Genetics and Neurobiology of Treatment-Resistant Depression—A Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Genetics of TRD
3.1.1. Candidate Gene Studies
- Genes involved in monoaminergic neurotransmission
- The SLC6A4 gene, encoding the 5-HTT serotonin transporter, has a functional polymorphism, with short (S) allele connected to lower transcription of the gene and poorer antidepressant response [8]. Additionally, in patients with the SS phenotype, smaller hippocampal volume was observed compared to carriers of the long (L) allele. In line with his results, the LL genotype is both less common in TRD patients [9,10] and is related to better treatment outcomes [8,11]. It is, however, important to note that meta-analyses dedicated to the subject yield mixed results, likely due to population stratification and environmental moderators [12].
- Multiple polymorphisms of the HTR2A gene, encoding the serotonin receptor 2A, have been studied regarding antidepressant response. The rs7997012 SNP has been linked with SSRI response in the STAR*D study [2], with AA homozygotes showing better response to antidepressant treatment in comparison to carriers of the G allele. Similarly, in clinical settings, the rs7333412 GG genotype has been reported to decrease response to antidepressants in comparison to A allele carriers [13]. Authors of meta-analyses dedicated to the subject emphasize, nevertheless, that although involvement of the gene is undeniably observed, it must be remembered that it is still a single gene; thus, its individual impact on treatment outcome is modest [14].
- KCNK2 gene, encoding the two-pore domain potassium channel TREK1 involved in the serotonin transmission, was also analyzed as part of the STAR*D study continuation, with the rs2841608 allele identified as statistically significantly related to treatment resistance [15].
- Polymorphisms of the COMT gene, encoding catechol-O-Methyltransferase, an enzyme involved in catecholamine degradation, have been related to increased suicidality [16]. Carriers of the A allele rs4680 SNP (either mutant G/A heterozygotes or mutant A/A homozygotes) reported TRD significantly more often, with the heterozygous mutant genotype showing the worst response to ECT [17].
- Carriers of the C variant of the rs2242446 SNP of the SLC6A2 gene, which codes the norepinephrine transporter, were found to have smaller hippocampal volume compared with noncarriers [18]. This polymorphism was also observed more frequently in TRD patients in comparison to healthy controls—one must, however, note the small sample size and lack of replication of the result so far [10].
- Genes involved in neuroplasticity and stress response
- The GRIN2B gene, encoding the subunit of the NMDA receptor, has been researched as a potential candidate gene for MDD and TRD susceptibility. The rs1805502 polymorphism (dominance of G allele) has been linked to TRD presence [19].
- Multiple alleles of the GRIK4 gene (encoding the Glutamate Receptor Ionotropic Kainate 4) have been analyzed, with results pointing to the gene’s involvement in the pathogenesis of TRD. The G allele of the rs11218030 SNP was observed to positively correlate with TRD presence. Additionally, rs1954787 GG homozygotes and G allele carriers of rs11218030 have a higher risk of developing psychotic symptoms during a depressive episode [20] and worse response to electroconvulsive therapy.
- In patients with TDR, lower serum levels of BDNF are observed. This can be explained by the role of rs6265 polymorphism—presence of the Met allele is correlated with a lower protein concentration and has been correlated with TRD in preclinical studies [21] and a pilot study in a mainly European population [22] (it must however be noted, that these results were not replicated in a study focused on Chinese participants, thus emphasizing the importance of analyzing general genetics of population beforehand). In a different study, Met allele of the SNP was correlated with a worse response to rTMS treatment [11].
- The NR3C1 gene encodes the glucocorticoid receptor involved in HPA axis regulation. Presence of the rs6198 and rs41423247 SNPs has been explored concerning antidepressant resistance.
| Genes Involved in Monoaminergic Neurotransmission | ||||
| Gene | Polymorphism | Sample Analyzed | Results | Source |
| SLC6A4 | rs25531 (S allele) | 310 patients with TRD and 284 healthy controls | Increased risk of treatment resistance | [8] |
| rs25531 (LL phenotype) | 310 patients with TRD and 284 healthy controls | Smaller risk of treatment resistance | ||
| HTR2A | rs7997012 (G allele) | 3671 patients with MDD | Increased risk of treatment resistance | [2] |
| KCNK2 | rs2841608 (C allele) | 1554 patients with MDD | Increased risk of treatment resistance | [15] |
| COMT | rs4680 (A allele) | 100 patients with TRD (of Chinese descent) and 100 healthy controls | Increased risk of treatment resistance Heterozygous genotype (G/A) showing the worst response to ECT | [17] |
| SLC6A2 | rs2242446 (C allele) | 26 TRD patients and 27 matched healthy controls | Smaller hippocampal volume | [18] |
