E.; Holzmüller, P.; Reckendorfer, H.; Grünberger, T.; Sperlich, M.; Burgmann, H.; Moser, E.; Feigl, W.; Mühlbacher, F. Comparison of HTK and UW for liver preservation tested in an orthotopic liver transplantation model in the pig. Transpl. Int. 1992, 5 (Suppl. S1), S403–S407. [Google Scholar] [CrossRef]
- Walcher, F.; Marzi, I.; Bühren, V. The impact of liver preservation in HTK and UW solution on microcirculation after liver transplantation. Transpl. Int. 1992, 5 (Suppl. S1), S340–S342. [Google Scholar] [CrossRef]
- Hatano, E.; Kiuchi, T.; Tanaka, A.; Shinohara, H.; Kitai, T.; Satoh, S.; Inomoto, T.; Egawa, H.; Uemoto, S.; Inomata, Y.; et al. Hepatic preservation with histidine-tryptophan -ketoglutarate solution in living-related and cadaveric liver transplantation. Clin. Sci. 1997, 93, 81–88. [Google Scholar] [CrossRef]
- Feng, L.; Zhao, N.; Yao, X.; Sun, X.; Du, L.; Diao, X.; Li, S.; Li, Y. Histidine-tryptophan -ketoglutarate solution vs. University Wisconsin solution for liver transplantation: A systematic review. Liver Transpl. 2007, 13, 1125–1136. [Google Scholar] [CrossRef] [PubMed]
- Mangus, R.S.; Fridell, J.A.; Vianna, R.M.; Milgrom, M.A.; Chestovich, P.; Chihara, R.K.; Tector, A.J. Comparison of histidine-tryptophan-ketoglutarate solution and University of Wisconsin solution in extended criteria liver donors. Liver Transpl. 2008, 14, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Rayya, F.; Harms, J.; Martin, A.P.; Bartels, M.; Hauss, J.; Fangmann, J. Comparison of histidine-trytophan-ketoglutarate solution and University of Wisconsin solution in adult liver transplantation. Transplant. Proc. 2008, 40, 891–894. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Bruns, H.; Schultze, D.; Xue, Y.; Zorn, M.; Flechtenmacher, C.; Straub, B.K.; Rauen, U.; Schemmer, P. HTK-N, a modified HTK solution, decreases preservation injury in a model of rat. Langenbecks Arch. Surg. 2012, 397, 1323–1331. [Google Scholar] [CrossRef]
- Parsons, R.F.; Guarrera, J.V. HTK-N, a modified HTK solution, decreases preservation injury in a model of microsteatotic rat liver transplantation. Curr. Opin. Organ. Transpl. Transplant. 2014, 19, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Rosado, J.; Guarrera, J.V. UW versus HTK for static preservation in liver transplantation: Is there a “solution effect” on outcomes. Transplantation 2018, 102, 1791–1792. [Google Scholar] [CrossRef]
- Mohr, A.; Brockmann, J.G.; Becker, F. HTK-N: Modified histidine-tryptophan-ketoglutarate solution—A promising new tool in solid organ preservation. Int. J. Mol. Sci. 2020, 21, 6468. [Google Scholar] [CrossRef]
- Tolba, R.H.; Akbar, S.; Müller, A.; Glatzel, U.; Minor, T. Experimental liver preservation with Celsior: A novel alternative to University of Wisconsin and histidine-tryptophan-alpha-ketoglutarate solutions? Eur. Surg. Res. 2000, 32, 142–147. [Google Scholar] [CrossRef]
- Howden, B.O.; Jablonski, P. Liver preservation: A comparison of Celsior to colloid -free University of Wisconsin solution. Transplantation 2000, 70, 1140–1142. [Google Scholar] [CrossRef]
- Audet, M.; Alexandre, E.; Mustun, A.; David, P.; Chenard-Neu, M.P.; Tiollier, J.; Jaeck, D.; Cinqualbre, J.; Wolf, P.; Boudjema, K. Comparative evaluation of Celsior solution versus Viaspan in a pig liver transplantation model. Transplantation 2001, 71, 1731–1735. [Google Scholar] [CrossRef] [PubMed]
