Combined Oral Contraceptives and the Risk of Thrombosis
Abstract
1. Introduction
1.1. Historical Background
1.2. Composition of COCs
2. Methodology
3. Pathogenesis of Thrombotic Complications with Hormonal Contraceptives
3.1. Increase the Production of Some Clotting Factors
3.2. Decrease in the Activity of Natural Anticoagulants
3.2.1. Decreased Antithrombin Levels
3.2.2. Acquired Resistance to Activated Protein C (APC-R)
3.2.3. Decrease in TFPI Levels
3.3. Effects on Endothelial Cells
3.4. Effects on the Fibrinolytic System
3.5. Regulator of Tissue Factor Through miRNA
3.6. Effects on Nitric Oxide (NO) and Homocysteine Levels
3.7. COCs and Platelets
3.8. COCs and Inflammation
3.9. Role of Lipoprotein(a) in Thrombosis
4. Hormonal Contraception and the Risk of Thrombosis
4.1. Risk of Venous Thrombosis
4.2. Risk of Arterial Thrombosis
4.3. Duration of Oral Contraceptive Use and Risk of Thrombosis
4.4. Composition of Oral Contraceptives and Risk of Thrombosis
4.5. Age-Dependent Risk of Thrombosis
4.6. Personal History of VTE and COC Use
4.7. Family History of VTE and COC Use
4.8. Thrombophilia and the Risk of Thrombosis
4.9. Smoking in COC Users
4.10. Obesity and Risk of Thrombosis
4.11. Arterial Hypertension
4.12. Dyslipidemia and COC Use
4.13. Non-O Blood Type and the Risk of Thrombosis in COC Users
4.14. COVID/Post-COVID and the COC Use
4.15. Non-Steroidal Anti-Inflammatory Drugs and COC Use
4.16. Postpartum Period and COC Use
4.17. Post-Oncologic Prothrombotic States
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Manzoli, L.; De Vito, C.; Marzuillo, C.; Boccia, A.; Villari, P. Oral contraceptives and venous thromboembolism: A systematic review and meta-analysis. Drug Saf. 2012, 35, 191–205. [Google Scholar] [CrossRef] [PubMed]
- Stadel, B.V. Oral contraceptives and cardiovascular disease (first of two parts). N. Engl. J. Med. 1981, 305, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Croft, P.; Hannaford, P.C. Risk factors for acute myocardial infarction in women: Evidence from the Royal College of General Practitioners’ oral contraception study. BMJ 1989, 298, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Liao, P.V.; Dollin, J. Half a century of the oral contraceptive pill: Historical review and view to the future. Can. Fam. Physician 2012, 58, e757–e760. [Google Scholar] [PubMed] [PubMed Central]
- Rosendaal, F.R.; Helmerhorst, F.M.; Vandenbroucke, J.P. Female hormones and thrombosis. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 201–210. [Google Scholar] [CrossRef]
- García-Sáenz, M.; Ibarra-Salce, R.; Pozos-Varela, F.J.; Mena-Ureta, T.S.; Flores-Villagómez, S.; Santana-Mata, M.; De Los Santos-Aguilar, R.G.; Uribe-Cortés, D.; Ferreira-Hermosillo, A. Understanding Progestins: From Basics to Clinical Applicability. J. Clin. Med. 2023, 12, 3388. [Google Scholar] [CrossRef]
- Bahamondes, L.; Valeria Bahamondes, M.; Shulman, L.P. Non-contraceptive benefits of hormonal and intrauterine reversible contraceptive methods. Hum. Reprod. Update 2015, 21, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Egeberg, O.; Owren, P.A. Oral Contraception and Blood Coagulability. Br. Med. J. 1963, 1, 220–221. [Google Scholar] [CrossRef]
- Meade, T.W. Oral contraceptives, clotting factors, and thrombosis. Am. J. Obs. Gynecol. 1982, 142 Pt 2, 758–761. [Google Scholar] [CrossRef]
- Dahlbäck, B. Pro- and anticoagulant properties of factor V in pathogenesis of thrombosis and bleeding disorders. Int. J. Lab. Hematol. 2016, 38 (Suppl. S1), 4–11. [Google Scholar] [CrossRef]
- Shen, L.; Dahlbäck, B. Factor V and protein S as synergistic cofactors to activated protein C in degradation of factor VIIIa. J. Biol. Chem. 1994, 269, 18735–18738. [Google Scholar] [CrossRef] [PubMed]