| 119 TRD patients (of Finnish descent) and 395 healthy controls | Increased risk of treatment resistance | [10] | ||
| Genes Involved in Neuroplasticity and Stress Response | ||||
| Gene | Polymorphism | Sample Analyzed | Results | Source |
| GRIN2B | rs1805502 (G allele) | 178 TRD and 612 non-TRD patients as well as 779 healthy controls | Increased risk of treatment resistance | [19] |
| GRIK4 | rs1954787 (GG homozygotes) | 247 MDD no-TRD and 380 TRD patients | Higher risk of developing psychotic symptoms during a depressive episode Worse response to electroconvulsive therapy | [20] |
| rs11218030 (G allele) | Increased risk of treatment resistance Higher risk of developing psychotic symptoms during a depressive episode Worse response to electroconvulsive therapy | |||
| BDNF | rs6265 (Met allele) | 31 patients with MDD, defined as treatment-resistant MDD defined using DSM-IV criteria | Worse response to rTMS treatment | [11] |
| 62 patients (55% female patients) of mainly European ancestry (58 Patients) with MDD | Carriers of Met allele show lower response to ketamine treatment | [22] | ||
| NR3C1 | rs6198 and rs41423247 alleles | 760 patients with moderate-to-severe depression, treated with escitalopram or nortriptyline | Alleles correlated with worse response to treatment with SSRI (escitalopram) and nortriptyline (tricyclic antidepressant) | [21] |
3.1.2. GWAS
3.2. Epigenetic Modifications in TRD
3.2.1. DNA Methylation
3.2.2. Histone Modifications
3.2.3. Non-Coding RNAs: miRNAs and lncRNAs
3.3. Neuroanatomical Brain Changes
3.3.1. Gray Matter Volume
3.3.2. Regions of Interest
3.3.3. White Matter Structure
| Gray Matter Volume (GMV) | ||
| Neuroanatomical Variant | Sample Analyzed | Source |
| Reduced caudate volume, related to altered caudate–prefrontal connectivity | 18 TRD patients and 17 patients with first episode of depression | [54] |
| Reduced gray matter density in the right superior frontal gyrus and the right putamen, changes in tissue composition in the hippocampus and rostral ACC, reduction in volume of the right prefrontal lobe and the right caudate nucleus | 20 TRD patients, 20 patients with MDD who responded to treatment, 20 healthy controls. | [55] |
| Reduced GMV in superior, medial and inferior frontal gyri, the insula, the parahippocampal gyrus, transverse temporal gyrus, and anterior cingulate gyrus Smaller volumes of the right medial frontal gyrus and the left insula, qualitative GMV changes in the precentral gyrus, the medial frontal gyrus, the insula, the transverse temporal gyrus, the inferior parietal lobule and the posterior cingulate (in comparison to first-episode patients) | 22 TRD patients, 22 patients with MDD who responded to treatment, 20 patients with first episode of depression | [56] |
| Regions of Interest | ||
| Neuroanatomical Variant | Sample Analyzed | Source |
| Reduced hippocampal volume | 182 TRD patients, 52 patients with schizophrenia, 76 healthy controls | [50] |
| Increased presence of hippocampal sulcal cavities | 115 TRD patients, 86 healthy controls | [51] |
| White Matter Structure | ||
| Neuroanatomical Variant | Sample Analyzed | Source |
| Reductions in fractional anisotropy in the cingulum, corpus callosum, superior, and inferior longitudinal fasciculi (in comparison to healthy controls and first-episode patients) Decreased fractional anisotropy within the ventromedial prefrontal region (in comparison to MDD patients responsive to treatment) | 18 TRD patients, 16 patients with MDD who responded to treatment, 19 patients with first episode of depression | [59] |
3.4. Functional Brain Changes
3.4.1. Default Mode Network
3.4.2. Occipital Region Connectivity Disfunction
3.5. Neurogenesis and Neural Plasticity Disfunction
3.5.1. Structural Correlates
3.5.2. Cellular and Molecular Mechanisms
4. Discussion
5. Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Berlim, M.T.; Turecki, G. Definition, Assessment, and Staging of Treatment—Resistant Refractory Major Depression: A Review of Current Concepts and Methods. Can. J. Psychiatry 2007, 52, 46–54. [Google Scholar] [CrossRef]
- Rush, A.J.; Trivedi, M.H.; Wisniewski, S.R.; Nierenberg, A.A.; Stewart, J.W.; Warden, D.; Niederehe, G.; Thase, M.E.; Lavori, P.W.; Lebowitz, B.D.; et al. Acute and Longer-Term Outcomes in Depressed Outpatients Requiring One or Several Treatment Steps: A STAR*D Report. Am. J. Psychiatry 2006, 163, 1905–1917. [Google Scholar] [CrossRef] [PubMed]
- Mrazek, D.A.; Hornberger, J.C.; Altar, C.A.; Degtiar, I. A Review of the Clinical, Economic, and Societal Burden of Treatment-Resistant Depression: 1996–2013. Psychiatr. Serv. 2014, 65, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Gratten, J.; Wray, N.R.; Keller, M.C.; Visscher, P.M. Large-scale genomics unveils the genetic architecture of psychiatric disorders. Nat. Neurosci. 2014, 17, 782–790. [Google Scholar] [CrossRef]
- Milaneschi, Y.; Lamers, F.; Peyrot, W.J.; Abdellaoui, A.; Willemsen, G.; Hottenga, J.-J.; Jansen, R.; Mbarek, H.; Dehghan, A.; Lu, C.; et al. Polygenic dissection of major depression clinical heterogeneity. Mol. Psychiatry 2016, 21, 516–522. [Google Scholar] [CrossRef]