- Ohwada, S.; Sunose, Y.; Aiba, M.; Tsutsumi, H.; Iwazaki, S.; Totsuka, O.; Matsumoto, K.; Takeyoshi, I.; Morishita, Y. Advantages of Celsior solution in graft preservation from non-heart beating-donors in a canine liver transplantation model. J. Surg. Res. 2002, 102, 71–76. [Google Scholar] [CrossRef]
- Ferrigno, A.; Tartaglia, A.; Di Nucci, A.; Bertone, V.; Richelmi, P.; Neri, D.; Freitas, I.; Vairetti, M. Further studies on long-term preservation of rat liver: Celsior vs. UW solution. In Vivo 2008, 22, 681–686. [Google Scholar]
- Lopez-Andujar, R.; Deusa, S.; Montalvá, E.; San Juan, F.; Moya, A.; Pareja, E.; DeJuan, M.; Berenguer, M.; Prieto, M.; Mir, J. Comparative prospective study of two liver graft preservation solutions: University of Wisconsin and Celsior. Liver Transpl. 2009, 15, 1709–1717. [Google Scholar] [CrossRef] [PubMed]
- Ben Abdennebi, H.; Elrassi, Z.; Scoazec, J.Y.; Steghens, J.P.; Ramella-Virieux, S.; Boillot, O. Evaluation of IGL-1 preservation solution using an ortothopic liver transplantation model. World J. Gastroenterol. 2006, 12, 5326–5330. [Google Scholar] [CrossRef]
- Ben Mosbah, I.; Roselló-Catafau, J.; Franco-Gou, R.; Abdennebi, H.B.; Saidane, D.; Ramella-Virieux, S.; Boillot, O.; Peralta, C. Preservation of steatotic livers in IGL-1 solution. Liver Transpl. 2006, 12, 1215–1223. [Google Scholar] [CrossRef]
- Tabka, D.; Bejaoui, M.; Javellaud, J.; Roselló-Catafau, J.; Achard, J.M.; Abdennebi, H.B. Effects of Institut Lopez-1 and Celsior preservation solutions on graft injury. World J. Gastroenterol. 2015, 21, 4159–4168. [Google Scholar] [CrossRef]
- Adam, R.; Delvart, V.; Karam, V.; Ducerf, C.; Navarro, F.; Letoublon, C.; Belghiti, J.; Pezet, D.; Castaing, D.; Le Treut, Y.P.; et al. ELTR contributing centres, the European Liver, Intestine Transplant Association (ELITA). Compared efficacy of preservation solutions in liver transplantation: A long-term graft outcome study from the European Liver Transplant Registry. Am. J. Transpl. Transplant. 2015, 15, 395–406. [Google Scholar] [CrossRef]
- Mein, M.H.; Leipnitz, I.; Zanotelli, M.L.; Schlindwein, E.S.; Kiss, G.; Martini, J.; de Medeiros, F.A., Jr.; Mucenic, M.; de Mello Brandão, A.; Marroni, C.A.; et al. Comparison between IGL-1 and HTK preservation solutions in deceased donor liver transplantation. Transpl. Transplant. Proc. 2015, 47, 888–893. [Google Scholar] [CrossRef]
- Panisello-Roselló, A.; Teixeira da Silva, R.; Castro, C.; Bardallo, R.G.; Calvo, M.; Folch-Puy, E.; Carbonell, T.; Palmeira, C.; Roselló-Catafau, J.; Adam, R. Polyethylene glycol 35 as a perfusate additive for mitochondrial and glycocalyx protection in HOPE liver preservation. Int. J. Mol. Sci. 2020, 21, 5703. [Google Scholar] [CrossRef] [PubMed]
- Panisello-Roselló, A.; Verde, E.; Lopez, A.; Flores, M.; Folch-Puy, E.; Rolo, A.; Palmeira, C.; Hotter, G.; Carbonell, T.; Adam, R.; et al. Cytoprotective mechanisms in fatty liver preservation against cold ischemia injury: A comparison between IGL-1 and HTK. Int. J. Mol. Sci. 2018, 19, 348. [Google Scholar] [CrossRef]
- Panisello-Rosello, A.; Castro-Benítez, C.; Lopez, A.; Balloji, S.; Folch-Puy, E.; Adam, R.; Roselló-Catafau, J. Graft protection against cold ischemia preservation: An Institute Georges Lopez 1 and Histidine-tryptophan-ketoglutarate solution appraisal. Transpl. Transplant. Proc. 2018, 50, 714–718. [Google Scholar] [CrossRef]