- Abou-Ismail, M.Y.; Citla Sridhar, D.; Nayak, L. Estrogen and thrombosis: A bench to bedside review. Thromb. Res. 2020, 192, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Bonnar, J. Coagulation effects of oral contraception. Am. J. Obs. Gynecol. 1987, 157 Pt 2, 1042–1048. [Google Scholar] [CrossRef] [PubMed]
- Vandenbroucke, J.P.; Rosing, J.; Bloemenkamp, K.W.; Middeldorp, S.; Helmerhorst, F.M.; Bouma, B.N.; Rosendaal, F.R. Oral contraceptives and the risk of venous thrombosis. N. Engl. J. Med. 2001, 344, 1527–1535. [Google Scholar] [CrossRef] [PubMed]
- Burkman, R.T.; Bell, W.R.; Zacur, H.A.; Kimball, A.W. Oral contraceptives and antithrombin III: Variations by dosage and ABO blood group. Am. J. Obs. Gynecol. 1991, 164 Pt 1, 1453–1458; discussion 1458–1460. [Google Scholar] [CrossRef] [PubMed]
- Denora, D.; Di Rosa, M.V.; Altamura, N.; Pellicori, F.; Vinci, P.; Sisto, U.G.; Spanò, F.; Di Girolamo, F.G.; Fiotti, N.; Biolo, G. Acquired SERPINC1/antithrombin deficiency during oral contraceptive consumption: A case report. J. Med. Case Rep. 2023, 17, 323. [Google Scholar] [CrossRef] [PubMed]
- Rühl, H.; Schröder, L.; Müller, J.; Sukhitashvili, S.; Welz, J.; Kuhn, W.C.; Oldenburg, J.; Rudlowski, C.; Pötzsch, B. Impact of hormone-associated resistance to activated protein C on the thrombotic potential of oral contraceptives: A prospective observational study. PLoS ONE 2014, 9, e105007. [Google Scholar] [CrossRef]
- Koenen, R.R.; Christella, M.; Thomassen, L.G.D.; Tans, G.; Rosing, S.; Hackeng, T.M. Effect of oral contraceptives on the anticoagulant activity of protein S in plasma. Thromb. Haemost. 2005, 93, 853–859. [Google Scholar] [CrossRef]
- Kemmeren, J.M.; Algra, A.; Meijers, J.C.M.; Tans, G.; Bouma, B.N.; Curvers, J.; Rosing, J.; Grobbee, D.E. Effect of second- and third-generation oral contraceptives on the protein C system in the absence or presence of the factor VLeiden mutation: A randomized trial. Blood 2004, 103, 927–933. [Google Scholar] [CrossRef]
- Hugon-Rodin, J.; Alhenc-Gelas, M.; Hemker, H.C.; Brailly-Tabard, S.; Guiochon-Mantel, A.; Plu-Bureau, G.; Scarabin, P.-Y. Sex hormone-binding globulin and thrombin generation in women using hormonal contraception. Biomarkers 2017, 22, 81–85. [Google Scholar] [CrossRef]
- Panzer, C.; Wise, S.; Fantini, G.; Kang, D.; Munarriz, R.; Guay, A.; Goldstein, I. Original Research—Women’s Sexual Dysfunction: Impact of Oral Contraceptives on Sex Hormone-Binding Globulin and Androgen Levels: A Retrospective Study in Women with Sexual Dysfunction. J. Sex. Med. 2006, 3, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Odlind, V.; Milsom, I.; Persson, I.; Victor, A. Can changes in sex hormone binding globulin predict the risk of venous thromboembolism with combined oral contraceptive pills? Acta Obstet. Gynecol. Scand. 2002, 81, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Dahm, A.; van Hylckama AVlieg Bendz, B.; Rosendaal, F.; Bertina, R.M.; Sandset, P.M. Low levels of tissue factor pathway inhibitor (TFPI) increase the risk of venous thrombosis. Blood 2003, 101, 4387–4392. [Google Scholar] [CrossRef] [PubMed]
- Dama, A.; Baggio, C.; Trevisi, L.; Bolego, C.; Cignarella, A. Regulation of human endothelial cell migration by oral contraceptive estrogen receptor ligands. Eur. J. Pharmacol. 2023, 945, 175591. [Google Scholar] [CrossRef]
- Bouck, E.G.; Arvanitis, M.; Osburn, W.O.; Sang, Y.; Reventun, P.; Ahmadzia, H.K.; Smith, N.L.; Lowenstein, C.J.; Wolberg, A.S. High risk oral contraceptive hormones do not directly enhance endothelial cell procoagulant activity in vitro. PLoS ONE 2023, 18, e0284333. [Google Scholar] [CrossRef]
- Hvas, C.L.; Larsen, J.B. The Fibrinolytic System and Its Measurement: History, Current Uses and Future Directions for Diagnosis and Treatment. Int. J. Mol. Sci. 2023, 24, 14179. [Google Scholar] [CrossRef]