- Tansey, K.E.; Guipponi, M.; Hu, X.; Domenici, E.; Lewis, G.; Malafosse, A.; Wendland, J.R.; Lewis, C.M.; McGuffin, P.; Uher, R. Contribution of Common Genetic Variants to Antidepressant Response. Biol. Psychiatry 2013, 73, 679–682. [Google Scholar] [CrossRef]
- Fabbri, C.; Kasper, S.; Kautzky, A.; Bartova, L.; Dold, M.; Zohar, J.; Souery, D.; Montgomery, S.; Albani, D.; Raimondi, I.; et al. Genome-wide association study of treatment-resistance in depression and meta-analysis of three independent samples. Br. J. Psychiatry 2019, 214, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Porcelli, S.; Fabbri, C.; Serretti, A. Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with antidepressant efficacy. Eur. Neuropsychopharmacol. 2012, 22, 239–258. [Google Scholar] [CrossRef]
- Bonvicini, C.; Minelli, A.; Scassellati, C.; Bortolomasi, M.; Segala, M.; Sartori, R.; Giacopuzzi, M.; Gennarelli, M. Serotonin transporter gene polymorphisms and treatment-resistant depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 934–939. [Google Scholar] [CrossRef]
- Kautto, M.; Kampman, O.; Mononen, N.; Lehtimäki, T.; Haraldsson, S.; Koivisto, P.A.; Leinonen, E. Serotonin transporter (5-HTTLPR) and norepinephrine transporter (NET) gene polymorphisms: Susceptibility and treatment response of electroconvulsive therapy in treatment resistant depression. Neurosci. Lett. 2015, 590, 116–120. [Google Scholar] [CrossRef]
- Bocchio-Chiavetto, L.; Miniussi, C.; Zanardini, R.; Gazzoli, A.; Bignotti, S.; Specchia, C.; Gennarelli, M. 5-HTTLPR and BDNF Val66Met polymorphisms and response to rTMS treatment in drug resistant depression. Neurosci. Lett. 2008, 437, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Serretti, A. Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol. Psychiatry 2010, 15, 473–500. [Google Scholar] [CrossRef]
- Quesseveur, G.; Repérant, C.; David, D.J.; Gardier, A.M.; Sanchez, C.; Guiard, B.P. 5-HT2A receptor inactivation potentiates the acute antidepressant-like activity of escitalopram: Involvement of the noradrenergic system. Exp. Brain Res. 2013, 226, 285–295. [Google Scholar] [CrossRef]
- Kao, C.-F.; Kuo, P.-H.; Yu, Y.W.-Y.; Yang, A.C.; Lin, E.; Liu, Y.-L.; Tsai, S.-J. Gene-Based Association Analysis Suggests Association of HTR2A With Antidepressant Treatment Response in Depressed Patients. Front. Pharmacol. 2020, 11, 559601. [Google Scholar] [CrossRef]
- Perlis, R.H.; Moorjani, P.; Fagerness, J.; Purcell, S.; Trivedi, M.H.; Fava, M.; Rush, A.J.; Smoller, J.W. Pharmacogenetic Analysis of Genes Implicated in Rodent Models of Antidepressant Response: Association of TREK1 and Treatment Resistance in the STAR*D Study. Neuropsychopharmacology 2008, 33, 2810–2819. [Google Scholar] [CrossRef]
- Schosser, A.; Calati, R.; Serretti, A.; Massat, I.; Kocabas, N.A.; Papageorgiou, K.; Linotte, S.; Mendlewicz, J.; Souery, D.; Zohar, J.; et al. The impact of COMT gene polymorphisms on suicidality in treatment resistant major depressive disorder—A European Multicenter Study. Eur. Neuropsychopharmacol. 2012, 22, 259–266. [Google Scholar] [CrossRef]
- Lin, Z.; He, H.; Zhang, C.; Wang, Z.; Jiang, M.; Li, Q.; Lan, X.; Zhang, M.; Huang, X. Influence of Val108/158Met COMT Gene Polymorphism on the Efficacy of Modified Electroconvulsive Therapy in Patients with Treatment Resistant Depression. Cell Biochem. Biophys. 2015, 71, 1387–1393. [Google Scholar] [CrossRef]
- Phillips, J.L.; Batten, L.A.; Tremblay, P.; Aldosary, F.; Du, L.; Blier, P. Impact of monoamine-related gene polymorphisms on hippocampal volume in treatment-resistant depression. Acta Neuropsychiatr. 2015, 27, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, Z.; Wu, Z.; Chen, J.; Wang, Z.; Peng, D.; Hong, W.; Yuan, C.; Wang, Z.; Yu, S.; et al. A study of N-methyl-D-aspartate receptor gene (GRIN2B) variants as predictors of treatment-resistant major depression. Psychopharmacology 2014, 231, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Milanesi, E.; Bonvicini, C.; Congiu, C.; Bortolomasi, M.; Gainelli, G.; Gennarelli, M.; Minelli, A. The role of GRIK4 gene in treatment-resistant depression. Genet. Res. 2015, 97, e14. [Google Scholar] [CrossRef]
- Uher, R.; Huezo-Diaz, P.; Perroud, N.; Smith, R.; Rietschel, M.; Mors, O.; Hauser, J.; Maier, W.; Kozel, D.; Henigsberg, N.; et al. Genetic predictors of response to antidepressants in the GENDEP project. Pharmacogenom. J. 2009, 9, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Laje, G.; Lally, N.; Mathews, D.; Brutsche, N.; Chemerinski, A.; Akula, N.; Kelmendi, B.; Simen, A.; McMahon, F.J.; Sanacora, G.; et al. Brain-Derived Neurotrophic Factor Val66Met Polymorphism and Antidepressant Efficacy of Ketamine in Depressed Patients. Biol. Psychiatry 2012, 72, e27–e28. [Google Scholar] [CrossRef]
- Howard, D.M.; Adams, M.J.; Clarke, T.-K.; Hafferty, J.D.; Gibson, J.; Shirali, M.; Coleman, J.R.I.; Hagenaars, S.P.; Ward, J.; Wigmore, E.M.; et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 2019, 22, 343–352. [Google Scholar] [CrossRef]