- Saidneuy, A.E.; Rezende, M.; Oliveira-Salvalaggio, P. A direct comparison between Institute Georges Lopez 1 and histidine-tryptophan-ketoglutarate preservation solutions in liver transplantation. Transpl. Transplant. Proc. 2020, 52, 1262–1264. [Google Scholar] [CrossRef] [PubMed]
- Bardallo, R.G.; da Silva, R.T.; Carbonell, T.; Folch-Puy, E.; Palmeira, C.; Roselló-Catafau, J.; Pirenne, J.; Adam, R.; Panisello-Roselló, A. Role of PEG35, Mitochondrial ALDH2, and Glutathione in Cold Fatty Liver Graft Preservation: An IGL-2 Approach. Int. J. Mol. Sci. 2021, 22, 5332. [Google Scholar] [CrossRef] [PubMed]
- Bardallo, R.G.; Company-Marin, I.; Folch-Puy, E.; Roselló-Catafau, J.; Panisello-Rosello, A.; Carbonell, T. PEG35 and Glutathione Improve Mitochondrial Function and Reduce Oxidative Stress in Cold Fatty Liver Graft Preservation. Antioxidants 2022, 11, 158. [Google Scholar] [CrossRef] [PubMed]
- Bardallo, R.G.; Chullo, G.; Alva, N.; Rosello-Catafau, J.; Fundora-Suárez, Y.; Carbonell, T.; Panisello-Rosello, A. Mitigating cold ischemic injury: HTK, UW and IGL2 solutions’ Role in Enhancing Antioxidant Defence and Reducing Inflammation in Steatotic Livers. Int. J. Mol. Sci. 2024, 25, 9318. [Google Scholar] [CrossRef] [PubMed]
- Ramos, P.; Williams, P.; Salinas, J.; Vengohechea, J.; Lodge, J.P.A.; Fondevila, C.; Hessheimer, A.J. Abdominal organ preservation solutions in the age of machine perfusion. Transplantation 2023, 107, 326–340. [Google Scholar] [CrossRef]
- Panisello-Rosello, A.; Chullo, G.; Pera, M.; Bataller, R.; Fundora-Suarez, Y.; Adam, R.; Carbonell, T.; Rosello-Catafau, J. Danger markers in perfusates from fatty liver grafts subjected to cold storage preservation in different preservation solutions. Transplant. Proc. 2025, 57, 37–42. [Google Scholar] [CrossRef]
- Bardallo, R.G.; Da Silva, R.T.; Carbonell, T.; Palmeira, C.; Folch-Puy, E.; Roselló-Catafau, J.; Adam, R.; Panisello-Rosello, A. Liver Graft Hypothermic Static and Oxygenated Perfusion (HOPE) Strategies: A Mitochondrial Crossroads. Int. J. Mol. Sci. 2022, 23, 5742. [Google Scholar] [CrossRef]
- Kron, P.; Schlegel, A.; Mancina, L.; Clavien, P.A.; Dutkowski, P. Hypothermic oxygenated perfusion (HOPE) for fatty liver grafts in rats and humans. J. Hepatol. 2017, 68, 82–91. [Google Scholar] [CrossRef]
- Schlegel, A.; Müller, X.; Müller, M.; Stepanova, A.; Kron, P.; de Rougemont, O.; Dutkowski, P. Hypothermic oxygenated perfusion protects from mitochondrial injury before liver transplantation. EbioMedicine 2020, 60, 103014. [Google Scholar] [CrossRef]
- Ceresa, C.D.L.; Nasralla, D.; Pollok, J.M.; Friend, P.J. Machine perfusion of the liver: Applications in transplantation and beyond. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 199–209. [Google Scholar] [CrossRef]
- Schlegel, A.; Mergental, H.; Fondevila, C.; Porte, R.J.; Friend, P.J.; Dutkowski, P. Machine perfusion of the liver and bioengineering. J. Hepatol. 2023, 78, 1181–1198. [Google Scholar] [CrossRef]
- Schlegel, A.; Mueller, M.; Muller, X.; Eden, J.; Panconesi, R.; von Felten, S.; Steigmiller, K.; Sousa Da Silva, R.X.; de Rougemont, O.; Mabrut, J.Y.; et al. A multicenter randomized-controlled trial of hypothermic oxygenated perfusion(HOPE) for human liver grafts before transplantation. J. Hepatol. 2023, 78, 783–793. [Google Scholar] [CrossRef]
- Wehrle, C.J.; Jiao, C.; Sun, K.; Zhang, M.; Fairchild, R.L.; Miller, C.; Hashimoto, K.; Schlegel, A. Machine perfusion in liver transplantation: Recent advances and coming challenges. Curr. Opin. Organ. Transpl. Transplant. 2024, 29, 228–238. [Google Scholar] [CrossRef]