- Meijers, J.C.; Middeldorp, S.; Tekelenburg, W.; Ende, A.E.V.D.; Tans, G.; Prins, M.H.; Rosing, J.; Büller, H.R.; Bouma, B.N. Increased fibrinolytic activity during use of oral contraceptives is counteracted by an enhanced factor XI-independent down regulation of fibrinolysis: A randomized cross-over study of two low-dose oral contraceptives. Thromb. Haemost. 2000, 84, 9–14. [Google Scholar]
- Tian, J.; Adams, M.J.; Tay, J.W.T.; James, I.; Powell, S.; Hughes, Q.W.; Gilmore, G.; Baker, R.I.; Tiao, J.Y.-H. Estradiol-Responsive miR-365a-3p Interacts with Tissue Factor 3′UTR to Modulate Tissue Factor-Initiated Thrombin Generation. Thromb. Haemost. 2021, 121, 1483–1496. [Google Scholar] [CrossRef]
- Loscalzo, J.; Welch, G. Nitric oxide and its role in the cardiovascular system. Prog. Cardiovasc. Dis. 1995, 38, 87–104. [Google Scholar] [CrossRef]
- Nakano, Y.; Oshima, T.; Matsuura, H.; Kajiyama, G.; Kambe, M. Effect of 17beta-estradiol on inhibition of platelet aggregation in vitro is mediated by an increase in NO synthesis. Arterioscler. Thromb. Vasc. Biol. 1998, 18, 961–967. [Google Scholar] [CrossRef]
- Olatunji, L.A.; Olaniyi, K.S.; Usman, T.O.; Abolarinwa, B.A.; Achile, C.J.; Kim, I.K. Combined oral contraceptive and nitric oxide synthesis inhibition synergistically causes cardiac hypertrophy and exacerbates insulin resistance in female rats. Environ. Toxicol. Pharmacol. 2017, 52, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Škovierová, H.; Vidomanová, E.; Mahmood, S.; Sopková, J.; Drgová, A.; Červeňová, T.; Halašová, E.; Lehotský, J. The Molecular and Cellular Effect of Homocysteine Metabolism Imbalance on Human Health. Int. J. Mol. Sci. 2016, 17, 1733. [Google Scholar] [CrossRef] [PubMed]
- Fallah, S.; Nouroozi, V.; Seifi, M.; Samadikuchaksaraei, A.; Aghdashi, E.M. Influence of Oral Contraceptive Pills on Homocysteine and Nitric Oxide Levels: As Risk Factors for Cardiovascular Disease. J. Clin. Lab. Anal. 2012, 26, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Undas, A.; Brozek, J.; Szczeklik, A. Homocysteine and thrombosis: From basic science to clinical evidence. Thromb. Haemost. 2005, 94, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Merki-Feld, G.S.; Imthurn, B.; Keller, P.J. Effects of two oral contraceptives on plasma levels of nitric oxide, homocysteine, and lipid metabolism. Metabolism 2002, 51, 1216–1221. [Google Scholar] [CrossRef]
- Momeni, Z.; Dehghani, A.; Fallahzadeh, H.; Koohgardi, M.; Dafei, M.; Hekmatimoghaddam, S.H.; Mohammadi, M. The impacts of pill contraceptive low-dose on plasma levels of nitric oxide, homocysteine, and lipid profiles in the exposed vs. non exposed women: As the risk factor for cardiovascular diseases. Contracept. Reprod. Med. 2020, 5, 7. [Google Scholar] [CrossRef]
- Fox, S.W.; Chambers, T.J. The effect of oestrogen on megakaryocyte differentiation and platelet counts in vivo. Int. J. Cardiol. 2006, 109, 359–366. [Google Scholar] [CrossRef]
- Saleh, A.A.; Ginsburg, K.A.; Duchon, T.A.; Dorey, L.G.; Hirata, J.; Alshameeri, R.S.; Dombrowski, M.P.; Mammen, E.F. Hormonal contraception and platelet function. Thromb. Res. 1995, 78, 363–367. [Google Scholar] [CrossRef]
- Bulur, S.; Albayrak, M.; Bulur, S.; Keskin, F.; Köse, S.A.; Aslantaş, Y.; Türker, Y.; Ozhan, H. Effect of combined oral contraceptive use on platelet volume in women at reproductive age. Clin. Exp. Obs. Gynecol. 2012, 39, 314–316. [Google Scholar]
- Beltran, D.A.; Crespo, A.B.; Valle, S.G. Effect of Four Hormonal Contraceptives on Platelet Count and Coagulation Parameters Under Real Conditions of Use After 6 Months of Treatment. J. Food Sci. Nutr. 2020, 6, 066. [Google Scholar] [CrossRef]