- Li, Q.S.; Tian, C.; Seabrook, G.R.; Drevets, W.C.; Narayan, V.A. Analysis of 23andMe antidepressant efficacy survey data: Implication of circadian rhythm and neuroplasticity in bupropion response. Transl. Psychiatry 2016, 6, e889. [Google Scholar] [CrossRef]
- Draganov, M.; Arranz, M.J.; Salazar, J.; De Diego-Adeliño, J.; Gallego-Fabrega, C.; Jubero, M.; Carceller-Sindreu, M.; Portella, M.J. Association study of polymorphisms within inflammatory genes and methylation status in treatment response in major depression. Eur. Psychiatry 2019, 60, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Baune, B.T.; Dannlowski, U.; Domschke, K.; Janssen, D.G.A.; Jordan, M.A.; Ohrmann, P.; Bauer, J.; Biros, E.; Arolt, V.; Kugel, H.; et al. The Interleukin 1 Beta (IL1B) Gene Is Associated with Failure to Achieve Remission and Impaired Emotion Processing in Major Depression. Biol. Psychiatry 2010, 67, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, D.; Eszlari, N.; Petschner, P.; Pap, D.; Vas, S.; Kovacs, P.; Gonda, X.; Juhasz, G.; Bagdy, G. Effects of IL1B single nucleotide polymorphisms on depressive and anxiety symptoms are determined by severity and type of life stress. Brain Behav. Immun. 2016, 56, 96–104. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Kim, J.-W.; Kang, H.-J.; Lee, J.-Y.; Kim, S.-W.; Shin, I.-S.; Kim, J.-M. Interplay between Stressful Life Events and Interleukin-1β on 12-week Antidepressant Response in Depressive Patients. Clin. Psychopharmacol. Neurosci. 2025, 23, 184–192. [Google Scholar] [CrossRef]
- Carvalho, S.; Santos, M.; Lima, L.; Mota-Pereira, J.; Pimentel, P.; Maia, D.; Correia, D.; Gomes, S.; Cruz, A.; Medeiros, R. IL6-174G > C genetic polymorphism influences antidepressant treatment outcome. Nord. J. Psychiatry 2017, 71, 158–162. [Google Scholar] [CrossRef]
- Kovacs, D.; Eszlari, N.; Petschner, P.; Pap, D.; Vas, S.; Kovacs, P.; Gonda, X.; Bagdy, G.; Juhasz, G. Interleukin-6 promoter polymorphism interacts with pain and life stress influencing depression phenotypes. J. Neural Transm. 2016, 123, 541–548. [Google Scholar] [CrossRef]
- Shin, K.-H.; Jeong, H.C.; Choi, D.-H.; Kim, S.N.; Kim, T.-E. Association of TNF-alpha G-308A gene polymorphism with depression: A meta-analysis. Neuropsychiatr. Dis. Treat. 2017, 13, 2661–2668. [Google Scholar] [CrossRef]
- Almeida, O.P.; Norman, P.E.; Allcock, R.; Bockxmeer, F.V.; Hankey, G.J.; Jamrozik, K.; Flicker, L. Polymorphisms of the CRP gene inhibit inflammatory response and increase susceptibility to depression: The Health in Men Study. Int. J. Epidemiol. 2009, 38, 1049–1059. [Google Scholar] [CrossRef]
- O’Dushlaine, C.; Ripke, S.; Ruderfer, D.M.; Hamilton, S.P.; Fava, M.; Iosifescu, D.V.; Kohane, I.S.; Churchill, S.E.; Castro, V.M.; Clements, C.C.; et al. Rare Copy Number Variation in Treatment-Resistant Major Depressive Disorder. Biol. Psychiatry 2014, 76, 536–541. [Google Scholar] [CrossRef]
- Fabbri, C.; Corponi, F.; Albani, D.; Raimondi, I.; Forloni, G.; Schruers, K.; Kasper, S.; Kautzky, A.; Zohar, J.; Souery, D.; et al. Pleiotropic genes in psychiatry: Calcium channels and the stress-related FKBP5 gene in antidepressant resistance. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 81, 203–210. [Google Scholar] [CrossRef]
- Cocchi, E.; Fabbri, C.; Han, C.; Lee, S.-J.; Patkar, A.A.; Masand, P.S.; Pae, C.-U.; Serretti, A. Genome-wide association study of antidepressant response: Involvement of the inorganic cation transmembrane transporter activity pathway. BMC Psychiatry 2016, 16, 106. [Google Scholar] [CrossRef]
- Kaliman, P.; Álvarez-López, M.J.; Cosín-Tomás, M.; Rosenkranz, M.A.; Lutz, A.; Davidson, R.J. Rapid changes in histone deacetylases and inflammatory gene expression in expert meditators. Psychoneuroendocrinology 2014, 40, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Keller, S.; Sarchiapone, M.; Zarrilli, F.; Videtič, A.; Ferraro, A.; Carli, V.; Sacchetti, S.; Lembo, F.; Angiolillo, A.; Jovanovic, N.; et al. Increased BDNF Promoter Methylation in the Wernicke Area of Suicide Subjects. Arch. Gen. Psychiatry 2010, 67, 258. [Google Scholar] [CrossRef]
- McGowan, P.O.; Sasaki, A.; D’Alessio, A.C.; Dymov, S.; Labonté, B.; Szyf, M.; Turecki, G.; Meaney, M.J. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat. Neurosci. 2009, 12, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Klengel, T.; Mehta, D.; Anacker, C.; Rex-Haffner, M.; Pruessner, J.C.; Pariante, C.M.; Pace, T.W.W.; Mercer, K.B.; Mayberg, H.S.; Bradley, B.; et al. Allele-specific FKBP5 DNA demethylation mediates gene–childhood trauma interactions. Nat. Neurosci. 2013, 16, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Bruzzone, S.E.P.; Ozenne, B.; Fisher, P.M.; Ortega, G.; Jørgensen, M.B.; Knudsen, G.M.; Lesch, K.-P.; Frokjaer, V.G. DNA methylation of serotonin genes as predictive biomarkers of antidepressant treatment response. Prog. Neuropsychopharmacol. Biol. Psychiatry 2025, 136, 111160. [Google Scholar] [CrossRef]