- Sanha, V.; Trindade, B.O.; Satish, S.; Oliveira, L.B.; Karakaya, O.F.; Jiao, C.; Sun, K.; Nadeem, M.A.; Miller, C.; Hashimoto, K.; et al. Hypothermic oxygenated versus static cold storage in transplantation of extended criteria liver grafts: A systematic review and meta -analysis. Clin. Transpl. Transplant. 2025, 39, e70291. [Google Scholar] [CrossRef] [PubMed]
- Patrono, D.; Del Prete, L.; Eden, J.; Dutkowski, P.; Guarrera, J.V.; Quintini, C.; Romagnoli, R. Machine perfusion of liver grafts: Hypothermic vs. normothermic regional perfusion. Int. J. Surg. 2025, 111, 5768–5782. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuwen, O.B.; Lantinga, V.A.; Lascaris, B.; Thorne, A.M.; Bodewes, S.B.; Nijsten, M.W.; de Meijer, V.E.; Porte, R.J. Bach-to-base combined hypothermic and normothermic machine perfusion of human donor livers. Nat. Protoc. 2025, 20, 2151–2170. [Google Scholar] [CrossRef] [PubMed]
- Panisello-Rosello, A.; Rosello-Catafau, J. HOPE (hypothermic oxygenated perfusion) strategies in the era of dynamic liver graft preservation. EbioMedicine 2020, 61, 103071. [Google Scholar] [CrossRef]
- Asong-Fontem, N.; Panisello-Rosello, A.; Sebagh, M.; Gonin, M.; Rosello-Catafau, J.; Adam, R. The Role of IGL-2 Preservation Solution on Rat Livers during SCS and HOPE. Int. J. Mol. Sci. 2022, 23, 12615. [Google Scholar] [CrossRef]
- Da Silva, R.T.; Bardallo, R.G.; Folch-Puy, E.; Carbonell, T.; Palmeira, C.M.; Fondevila, C.; Adam, R.; Roselló-Catafau, J.; Panisello-Roselló, A. IGL-2 as a Unique solution for cold static preservation and machine perfusion in liver and mitochondrial protection. Transpl. Transplant. Proc. 2022, 54, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Panconesi, R.; Widmer, J.; Carvalho, M.F.; Eden, J.; Dondossola, D.; Dutkowski, P.; Schlegel, A. Mitochondria and ischemia-reperfusion injury. Curr. Opin. Organ Transpl. 2022, 27, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Hardie, D.G. The AMP-activated protein kinase cascade: The key sensor of cellular energy status. Endocrinology 2003, 144, 5179–5183. [Google Scholar] [CrossRef] [PubMed]
- Hardie, D.G.; Hawley, S.A.; Scott, J.W. AMP-activated protein kinase–development of the energy sensor concept. J. Physiol. 2006, 574 Pt 1, 7–15. [Google Scholar] [CrossRef]
- Herzig, S.; Shaw, R.J. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 2018, 19, 121–135. [Google Scholar] [CrossRef]
- Panisello-Roselló, A.; Verde, E.; Zaouali, M.A.; Flores, M.; Alva, N.; Lopez, A.; Folch-Puy, E.; Carbonell, T.; Hotter, G.; Adam, R.; et al. The Relevance of the UPS in Fatty Liver Graft Preservation: A New Approach for IGL-1 and HTK Solutions. Int. J. Mol. Sci. 2017, 18, 2287. [Google Scholar] [CrossRef]
- Padrissa-Altés, S.; Zaouali, M.A.; Bartrons, R.; Roselló-Catafau, J. Ubiquitin–proteasome system inhibitors and AMPK regulation in hepatic cold ischaemia and reperfusion injury: Possible mechanisms. J. Clin. Sci. 2012, 123, 93–98. (In British) [Google Scholar] [CrossRef]
- Bouma, H.R.; Ketelaar, M.E.; Yard, B.A.; Ploeg, R.J.; Henning, R.H. AMP-activated protein kinase as a target for preconditioning in transplantation medicine. Transplantation 2010, 90, 353–358. [Google Scholar] [CrossRef]