- McGregor, L.; Toor, B.; McGregor, J.L.; Renaud, S.; Clemetson, K.J. Effects of oral contraceptives, or lanosterol, on ADP-induced aggregation and binding of 125I-fibrinogen to rat platelets. Thromb. Res. 1984, 33, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Ciavatti, M.; Davenas, E.; Blache, D.; Monnier, M.A.; Renaud, S. Biosynthesis of platelet lipids in relation to aggregation in women using oral contraceptives. Contraception 1982, 25, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Guo, H.; Zhang, Y.; Qiao, R. Procoagulant platelets: Generation, characteristics, and therapeutic target. J. Clin. Lab. Anal. 2021, 35, e23750. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.L.; McKee, P.A. Estrogen stimulates von Willebrand factor production by cultured endothelial cells. Blood 1984, 63, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Calippe, B.; Douin-Echinard, V.; Delpy, L.; Laffargue, M.; Lélu, K.; Krust, A.; Pipy, B.; Bayard, F.; Arnal, J.-F.; Guéry, J.-C.; et al. 17β-Estradiol Promotes TLR4-Triggered Proinflammatory Mediator Production through Direct Estrogen Receptor α Signaling in Macrophages In Vivo. J. Immunol. 2010, 185, 1169–1176. [Google Scholar] [CrossRef] [PubMed]
- Danckwardt, S.; Trégouët, D.A.; Castoldi, E. Post-transcriptional control of haemostatic genes: Mechanisms and emerging therapeutic concepts in thrombo-inflammatory disorders. Cardiovasc. Res. 2023, 119, 1624–1640, Erratum in Cardiovasc Res. 2023, 119, 2015. https://doi.org/10.1093/cvr/cvad090. [Google Scholar] [CrossRef]
- Calippe, B.; Douin-Echinard, V.; Laffargue, M.; Laurell, H.; Rana-Poussine, V.; Pipy, B.; Guéry, J.-C.; Bayard, F.; Arnal, J.-F.; Gourdy, P. Chronic Estradiol Administration In Vivo Promotes the Proinflammatory Response of Macrophages to TLR4 Activation: Involvement of the Phosphatidylinositol 3-Kinase Pathway. J. Immunol. 2008, 180, 7980–7988. [Google Scholar] [CrossRef]
- Mengelkoch, S.; Gassen, J.; Slavich, G.M.; Hill, S.E. Hormonal contraceptive use is associated with differences in women’s inflammatory and psychological reactivity to an acute social stressor. Brain Behav. Immun. 2024, 115, 747–757. [Google Scholar] [CrossRef]
- Gaskins, A.J.; Wilchesky, M.; Mumford, S.L.; Whitcomb, B.W.; Browne, R.W.; Wactawski-Wende, J.; Perkins, N.J.; Schisterman, E.F. Endogenous reproductive hormones and C-reactive protein across the menstrual cycle: The BioCycle Study. Am. J. Epidemiol. 2012, 175, 423–431. [Google Scholar] [CrossRef]
- Cauci, S.; Xodo, S.; Buligan, C.; Colaninno, C.; Barbina, M.; Barbina, G.; Francescato, M.P. Oxidative Stress Is Increased in Combined Oral Contraceptives Users and Is Positively Associated with High-Sensitivity C-Reactive Protein. Molecules 2021, 26, 1070. [Google Scholar] [CrossRef]
- Delplanque, B.; Beaumont, V.; Lemort, N.; Beaumont, J.L. Lp(a) levels and antiestrogen antibodies in women with and without thrombosis in the course of oral contraception. Atherosclerosis 1993, 100, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Mora, S.; Kronenberg, F. Lipoprotein(A). JAMA 2025, 333, 1918–1919. [Google Scholar] [CrossRef] [PubMed]
- Stegeman, B.H.; De Bastos, M.; Rosendaal, F.R.; Vlieg, A.v.H.; Helmerhorst, F.M.; Stiner, T.; Dekkers, O.M. Different combined oral contraceptives and the risk of venous thrombosis: Systematic review and network meta-analysis. BMJ 2013, 347, f5298. [Google Scholar] [CrossRef] [PubMed]
- AlSheef, M.; Abuzied, Y.; Alzahrani, G.R.; AlAraj, N.; AlAqeel, N.; Aljishi, H.; Alomar, M.J.; Zaidi, A.R.Z.; Alarfaj, O.M. Combined Oral Contraceptives and Vascular Thrombosis: A Single-Center Experience. Cureus 2022, 14, e25865. [Google Scholar] [CrossRef] [PubMed]
- Barcellona, D.; Grandone, E.; Marongiu, F. Hormones and thrombosis: The dark side of the moon: Hormonal therapy and thrombosis. Blood Transfus. 2023, 22, 46–54. [Google Scholar]
- Parkin, L.; Skegg, D.C.; Wilson, M.; Herbison, G.P.; Paul, C. Oral contraceptives and fatal pulmonary embolism. Lancet 2000, 355, 2133–2134. [Google Scholar] [CrossRef]
- Cohen, A.T.; Agnelli, G.; Anderson, F.A.; Arcelus, J.; Bergqvist, D.; Brecht, J.G.; Greer, I.A.; Heit, J.A.; Hutchinson, J.L.; Kakkar, A.K.; et al. Venous thromboembolism (VTE) in Europe. The number of VTE events and associated morbidity and mortality. Thromb. Haemost. 2007, 98, 756–764. [Google Scholar]