- Nemeroff, C.B. Paradise Lost: The Neurobiological and Clinical Consequences of Child Abuse and Neglect. Neuron 2016, 89, 892–909. [Google Scholar] [CrossRef]
- Yuan, M.; Yang, B.; Rothschild, G.; Mann, J.J.; Sanford, L.D.; Tang, X.; Huang, C.; Wang, C.; Zhang, W. Epigenetic regulation in major depression and other stress-related disorders: Molecular mechanisms, clinical relevance and therapeutic potential. Signal Transduct. Target. Ther. 2023, 8, 309. [Google Scholar] [CrossRef] [PubMed]
- Tsankova, N.; Renthal, W.; Kumar, A.; Nestler, E.J. Epigenetic regulation in psychiatric disorders. Nat. Rev. Neurosci. 2007, 8, 355–367. [Google Scholar] [CrossRef]
- Covington, H.E.; Maze, I.; Sun, H.; Bomze, H.M.; DeMaio, K.D.; Wu, E.Y.; Dietz, D.M.; Lobo, M.K.; Ghose, S.; Mouzon, E.; et al. A Role for Repressive Histone Methylation in Cocaine-Induced Vulnerability to Stress. Neuron 2011, 71, 656–670. [Google Scholar] [CrossRef] [PubMed]
- Maze, I.; Covington, H.E.; Dietz, D.M.; LaPlant, Q.; Renthal, W.; Russo, S.J.; Mechanic, M.; Mouzon, E.; Neve, R.L.; Haggarty, S.J.; et al. Essential Role of the Histone Methyltransferase G9a in Cocaine-Induced Plasticity. Science 2010, 327, 213–216. [Google Scholar] [CrossRef]
- Lopez, J.P.; Lim, R.; Cruceanu, C.; Crapper, L.; Fasano, C.; Labonte, B.; Maussion, G.; Yang, J.P.; Yerko, V.; Vigneault, E.; et al. miR-1202 is a primate-specific and brain-enriched microRNA involved in major depression and antidepressant treatment. Nat. Med. 2014, 20, 764–768. [Google Scholar] [CrossRef]
- Narayanan, R.; Schratt, G. miRNA regulation of social and anxiety-related behaviour. Cell. Mol. Life Sci. 2020, 77, 4347–4364. [Google Scholar] [CrossRef] [PubMed]
- Haramati, S.; Navon, I.; Issler, O.; Ezra-Nevo, G.; Gil, S.; Zwang, R.; Hornstein, E.; Chen, A. microRNA as Repressors of Stress-Induced Anxiety: The Case of Amygdalar miR-34. J. Neurosci. 2011, 31, 14191–14203. [Google Scholar] [CrossRef]
- Roddy, D.W.; Farrell, C.; Doolin, K.; Roman, E.; Tozzi, L.; Frodl, T.; O’Keane, V.; O’Hanlon, E. The Hippocampus in Depression: More Than the Sum of Its Parts? Advanced Hippocampal Substructure Segmentation in Depression. Biol. Psychiatry 2019, 85, 487–497. [Google Scholar] [CrossRef]
- Arnone, D.; McIntosh, A.M.; Ebmeier, K.P.; Munafò, M.R.; Anderson, I.M. Magnetic resonance imaging studies in unipolar depression: Systematic review and meta-regression analyses. Eur. Neuropsychopharmacol. 2012, 22, 1–16. [Google Scholar] [CrossRef]
- Zhao, Y.-J.; Du, M.-Y.; Huang, X.-Q.; Lui, S.; Chen, Z.-Q.; Liu, J.; Luo, Y.; Wang, X.-L.; Kemp, G.J.; Gong, Q.-Y. Brain grey matter abnormalities in medication-free patients with major depressive disorder: A meta-analysis. Psychol. Med. 2014, 44, 2927–2937. [Google Scholar] [CrossRef] [PubMed]
- Bludau, S.; Bzdok, D.; Gruber, O.; Kohn, N.; Riedl, V.; Sorg, C.; Palomero-Gallagher, N.; Müller, V.I.; Hoffstaedter, F.; Amunts, K.; et al. Medial Prefrontal Aberrations in Major Depressive Disorder Revealed by Cytoarchitectonically Informed Voxel-Based Morphometry. Am. J. Psychiatry 2016, 173, 291–298. [Google Scholar] [CrossRef]
- Zhang, H.; Li, L.; Wu, M.; Chen, Z.; Hu, X.; Chen, Y.; Zhu, H.; Jia, Z.; Gong, Q. Brain gray matter alterations in first episodes of depression: A meta-analysis of whole-brain studies. Neurosci. Biobehav. Rev. 2016, 60, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Ding, J.; Li, J.; Guo, W.; Long, Z.; Liu, F.; Gao, Q.; Zeng, L.; Zhao, J.; Chen, H. Resting-State Functional Connectivity Bias of Middle Temporal Gyrus and Caudate with Altered Gray Matter Volume in Major Depression. PLoS ONE 2012, 7, e45263. [Google Scholar] [CrossRef]
- Shah, P.J.; Glabus, M.F.; Goodwin, G.M.; Ebmeier, K.P. Chronic, treatment-resistant depression and right fronto-striatal atrophy. Br. J. Psychiatry 2002, 180, 434–440. [Google Scholar] [CrossRef]
- Serra-Blasco, M.; Portella, M.J.; Gómez-Ansón, B.; De Diego-Adeliño, J.; Vives-Gilabert, Y.; Puigdemont, D.; Granell, E.; Santos, A.; Álvarez, E.; Pérez, V. Effects of illness duration and treatment resistance on grey matter abnormalities in majordepression. Br. J. Psychiatry 2013, 202, 434–440. [Google Scholar] [CrossRef]
- Maller, J.J.; Daskalakis, Z.J.; Thomson, R.H.S.; Daigle, M.; Barr, M.S.; Fitzgerald, P.B. Hippocampal volumetrics in treatment-resistant depression and schizophrenia: The devil’s in De-Tail. Hippocampus 2012, 22, 9–16. [Google Scholar] [CrossRef]
- Maller, J.J.; Réglade-Meslin, C.; Thomson, R.H.S.; Daigle, M.; Barr, M.S.; Daskalakis, Z.J.; Fitzgerald, P.B. Hippocampal sulcal cavities in depression and healthy individuals. J. Affect. Disord. 2013, 150, 785–789. [Google Scholar] [CrossRef]
- De Diego-Adeliño, J.; Pires, P.; Gómez-Ansón, B.; Serra-Blasco, M.; Vives-Gilabert, Y.; Puigdemont, D.; Martín-Blanco, A.; Álvarez, E.; Pérez, V.; Portella, M.J. Microstructural white-matter abnormalities associated with treatment resistance, severity and duration of illness in major depression. Psychol. Med. 2014, 44, 1171–1182. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Cui, Q.; Zheng, J.; Duan, X.; Pang, Y.; Gao, Q.; Han, S.; Long, Z.; Wang, Y.; Li, J.; et al. Frequency-specific alterations in functional connectivity in treatment-resistant and -sensitive major depressive disorder. J. Psychiatr. Res. 2016, 82, 30–39. [Google Scholar] [CrossRef]