- Padrissa-Altes, S.; Zaouali, M.A.; Rosello-Catafau, J. AMP-activated protein kinase as a target for preconditioning in transplantation medicine. Transplantation 2010, 90, 1241. [Google Scholar] [CrossRef]
- Chai, Y.C.; Dang, G.X.; He, H.Q.; Shi, J.H.; Zhang, H.K.; Wang, B.; Hu, L.S.; Lv, Y. Hypothermic machine perfusión with mertformin-UW solution for ex vivo preservation of standard and marginal liver grafts in rat model. World J. Gastroenterol. 2017, 23, 7221–7231. [Google Scholar] [CrossRef]
- Zaoualí, M.A.; Reiter, R.J.; Padrissa-Altés, S.; Boncompagni, E.; García, J.J.; Ben Abnennebi, H.; Freitas, I.; García-Gil, F.A.; Rosello-Catafau, J. Melatonin protects steatotic and non steatotic liver grafts against old ischemia and reperfusion injury. J. Pineal Res. 2011, 50, 213–221. [Google Scholar] [CrossRef]
- Zaouali, M.A.; Boncompagni, E.; Reiter, R.J.; Bejaoui, M.; Freitas, I.; Pantazi, E.; Folch-Puy, E.; Abdennebi, H.B.; Garcia-Gil, F.A.; Roselló-Catafau, J. AMPK involvement in endoplasmic reticulum stress and autophagy modulation after fatty liver graft preservation: A role for melatonin and trimetazidine cocktail. J. Pineal Res. 2013, 55, 65–78. [Google Scholar] [CrossRef]
- Russo, L.; Gracia-Sancho, J.; García-Calderó, H.; Marrone, G.; García-Pagán, J.C.; García-Cardeña, G.; Bosch, J. Addition of simvastatin to cold storage solution prevents endothelial dysfunction in explanted rat livers. Hepatology 2012, 55, 921–930. [Google Scholar] [CrossRef]
- Majmundar, A.J.; Wong, W.J.; Simon, M.C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 2010, 40, 294–309. [Google Scholar] [CrossRef]
- Zaoualí, M.A.; Mosbah, I.B.; Abdennebi, H.B.; Calvo, M.; Boncompagni, E.; Boillot, O.; Peralta, C.; Roselló-Catafau, J. New insights into fatty liver preservation using Institute Georges Lopez preservation solution. Transpl. Transplant. Proc. 2010, 42, 159–161. [Google Scholar] [CrossRef] [PubMed]
- Zaouali, M.A.; Ben Mosbah, I.; Boncompagni, E.; Ben Abdennebi, H.; Mitjavila, M.T.; Bartrons, R.; Freitas, I.; Rimola, A.; Roselló-Catafau, J. Hypoxia inducible factor-1α accumulation in steatotic liver preservation: Role of nitric oxide. World J. Gastroenterol. 2010, 16, 3499–3509. [Google Scholar] [CrossRef] [PubMed]
- Roselló, A.P.; Campo, R.; Roselló-Catafau, J.; Vengohechea, J.; Hessheimer, A.; Carbonell, T.; Fondevila, C. Biochemical markers in steatotic liver preservation: A comparative analysis of conventional and next-generation solutions. Proceedings of WTC 2025, San Francisco. Am. J. Transplant. 2025, 25, S556. [Google Scholar]
- Halestrap, A.P.; Wilson, M.C. The monocarboxylate transporter family: Role and regulation. IUBMB Life 2012, 64, 109–119. [Google Scholar] [CrossRef]
- Kuma, A.; Tamura, M.; Ishimatsu, N.; Harada, Y.; Izumi, H.; Miyamoto, T.; Furuno, Y.; Nakano, Y.; Serino, R.; Otsuji, Y. Monocarboxilate transporter-1 mediates protective effects of neutral-pH bicarbonate lactate-buffered peritoneal dialysis fluid on cell viability and apoptosis. Ther. Apher. Dial. 2017, 21, 62–70. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, J.; Yuan, S.Y. MCT1 and MCT4 expression during myocardial ischemic-reperfusion in the rat heart. Cell Physiol. Biochem. 2013, 32, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Panisello-Roselló, A. Biochemical markers in steatotic liver preservation: A comparative analysis of conventional and next-generation solutions. In Proceedings of the World Transplant Congress (WTC 2025), San Francisco, CA, USA, 2–6 August 2025. Poster P2.03.80. [Google Scholar]