- Dulicek, P.; Ivanova, E.; Kostal, M.; Sadilek, P.; Beranek, M.; Zak, P.; Hirmerova, J. Analysis of Risk Factors of Stroke and Venous Thromboembolism in Females with Oral Contraceptives Use. Clin. Appl. Thromb. 2018, 24, 797–802. [Google Scholar] [CrossRef]
- Amoozegar, F.; Ronksley, P.E.; Sauve, R.; Menon, B.K. Hormonal Contraceptives and Cerebral Venous Thrombosis Risk: A Systematic Review and Meta-Analysis. Front. Neurol. 2015, 6, 7. [Google Scholar] [CrossRef]
- Li, Q.; Wang, R.; Qi, X. Systemic Thrombolysis for Isolated Splenic Vein Thrombosis Secondary to Oral Contraceptives: A Case Report. Int. J. Women’s Health 2024, 16, 811–818. [Google Scholar] [CrossRef]
- Lidegaard, Ø.; Løkkegaard, E.; Jensen, A.; Skovlund, C.W.; Keiding, N. Thrombotic stroke and myocardial infarction with hormonal contraception. N. Engl. J. Med. 2012, 366, 2257–2266. [Google Scholar] [CrossRef]
- Fruzzetti, F.; Ricci, C.; Fioretti, P. Haemostasis profile in smoking and nonsmoking women taking low-dose oral contraceptives. Contraception 1994, 49, 579–592. [Google Scholar] [CrossRef] [PubMed]
- Roach, R.E.J.; Helmerhorst, F.M.; Lijfering, W.M.; Stijnen, T.; Algra, A.; Dekkers, O.M. Combined oral contraceptives: The risk of myocardial infarction and ischemic stroke. Cochrane Database Syst. Rev. 2018, 2015, CD011054. [Google Scholar] [CrossRef]
- Agarwal, T.; Mereuta, O.M.; Ghozy, S.; Larco, J.L.A.; Bilgin, C.; Kadirvel, R.; Brinjikji, W.; Kallmes, D.F. High thrombin-activatable fibrinolysis inhibitor expression in thrombi from stroke patients in elevated estrogen states. BMC Neurol. 2024, 24, 90. [Google Scholar] [CrossRef] [PubMed]
- Khialani, D.; Rosendaal, F.; Vlieg, A.V.H. Hormonal Contraceptives and the Risk of Venous Thrombosis. Semin. Thromb. Hemost. 2020, 46, 865–871. [Google Scholar] [CrossRef]
- van Hylckama Vlieg, A.; Helmerhorst, F.M.; Vandenbroucke, J.P.; Doggen, C.J.; Rosendaal, F.R. The venous thrombotic risk of oral contraceptives, effects of oestrogen dose and progestogen type: Results of the MEGA case-control study. BMJ 2009, 339, b2921. [Google Scholar] [CrossRef]
- Dinger, J.; Do Minh, T.; Heinemann, K. Impact of estrogen type on cardiovascular safety of combined oral contraceptives. Contraception 2016, 94, 328–339. [Google Scholar] [CrossRef]
- Gaussem, P.; Alhenc-Gelas, M.; Thomas, J.-L.; Bachelot-Loza, C.; Remones, V.; Ali, F.D.; Aiach, M.; Scarabin, P.-Y.; Gaussem, P. Haemostatic effects of a new combined oral contraceptive, nomegestrol acetate/17β-estradiol, compared with those of levonorgestrel/ethinyl estradiol. A double-blind, randomised study. Thromb. Haemost. 2011, 105, 560–567. [Google Scholar]
- Wiegratz, I.; Kuhl, H. Metabolic and clinical effects of progestogens. Eur. J. Contracept. Reprod. Health Care 2006, 11, 153–161. [Google Scholar] [CrossRef]
- Schindler, A.E. Differential effects of progestins on hemostasis. Maturitas 2003, 46, 31–37. [Google Scholar] [CrossRef]
- Kiley, J. Estradiol valerate and dienogest: A new approach to oral contraception. Int. J. Women’s Health 2011, 3, 281. [Google Scholar] [CrossRef] [PubMed]
- Burke, A. Nomegestrol acetate-17b-estradiol for oral contraception. Patient Prefer. Adherence 2013, 7, 607. [Google Scholar] [CrossRef] [PubMed]
- Gemzell-Danielsson, K.; Cagnacci, A.; Chabbert-Buffet, N.; Douxfils, J.; Foidart, J.M.; Kubba, A.; Lasa, L.I.L.; Mansour, D.; Neulen, J.; Neves, J.; et al. A novel estetrol-containing combined oral contraceptive: European expert panel review. Eur. J. Contracept. Reprod. Health Care 2022, 27, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Didembourg, M.; Locquet, M.; Raskin, L.; Tchimchoua, B.T.; Dogné, J.M.; Beaudart, C.; Douxfils, J. Lower reporting of venous thromboembolisms events with natural estrogen-based combined oral contraceptives compared to ethinylestradiol-containing pills: A disproportionality analysis of the Eudravigilance database. Contraception 2025, 142, 110727. [Google Scholar] [CrossRef] [PubMed]