- De Kwaasteniet, B.P.; Rive, M.M.; Ruhé, H.G.; Schene, A.H.; Veltman, D.J.; Fellinger, L.; Van Wingen, G.A.; Denys, D. Decreased Resting-State Connectivity between Neurocognitive Networks in Treatment Resistant Depression. Front. Psychiatry 2015, 6, 28. [Google Scholar] [CrossRef]
- Guo, W.; Liu, F.; Xue, Z.; Xu, X.; Wu, R.; Ma, C.; Wooderson, S.C.; Tan, C.; Sun, X.; Chen, J.; et al. Alterations of the amplitude of low-frequency fluctuations in treatment-resistant and treatment-response depression: A resting-state fMRI study. Prog. Neuropsychopharmacol. Biol. Psychiatry 2012, 37, 153–160. [Google Scholar] [CrossRef]
- Yamamura, T.; Okamoto, Y.; Okada, G.; Takaishi, Y.; Takamura, M.; Mantani, A.; Kurata, A.; Otagaki, Y.; Yamashita, H.; Yamawaki, S. Association of thalamic hyperactivity with treatment-resistant depression and poor response in early treatment for major depression: A resting-state fMRI study using fractional amplitude of low-frequency fluctuations. Transl. Psychiatry 2016, 6, e754. [Google Scholar] [CrossRef]
- Wu, Q.; Li, D.; Kuang, W.; Zhang, T.; Lui, S.; Huang, X.; Chan, R.C.K.; Kemp, G.J.; Gong, Q. Abnormal regional spontaneous neural activity in treatment-refractory depression revealed by resting-state fMRI. Hum. Brain Mapp. 2011, 32, 1290–1299. [Google Scholar] [CrossRef]
- Guo, W.; Liu, F.; Xue, Z.; Gao, K.; Liu, Z.; Xiao, C.; Chen, H.; Zhao, J. Abnormal resting-state cerebellar–cerebral functional connectivity in treatment-resistant depression and treatment sensitive depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 44, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Boldrini, M.; Fulmore, C.A.; Tartt, A.N.; Simeon, L.R.; Pavlova, I.; Poposka, V.; Rosoklija, G.B.; Stankov, A.; Arango, V.; Dwork, A.J.; et al. Human Hippocampal Neurogenesis Persists throughout Aging. Cell Stem Cell 2018, 22, 589–599.e5. [Google Scholar] [CrossRef]
- Boldrini, M.; Hen, R.; Underwood, M.D.; Rosoklija, G.B.; Dwork, A.J.; Mann, J.J.; Arango, V. Hippocampal Angiogenesis and Progenitor Cell Proliferation Are Increased with Antidepressant Use in Major Depression. Biol. Psychiatry 2012, 72, 562–571. [Google Scholar] [CrossRef]
- Sen, S.; Duman, R.; Sanacora, G. Serum Brain-Derived Neurotrophic Factor, Depression, and Antidepressant Medications: Meta-Analyses and Implications. Biol. Psychiatry 2008, 64, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Molendijk, M.L.; Spinhoven, P.; Polak, M.; Bus, B.A.A.; Penninx, B.W.J.H.; Elzinga, B.M. Serum BDNF concentrations as peripheral manifestations of depression: Evidence from a systematic review and meta-analyses on 179 associations (N=9484). Mol. Psychiatry 2014, 19, 791–800. [Google Scholar] [CrossRef]
- Warner-Schmidt, J.L.; Duman, R.S. VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants. Proc. Natl. Acad. Sci. USA 2007, 104, 4647–4652. [Google Scholar] [CrossRef] [PubMed]
- Lucassen, P.J.; Pruessner, J.; Sousa, N.; Almeida, O.F.X.; Van Dam, A.M.; Rajkowska, G.; Swaab, D.F.; Czéh, B. Neuropathology of stress. Acta Neuropathol. 2014, 127, 109–135. [Google Scholar] [CrossRef] [PubMed]
- Snyder, J.S.; Soumier, A.; Brewer, M.; Pickel, J.; Cameron, H.A. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 2011, 476, 458–461. [Google Scholar] [CrossRef] [PubMed]
- Koo, J.W.; Duman, R.S. IL-1β is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc. Natl. Acad. Sci. USA 2008, 105, 751–756. [Google Scholar] [CrossRef]
- Miller, A.H.; Raison, C.L. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 2016, 16, 22–34. [Google Scholar] [CrossRef]
- Yirmiya, R.; Goshen, I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav. Immun. 2011, 25, 181–213. [Google Scholar] [CrossRef]
- Haroon, E.; Welle, J.R.; Woolwine, B.J.; Goldsmith, D.R.; Baer, W.; Patel, T.; Felger, J.C.; Miller, A.H. Associations among peripheral and central kynurenine pathway metabolites and inflammation in depression. Neuropsychopharmacology 2020, 45, 998–1007. [Google Scholar] [CrossRef]
- Hill, A.S.; Sahay, A.; Hen, R. Increasing Adult Hippocampal Neurogenesis is Sufficient to Reduce Anxiety and Depression-Like Behaviors. Neuropsychopharmacology 2015, 40, 2368–2378. [Google Scholar] [CrossRef]
- Duman, R.S.; Sanacora, G.; Krystal, J.H. Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments. Neuron 2019, 102, 75–90. [Google Scholar] [CrossRef]
- Scheet, P.; Stephens, M. A Fast and Flexible Statistical Model for Large-Scale Population Genotype Data: Applications to Inferring Missing Genotypes and Haplotypic Phase. Am. J. Hum. Genet. 2006, 78, 629–644. [Google Scholar] [CrossRef] [PubMed]
- Runia, N.; Yücel, D.E.; Lok, A.; De Jong, K.; Denys, D.A.J.P.; Van Wingen, G.A.; Bergfeld, I.O. The neurobiology of treatment-resistant depression: A systematic review of neuroimaging studies. Neurosci. Biobehav. Rev. 2022, 132, 433–448. [Google Scholar] [CrossRef] [PubMed]