- Morariu, A.M.; Vd Plaats, A.; VOeveren, W.; Hart, N.; Leuvenink, H.; Graaff, R.; Ploeg, R.; Rakhorst, G. Hyperaggregating effect of hydroxyethyl starch components and University of Wisconsin solution on human red blood cells: A risk of impaired graft perfusion in organ procurement? Transplantation 2003, 76, 37–43. [Google Scholar] [CrossRef]
- BenMosbah, I.; Franco-Gou, R.; Ben Abdennebi, H.; Hernandez, R.; Escolar, G.; Saidane, D.; Rosello-Catafau, J.; Peralta, C. Effects of polyethylene glycol and hydroxyethyl starch in University of Wisconsin preservation on human red blood cell aggregation and viscosity. Transplant. Proc. 2006, 38, 1229–1235. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.; Panisello-Rosello, A.; Castro-Benitez, C.; Adam, R. Glycocalyx preservation and NO production in fatty livers-the protective role of high molecular polyethylene glycol in cold ischemia injury. Int. J. Mol. Sci. 2018, 19, 2375. [Google Scholar] [CrossRef] [PubMed]
- G Bardallo, R.; Panisello-Roselló, A.; Sanchez-Nuno, S.; Alva, N.; Roselló-Catafau, J.; Carbonell, T. Nrf2 and oxidative stress in liver ischemia/reperfusion injury. FEBS J. 2022, 289, 5463–5479. [Google Scholar] [CrossRef] [PubMed]
- Panisello-Roselló, A.; Lopez, A.; Folch-Puy, E.; Carbonell, T.; Rolo, A.; Palmeira, C.; Adam, R.; Net, M.; Roselló-Catafau, J. Role of aldehyde dehydrogenase 2 in ischemia reperfusion injury: An update. World J. Gastroenterol. 2018, 24, 2984–2994. [Google Scholar] [CrossRef] [PubMed]
- Panisello-Roselló, A.; Alva, N.; Flores, M.; Lopez, A.; Castro Benítez, C.; Folch-Puy, E.; Rolo, A.; Palmeira, C.; Adam, R.; Carbonell, T.; et al. Aldehyde Dehydrogenase 2 (ALDH2) in rat fatty liver cold ischemia injury. Int. J. Mol. Sci. 2018, 19, 2479. [Google Scholar] [CrossRef]
- Angulo, J.; El-Assar, M.; Sevilleja-Ortiz, A. Short-term pharmacological activation Nfr2 ameliorates vascular function in aged rats and in pathological human vasculature. A potential target for therapeutic intervention. Redox Biol. 2019, 26, 101271. [Google Scholar] [CrossRef]
- Panisello-Roselló, A.; da Silva, R.T.; Folch-Puy, E.; Carbonell, T.; Palmeira, C.M.; Fondevila, C.; Roselló-Catafau, J.; Adam, R. The Use of a Single, Novel Preservation Solution in Split Liver Transplantation and Hypothermic Oxygenated Machine Perfusion. Transplantation 2022, 106, e187–e188. [Google Scholar] [CrossRef]
- Mabrut, J.Y.; Lesurtel, M.; Muller, X.; Dubois, R.; Ducerf, C.; Rossignol, G.; Mohkam, K. Ex vivo liver splitting and hypothermic oxygenated machine perfusion: Technical refinements of a promising preservation strategy in split liver transplantation. Transplantation 2021, 105, e89–e90. [Google Scholar] [CrossRef]
- Muller, X.; Rossignol, G.; Couillerot, J.; Breton, A.; Hervieu, V.; Lesurtel, M.; Mohkam, V.; Mabrut, J.Y. A Single Preservation Solution for Static Cold Storage and Hypothermic Oxygenated Perfusion of Marginal Liver Grafts: A Preclinical Study. Transplantation 2024, 108, 175–183. [Google Scholar] [CrossRef]
- Mesnard, B.; Bruneau, S.; Le Bas-Bernardet, S.; Ogbemudia, E.; Kervella, D.; Masset, C.; Neel, M.; Minault, M.D.; Hervouet, M.J.; Cantarovich, D.; et al. Impact of Hypothermic Perfusion on Immune Responses and Sterile Inflammation in a Preclinical Model of Pancreatic Transplantation. Transplant. Direct 2025, 11, e1743. [Google Scholar] [CrossRef]