- Douxfils, J.; Raskin, L.; Didembourg, M.; Donis, N.; Dogné, J.M.; Morimont, L.; Beaudart, C. Are natural estrogens used in contraception at lower risk of venous thromboembolism than synthetic ones? A systematic literature review and meta-analysis. Front. Endocrinol. 2024, 15, 1428597. [Google Scholar] [CrossRef]
- Lidegaard, Ø.; Løkkegaard, E.; Svendsen, A.L.; Agger, C. Hormonal contraception and risk of venous thromboembolism: National follow-up study. BMJ 2009, 339, b2890. [Google Scholar] [CrossRef]
- Rott, H. Hormonal contraception in thrombophilic adolescents: Risk of thrombosis and recommendations. Hämostaseologie 2012, 32, 15–21. [Google Scholar] [CrossRef]
- Stam-Slob, M.C.; Lambalk, C.B.; van de Ree, M.A. Contraceptive and hormonal treatment options for women with history of venous thromboembolism. BMJ 2015, 351, h4847. [Google Scholar] [CrossRef]
- Klok, F.A.; Barco, S. Optimal management of hormonal contraceptives after an episode of venous thromboembolism. Thromb. Res. 2019, 181, S1–S5. [Google Scholar] [CrossRef]
- Zöller, B.; Ohlsson, H.; Sundquist, J.; Sundquist, K. Family history of venous thromboembolism is a risk factor for venous thromboembolism in combined oral contraceptive users: A nationwide case-control study. Thromb. J. 2015, 13, 34. [Google Scholar] [CrossRef]
- Sonnevi, K.; Bergendal, A.; Adami, J.; Lärfars, G.; Kieler, H. Self-reported family history in estimating the risk of hormone, surgery and cast related VTE in women. Thromb. Res. 2013, 132, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Grandone, E.; Antonucci, E.; Colaizzo, D.; De Laurenzo, A.; Cosmi, B.; Cini, M.; Legnani, C.; Testa, S.; Margaglione, M.; Palareti, G. Venous Thromboembolism in Women of Childbearing Age: Insights from the START Registry. Thromb. Haemost. 2023, 123, 1060–1068. [Google Scholar] [CrossRef] [PubMed]
- van Vlijmen, E.F.; Wiewel-Verschueren, S.; Monster, T.B.; Meijer, K. Combined oral contraceptives, thrombophilia and the risk of venous thromboembolism: A systematic review and meta-analysis. J. Thromb. Haemost. 2016, 14, 1393–1403. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, I.; Sacchi, E.; Landi, G.; Taioli, E.; Duca, F.; Mannucci, P.M. High risk of cerebral-vein thrombosis in carriers of a prothrombin-gene mutation and in users of oral contraceptives. N. Engl. J. Med. 1998, 338, 1793–1797. [Google Scholar] [CrossRef]
- Lo Faro, V.; Johansson, T.; Johansson, Å. The risk of venous thromboembolism in oral contraceptive users: The role of genetic factors-a prospective cohort study of 240,000 women in the UK Biobank. Am. J. Obs. Gynecol. 2024, 230, 360.e1–360.e13. [Google Scholar] [CrossRef] [PubMed]
- Lenicek Krleza, J.; Jakovljevic, G.; Bronic, A.; Coen Herak, D.; Bonevski, A.; Stepan-Giljevic, J.; Roic, G. Contraception-related deep venous thrombosis and pulmonary embolism in a 17-Year-old girl heterozygous for factor V leiden, prothrombin G20210A mutation, MTHFR C677T and homozygous for PAI-1 mutation: Report of a family with multiple genetic risk factors and review of the literature. Pathophysiol. Haemost. Thromb. 2010, 37, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Wu, O.; Robertson, L.; Langhorne, P.; Twaddle, S.; Lowe, G.D.; Clark, P.; Greaves, M.; Walker, I.D.; Brenkel, I.; Regan, L.; et al. Oral contraceptives, hormone replacement therapy, thrombophilias and risk of venous thromboembolism: A systematic review. The Thrombosis: Risk and Economic Assessment of Thrombophilia Screening (TREATS) Study. Thromb. Haemost. 2005, 94, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Santamaría, A.; Mateo, J.; Oliver, A.; Menéndez, B.; Souto, J.C.; Borrell, M.; Soria, J.M.; Tirado, I.; Fontcuberta, J. Risk of thrombosis associated with oral contraceptives of women from 97 families with inherited thrombophilia: High risk of thrombosis in carriers of the G20210A mutation of the prothrombin gene. Haematologica 2001, 86, 965–971. [Google Scholar]