- Osimo, E.F.; Pillinger, T.; Rodriguez, I.M.; Khandaker, G.M.; Pariante, C.M.; Howes, O.D. Inflammatory markers in depression: A meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain Behav. Immun. 2020, 87, 901–909. [Google Scholar] [CrossRef]
- Yin, Y.; Ju, T.; Zeng, D.; Duan, F.; Zhu, Y.; Liu, J.; Li, Y.; Lu, W. “Inflamed” depression: A review of the interactions between depression and inflammation and current anti-inflammatory strategies for depression. Pharmacol. Res. 2024, 207, 107322. [Google Scholar] [CrossRef]
- Yang, C.; Wardenaar, K.J.; Bosker, F.J.; Li, J.; Schoevers, R.A. Inflammatory markers and treatment outcome in treatment resistant depression: A systematic review. J. Affect. Disord. 2019, 257, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Pariante, C.M. Why are depressed patients inflamed? A reflection on 20 years of research on depression, glucocorticoid resistance and inflammation. Eur. Neuropsychopharmacol. 2017, 27, 554–559. [Google Scholar] [CrossRef]
- Pariante, C.M.; Lightman, S.L. The HPA axis in major depression: Classical theories and new developments. Trends Neurosci. 2008, 31, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Sharan, P.; Vellapandian, C. Hypothalamic-Pituitary-Adrenal (HPA) Axis: Unveiling the Potential Mechanisms Involved in Stress-Induced Alzheimer’s Disease and Depression. Cureus 2024, 16, e67595. [Google Scholar] [CrossRef]
- Brites, D.; Fernandes, A. Neuroinflammation and Depression: Microglia Activation, Extracellular Microvesicles and microRNA Dysregulation. Front. Cell. Neurosci. 2015, 9, 476. [Google Scholar] [CrossRef] [PubMed]
- Felger, J.C.; Haroon, E.; Patel, T.A.; Goldsmith, D.R.; Wommack, E.C.; Woolwine, B.J.; Le, N.-A.; Feinberg, R.; Tansey, M.G.; Miller, A.H. What does plasma CRP tell us about peripheral and central inflammation in depression? Mol. Psychiatry 2020, 25, 1301–1311. [Google Scholar] [CrossRef]
- Santarelli, L.; Saxe, M.; Gross, C.; Surget, A.; Battaglia, F.; Dulawa, S.; Weisstaub, N.; Lee, J.; Duman, R.; Arancio, O.; et al. Requirement of Hippocampal Neurogenesis for the Behavioral Effects of Antidepressants. Science 2003, 301, 805–809. [Google Scholar] [CrossRef]
- Malberg, J.E.; Eisch, A.J.; Nestler, E.J.; Duman, R.S. Chronic Antidepressant Treatment Increases Neurogenesis in Adult Rat Hippocampus. J. Neurosci. 2000, 20, 9104–9110. [Google Scholar] [CrossRef]
- Eisch, A.J.; Petrik, D. Depression and Hippocampal Neurogenesis: A Road to Remission? Science 2012, 338, 72–75. [Google Scholar] [CrossRef]
- Nordanskog, P.; Larsson, M.R.; Larsson, E.-M.; Johanson, A. Hippocampal volume in relation to clinical and cognitive outcome after electroconvulsive therapy in depression. Acta Psychiatr. Scand. 2014, 129, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Bouckaert, F.; De Winter, F.-L.; Emsell, L.; Dols, A.; Rhebergen, D.; Wampers, M.; Sunaert, S.; Stek, M.; Sienaert, P.; Vandenbulcke, M. Grey matter volume increase following electroconvulsive therapy in patients with late life depression: A longitudinal MRI study. J. Psychiatry Neurosci. 2016, 41, 105–114. [Google Scholar] [CrossRef]
- Loef, D.; Vansteelandt, K.; Oudega, M.L.; Van Eijndhoven, P.; Carlier, A.; Van Exel, E.; Rhebergen, D.; Sienaert, P.; Vandenbulcke, M.; Bouckaert, F.; et al. The ratio and interaction between neurotrophin and immune signaling during electroconvulsive therapy in late-life depression. Brain Behav. Immun. Health 2021, 18, 100389. [Google Scholar] [CrossRef]
- Baeken, C.; Brem, A.-K.; Arns, M.; Brunoni, A.R.; Filipčić, I.; Ganho-Ávila, A.; Langguth, B.; Padberg, F.; Poulet, E.; Rachid, F.; et al. Repetitive transcranial magnetic stimulation treatment for depressive disorders: Current knowledge and future directions. Curr. Opin. Psychiatry 2019, 32, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Lee, B.; Liu, R.-J.; Banasr, M.; Dwyer, J.M.; Iwata, M.; Li, X.-Y.; Aghajanian, G.; Duman, R.S. mTOR-Dependent Synapse Formation Underlies the Rapid Antidepressant Effects of NMDA Antagonists. Science 2010, 329, 959–964. [Google Scholar] [CrossRef]
- Abdallah, C.G.; Sanacora, G.; Duman, R.S.; Krystal, J.H. Ketamine and Rapid-Acting Antidepressants: A Window into a New Neurobiology for Mood Disorder Therapeutics. Annu. Rev. Med. 2015, 66, 509–523. [Google Scholar] [CrossRef] [PubMed]
- Ly, C.; Greb, A.C.; Cameron, L.P.; Wong, J.M.; Barragan, E.V.; Wilson, P.C.; Burbach, K.F.; Soltanzadeh Zarandi, S.; Sood, A.; Paddy, M.R.; et al. Psychedelics Promote Structural and Functional Neural Plasticity. Cell Rep. 2018, 23, 3170–3182. [Google Scholar] [CrossRef] [PubMed]
- Carhart-Harris, R.; Giribaldi, B.; Watts, R.; Baker-Jones, M.; Murphy-Beiner, A.; Murphy, R.; Martell, J.; Blemings, A.; Erritzoe, D.; Nutt, D.J. Trial of Psilocybin versus Escitalopram for Depression. N. Engl. J. Med. 2021, 384, 1402–1411. [Google Scholar] [CrossRef]
- Conway, C.R.; Xiong, W. The Mechanism of Action of Vagus Nerve Stimulation in Treatment-Resistant Depression. Psychiatr. Clin. N. Am. 2018, 41, 395–407. [Google Scholar] [CrossRef]