- Panisello-Rosello, A.; Palmeira, C.; Carbonell, T.; Roselló-Catafau, J. Hypothermic Perfusion on Immune Responses and Sterile Inflammation in a Preclinical Model of Pancreatic Transplantation. Transplant. Direct 2025, 11, e1842. [Google Scholar] [CrossRef]
- Peralta, C.; Hotter, G.; Closa, D.; Gelpí, E.; Bulbena, O.; Roselló-Catafau, J. Protective effect of preconditioning on the injury associated to hepatic ischemia-reperfusion in the rat: Role of nitric oxide and adenosine. Hepatology 1997, 25, 934–937. [Google Scholar] [CrossRef] [PubMed]
- Serafín, A.; Roselló-Catafau, J.; Prats, N.; Xaus, C.; Gelpí, E.; Peralta, C. Ischemic preconditioning increases the tolerance of fatty liver to hepatic ischemia-reperfusion injury in the rat. Am. J. Pathol. 2002, 161, 587–601. [Google Scholar] [CrossRef] [PubMed]
- Peralta, C.; Bartrons, R.; Riera, L.; Manzano, A.; Xaus, C.; Gelpí, E.; Roselló-Catafau, J. Hepatic preconditioing preserves energy metabolism during sustained ischemia. Am. J. Physiol. Gastrointest. Liver Physiol. 2000, 279, G163–G171. [Google Scholar] [CrossRef] [PubMed]
- Peralta, C.; Bartrons, R.; Serafin, A.; Blázquez, C.; Guzmán, M.; Prats, N.; Xaus, C.; Cutillas, B.; Gelpí, E.; Roselló-Catafau, J. Adenosine monophosphate-activated protein kinase mediates the protective effects of preconditioning on hepatic ischemia-reperfusion injury in the rat. J. Hepatol. 2001, 34, 1164–1173. [Google Scholar] [CrossRef]
- Peralta, C.; Bulbena, O.; Xaus, C.; Prats, N.; Cutrin, J.C.; Poli, G.; Gelpi, E.; Roselló-Catafau, J. Ischemic preconditioning: A defence mechanism against the reactive oxygen species generated after hepatic ischemia reperfusion. Transplantation 2002, 73, 1203–1211. [Google Scholar] [CrossRef]
- Rolo, A.P.; Teodoro, J.S.; Peralta, C.; Rosello-Catafau, J.; Palmeira, C.M. Prevention of I/R injury in fatty livers by ischemic preconditioning is associated with increased mitochondrial tolerance: The key role of ATP synthase and mitochondrial permeability transition. Transpl. Int. 2009, 22, 1081–1090. [Google Scholar] [CrossRef]
- Zhao, W.; Luo, H.; Lin, Z.; Huang, L.; Pan, Z.; Chen, L.; Fan, L.; Yang, S.; Tan, H.; Zhong, C.; et al. Wogonin mitigates acetaminophen-induced liver injury in mice through inhibition of the PI3K/AKT signalling pathway. J. Ethnopharmacol. 2024, 332, 118364. [Google Scholar] [CrossRef]
- Peralta, C.; Roselló-Catafau, J. The future of fatty livers. J. Hepatol. 2004, 41, 149–151. [Google Scholar] [CrossRef]
- Chen, G.; Douglas, H.F.; Li, Z.; Cleveland, W.J.; Balzer, C.; Yannopoulos, D.; Chen, I.Y.; Obal, D.; Riess, M.L. Cardioprotection by poloxamer 188 is mediated through increased endotelial nitric oxide production. Sci. Rep. 2025, 15, 15170. [Google Scholar] [CrossRef]
- Li, Z.; Barajas, M.B.; Oyama, T.; Riess, M.L. Role of nitric oxide in cardioprotection by poloxamer 188. Cells 2025, 14, 1001. [Google Scholar] [CrossRef] [PubMed]
- Bejaoui, M.; Pantazi, E.; Folch-Puy, E.; Panisello, A.; Calvo, M.; Pasut, G.; Rimola, A.; Navasa, M.; Adam, R.; Roselló-Catafau, J. Protective Effect of Intravenous High Molecular Weight Polyethylene Glycol on Fatty Liver Preservation. Biomed. Res. Int. 2015, 2015, 794287. [Google Scholar] [CrossRef]