- Andreoli, L.; Bertsias, G.K.; Agmon-Levin, N.; Brown, S.; Cervera, R.; Costedoat-Chalumeau, N.; Doria, A.; Fischer-Betz, R.; Forger, F.; Moraes-Fontes, M.F.; et al. EULAR recommendations for women’s health and the management of family planning, assisted reproduction, pregnancy and menopause in patients with systemic lupus erythematosus and/or antiphospholipid syndrome. Ann. Rheum. Dis. 2017, 76, 476–485. [Google Scholar] [CrossRef]
- Lidegaard, O. Smoking and use of oral contraceptives: Impact on thrombotic diseases. Am. J. Obs. Gynecol. 1999, 180 Pt 2, S357–S363. [Google Scholar] [CrossRef]
- Pomp, E.R.; Rosendaal, F.R.; Doggen, C.J. Smoking increases the risk of venous thrombosis and acts synergistically with oral contraceptive use. Am. J. Hematol. 2008, 83, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Su, X.; Li, G.; Chen, J.; Tang, B.; Yang, Y. The incidence of acute myocardial infarction in relation to overweight and obesity: A meta-analysis. Arch. Med. Sci. 2014, 10, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Torjesen, I. Obesity may increase risk of rare type of stroke in women taking oral contraceptives. BMJ 2016, 352, i1554. [Google Scholar] [CrossRef]
- Zuurbier, S.M.; Arnold, M.; Middeldorp, S.; Broeg-Morvay, A.; Silvis, S.M.; Heldner, M.R.; Meisterernst, J.; Nemeth, B.; Meulendijks, E.R.; Stam, J.; et al. Risk of Cerebral Venous Thrombosis in Obese Women. JAMA Neurol. 2016, 73, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, A.L.; Lawrenson, R.A.; Simpson, E.L.; Williams, T.J.; MacRae, K.D.; Farmer, R.D. The effects of age, body mass index, smoking and general health on the risk of venous thromboembolism in users of combined oral contraceptives. Eur. J. Contracept. Reprod. Health Care 2000, 5, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Cameron, N.A.; Blyler, C.A.; Bello, N.A. Oral Contraceptive Pills and Hypertension: A Review of Current Evidence and Recommendations. Hypertension 2023, 80, 924–935. [Google Scholar] [CrossRef] [PubMed]
- Curtis, K.M.; Mohllajee, A.P.; Martins, S.L.; Peterson, H.B. Combined oral contraceptive use among women with hypertension: A systematic review. Contraception 2006, 73, 179–188. [Google Scholar] [CrossRef]
- Dragoman, M.; Curtis, K.M.; Gaffield, M.E. Combined hormonal contraceptive use among women with known dyslipidemias: A systematic review of critical safety outcomes. Contraception 2016, 94, 280–287. [Google Scholar] [CrossRef]
- Gallinaro, L.; Cattini, M.G.; Sztukowska, M.; Padrini, R.; Sartorello, F.; Pontara, E.; Bertomoro, A.; Daidone, V.; Pagnan, A.; Casonato, A. A shorter von Willebrand factor survival in O blood group subjects explains how ABO determinants influence plasma von Willebrand factor. Blood 2008, 111, 3540–3545. [Google Scholar] [CrossRef]
- Groot, H.E.; Villegas Sierra, L.E.; Said, M.A.; Lipsic, E.; Karper, J.C.; van der Harst, P. Genetically Determined ABO Blood Group and its Associations with Health and Disease. Arter. Thromb. Vasc. Biol. 2020, 40, 830–838. [Google Scholar] [CrossRef]
- Franchini, M.; Makris, M. Non-O blood group: An important genetic risk factor for venous thromboembolism. Blood Transfus. 2013, 11, 164–165. [Google Scholar] [CrossRef] [PubMed]
- Ward, S.E.; O’Sullivan, J.M.; O’Donnell, J.S. The relationship between ABO blood group, von Willebrand factor, and primary hemostasis. Blood 2020, 136, 2864–2874. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.A.; Edelman, A.; Paynter, R.; Henderson, J.T. Risk of thromboembolism in patients with COVID-19 who are using hormonal contraception. Cochrane Database Syst. Rev. 2023, 1, CD014908, Correction in Cochrane Database Syst. Rev. 2023, 5, CD014908. https://doi.org/10.1002/14651858.CD014908.pub3. [Google Scholar] [CrossRef] [PubMed]