- Sun, Z.; Jia, L.; Shi, D.; He, Y.; Ren, Y.; Yang, J.; Ma, X. Deep brain stimulation improved depressive-like behaviors and hippocampal synapse deficits by activating the BDNF/mTOR signaling pathway. Behav. Brain Res. 2022, 419, 113709. [Google Scholar] [CrossRef]
- Anacker, C.; Hen, R. Adult hippocampal neurogenesis and cognitive flexibility—linking memory and mood. Nat. Rev. Neurosci. 2017, 18, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Gronemann, F.H.; Jorgensen, M.B.; Nordentoft, M.; Andersen, P.K.; Osler, M. Socio-demographic and clinical risk factors of treatment-resistant depression: A Danish population-based cohort study. J. Affect. Disord. 2020, 261, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Kirkbride, J.B.; Anglin, D.M.; Colman, I.; Dykxhoorn, J.; Jones, P.B.; Patalay, P.; Pitman, A.; Soneson, E.; Steare, T.; Wright, T.; et al. The social determinants of mental health and disorder: Evidence, prevention and recommendations. World Psychiatry 2024, 23, 58–90. [Google Scholar] [CrossRef] [PubMed]
- Cepeda, M.S.; Reps, J.; Ryan, P. Finding factors that predict treatment-resistant depression: Results of a cohort study. Depress. Anxiety 2018, 35, 668–673. [Google Scholar] [CrossRef]
- Li, Y.; Lv, M.-R.; Wei, Y.-J.; Sun, L.; Zhang, J.-X.; Zhang, H.-G.; Li, B. Dietary patterns and depression risk: A meta-analysis. Psychiatry Res. 2017, 253, 373–382. [Google Scholar] [CrossRef]
- Lassale, C.; Batty, G.D.; Baghdadli, A.; Jacka, F.; Sánchez-Villegas, A.; Kivimäki, M.; Akbaraly, T. Healthy dietary indices and risk of depressive outcomes: A systematic review and meta-analysis of observational studies. Mol. Psychiatry 2019, 24, 965–986, Correction in Mol. Psychiatry 2019, 24, 3657. Correction in Mol. Psychiatry 2021, 26, 3657. [Google Scholar] [CrossRef]

| Described Changes | Sample Analyzed | Source |
|---|---|---|
| Decreased connectivity between the right caudate and the right middle frontal gyrus and right superior frontal gyrus. | 18 TRD patients, 17 patients with first episode of depression | [54] |
| Reduction in connectivity between parahippocampal gyrus and the left precuneus, left posterior cingulate gyrus, and the left inferior parietal lobe. Reduced connection between inferior parietal lobe and the right caudate. Decreased connectivity between the DMN and other functional networks and brain regions. | 17 TRD patients, 17 patients with MDD who responded to treatment, 17 healthy controls | [60] |
| Decreased functional connectivity between the left and right angular gyrus and the cognitive control network. Decrease in functional connectivity between the anterior and posterior DMN and the visual cortex. Decreased functional connectivity between the motor cortex and other brain regions. | 17 TRD patients, 18 patients with MDD who responded to treatment, 18 healthy controls | [61] |
| Increased local activity in the anterior cingulate cortex and medial frontal gyrus. | 18 TRD patients, 17 patients with MDD who responded to treatment, 17 healthy controls | [62] |
| Increased local in the right thalamus and the supramarginal gyrus, at the edge of the angular gyrus. | 16 TRD patients, 16 patients with early-phase non-TRD, 26 healthy controls | [63] |
| Significant increase in activity in the right middle temporal and the middle cingulate gyri. | 22 TRD patients, 22 patients with MDD who responded to treatment, 26 healthy controls | [64] |
| Decreased interhemispheric functional connectivity in the occipital part of the fusiform gyrus and the calcarine cortex Substantial decreased functional disfunction with other regions in the occipital lobe and with the right inferior temporal gyrus and right insula Increased coherence-based ReHo in the occipital part of the left fusiform gyrus and decreased ALFF values in the lingual gyrus/cuneus | 23 TRD patients, 22 patients with MDD who responded to treatment, 19 healthy controls | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Płaza, O.; Gałecki, P.; Bliźniewska-Kowalska, K.; Gałecka, M.; Brońska, A.; Płaza, J.; Szurek, A.; Szulc, A. Genetics and Neurobiology of Treatment-Resistant Depression—A Review. Int. J. Mol. Sci. 2025, 26, 11016. https://doi.org/10.3390/ijms262211016
Płaza O, Gałecki P, Bliźniewska-Kowalska K, Gałecka M, Brońska A, Płaza J, Szurek A, Szulc A. Genetics and Neurobiology of Treatment-Resistant Depression—A Review. International Journal of Molecular Sciences. 2025; 26(22):11016. https://doi.org/10.3390/ijms262211016
Chicago/Turabian StylePłaza, Olga, Piotr Gałecki, Katarzyna Bliźniewska-Kowalska, Małgorzata Gałecka, Agnieszka Brońska, Jan Płaza, Amelia Szurek, and Agata Szulc. 2025. "Genetics and Neurobiology of Treatment-Resistant Depression—A Review" International Journal of Molecular Sciences 26, no. 22: 11016. https://doi.org/10.3390/ijms262211016
APA StylePłaza, O., Gałecki, P., Bliźniewska-Kowalska, K., Gałecka, M., Brońska, A., Płaza, J., Szurek, A., & Szulc, A. (2025). Genetics and Neurobiology of Treatment-Resistant Depression—A Review. International Journal of Molecular Sciences, 26(22), 11016. https://doi.org/10.3390/ijms262211016