- Bejaoui, M.; Pantazi, E.; Calvo, M.; Folch-Puy, E.; Serafín, A.; Pasut, G.; Panisello, A.; Adam, R.; Roselló-Catafau, J. Polyethylene Glycol Preconditioning: An Effective Strategy to Prevent Liver Ischemia Reperfusion Injury. Oxidative Med. Cell. Longev. 2016, 2016, 9096549. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Zhang, X.F.; Fu, B.M.; Tarbell, J.M. The Role of Endothelial Surface Glycocalyx in Mechano-sensing and Transduction. Adv. Exp. Med. Biol. 2018, 1097, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Passov, A.; Schramko, A.; Mäkisalo, H.; Nordin, A.; Andersson, S.; Pesonen, E.; Ilmakunnas, M. Graft glycocalyx degradation in human liver transplantation. PLoS ONE 2019, 14, e0221010. [Google Scholar] [CrossRef] [PubMed]
- Panisello-Roselló, A.; Castro-Benítez, C.; Lopez, A.; da Silva, R.T.; Roselló-Catafau, J.; Adam, R. Glycocalyx as a Useful Marker of Endothelial Injury in Liver Transplantation. Role Preserv. Solut. Transplant. 2020, 104, e356–e357. [Google Scholar]
- Schiefer, J.; Faybik, P.; Koch, S.; Tudor, B.; Kollmann, D.; Kuessel, L.; Krenn, C.G.; Berlakovich, G.; Baron, D.M.; Baron-Stefaniak, J. Glycocalyx Damage Within Human Liver Grafts Correlates with Graft Injury and Postoperative Graft Function After Orthotopic Liver Transplantation. Transplantation 2020, 104, 72–78. [Google Scholar] [CrossRef]
- Coito, A.J.; Buelow, R.; Shen, X.-D.; Amersi, F.; Moore, C.; Volk, H.D.; Busutil, R.W.; Kupiec-Weginsky, J.W. Heme oxygenase-1 gene transfer inhibits inducible nitric oxide synthase expression and protects genetically fat Zucker rat livers from ischemia-reperfusion injury. Transplantation 2002, 74, 96–102. [Google Scholar] [CrossRef]
- Panisello-Rosello, A.; Rosello-Catafau, J. Ischemia-Reperfusion Injury. In Regenerative Hepatology and Liver Transplantation; chapter 16; Martins, P., Baptista, P., Orlando, G., Eds.; Academic Press: San Diego, CA, USA, 2025; pp. 269–293. ISBN 978-0-12-823524-9. [Google Scholar] [CrossRef]




| Component | Concentration (g/L) |
|---|---|
| Water | 918.25035 |
| Soluble Organic component | 121.1 |
| Surfactant Polymer | 40 |
| PEG-35 kDA | 5 |
| Potassium | 0.98 |
| Phosphorus | 0.774 |
| Magnesium | 0.122 |
| Sulfur | 0.11 |
| Nitrite | 0.0023 |
| Sodium | 2876 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panisello-Rosello, A.; Carbonell, T.; Rosello-Catafau, J.; Vengohechea, J.; Hessheimer, A.; Adam, R.; Fondevila, C. Static Cold Storage and Machine Perfusion: Redefining the Role of Preservation and Perfusate Solutions. Int. J. Mol. Sci. 2025, 26, 11734. https://doi.org/10.3390/ijms262311734
Panisello-Rosello A, Carbonell T, Rosello-Catafau J, Vengohechea J, Hessheimer A, Adam R, Fondevila C. Static Cold Storage and Machine Perfusion: Redefining the Role of Preservation and Perfusate Solutions. International Journal of Molecular Sciences. 2025; 26(23):11734. https://doi.org/10.3390/ijms262311734
Chicago/Turabian StylePanisello-Rosello, Arnau, Teresa Carbonell, Joan Rosello-Catafau, Jordi Vengohechea, Amelia Hessheimer, René Adam, and Constantino Fondevila. 2025. "Static Cold Storage and Machine Perfusion: Redefining the Role of Preservation and Perfusate Solutions" International Journal of Molecular Sciences 26, no. 23: 11734. https://doi.org/10.3390/ijms262311734
APA StylePanisello-Rosello, A., Carbonell, T., Rosello-Catafau, J., Vengohechea, J., Hessheimer, A., Adam, R., & Fondevila, C. (2025). Static Cold Storage and Machine Perfusion: Redefining the Role of Preservation and Perfusate Solutions. International Journal of Molecular Sciences, 26(23), 11734. https://doi.org/10.3390/ijms262311734