- Meaidi, A.; Mascolo, A.; Sessa, M.; Toft-Petersen, A.P.; Skals, R.; Gerds, T.A.; Torp-Pedersen, C. Venous thromboembolism with use of hormonal contraception and non-steroidal anti-inflammatory drugs: Nationwide cohort study. BMJ 2023, 382, e074450. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Appendix D: Classifications for Combined Hormonal Contraceptives. In U.S. Medical Eligibility Criteria for Contraceptive Use; Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2024. [Google Scholar]
- Leiva, O.; Newcomb, R.; Connors, J.M.; Al-Samkari, H. Cancer and thrombosis: New insights to an old problem. J. Med. Vasc. 2020, 45, 6S8–6S16. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Schwarz, E.B. Society of Family Planning. Cancer and contraception. Release Date May 2012. SFP Guideline #20121. Contraception 2012, 86, 191–198. [Google Scholar] [CrossRef]
- Chéa, M.; Bourguignon, C.; Bouvier, S.; Nouvellon, E.; Laurent, J.; Perez-Martin, A.; Mousty, E.; Ripart, S.; Nikolaeva, M.G.; Khizroeva, J.; et al. Intimate partner violence as a risk factor for venous thromboembolism in women on combined oral contraceptives: An international matched case-control study. Eur. J. Intern. Med. 2024, 122, 47–53. [Google Scholar] [CrossRef]
- Grandone, E.; Bitsadze, V.; Khizroeva, J.; Chinni, E.; Mastroianno, M.; Nappi, L.; Tretyakova, M.; Makatsariya, N.; Grigoreva, K.; Gashimova, N.; et al. Risk of Thrombosis in Women Undergoing In Vitro Fertilization: A Narrative Review. J. Clin. Med. 2025, 14, 1053. [Google Scholar] [CrossRef]
- Bitsadze, V.; Nikolaeva, M.G.; Mousty, È.; Khizroeva, J.; Laurent, J.; Ripart, S.; Kudryavtseva, E.; Collen, L.L.; Shatilina, A.; Allal, S.; et al. Venous Thromboembolism at Low Risk of Recurrence in Young Women: Stress and Violence Associated with Recurrence. An International Case-Control Study. Thromb. Haemost. 2025, 125, 643–656. [Google Scholar] [CrossRef]
- Brenner, B.; Grandone, E.; Makatsariya, A.; Khizroeva, J.; Bitsadze, V.; Tretyakova, M. Approach to the Evaluation and Treatment of Venous Thromboembolism in Pregnancy. Semin. Reprod. Med. 2021, 39, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Gris, J.C.; Bourguignon, C.; Bouvier, S.; Nouvellon, E.; Laurent, J.; Perez-Martin, A.; Mousty, E.; Nikolaeva, M.; Khizroeva, J.; Bitsadze, V.; et al. Pregnancy after Combined Oral Contraceptive-Associated Venous Thromboembolism: An International Retrospective Study of Outcomes. Thromb. Haemost. 2022, 122, 1779–1793. [Google Scholar] [CrossRef] [PubMed]
- Bitsadze, V.; Khizroeva, J.; Alexander, M.; Elalamy, I. Venous thrombosis risk factors in pregnant women. J. Perinat. Med. 2022, 50, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Schulman, S.; Makatsariya, A.; Khizroeva, J.; Bitsadze, V.; Kapanadze, D. The Basic Principles of Pathophysiology of Venous Thrombosis. Int. J. Mol. Sci. 2024, 25, 11447. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]

| Generation | Type of Progestogen | ||
|---|---|---|---|
| First | Cyproterone acetate | ![]() | |
| Medroxyprogesterone acetate | Pregnanes (carbon-21) | ||
| Chlormadinone acetate | from 17-OH Progesterone | ||
| Norethynodrel, Norethindrone, | ![]() | ||
| Ethynodiol diacetate, Lynestrol | Estranes (carbon-18) | ||
| Norethisterone acetate (also known as norethindrone acetate) | from Testosterone | ||
| Second | Levonorgestrel (LNG) | ![]() | Gonanes (carbon-17) |
| Norgestrel | from Testosterone | ||
| Third | Gestodene | ![]() | |
| Etonorgestrel | Gonanes from | ||
| Desogestrel | Levonorgestrel | ||
| Norgestimate/Norelgestromine | |||
| Forth | Dienogest (DNG) | ![]() | gonane derivative |
| Drospirenone (DRSP) | ![]() | derivate from spironolactone | |
| Nestorone (NES) | ![]() | 19-norprogesterone derivative | |
| Nomegestrol acetate (NOMAc) | ![]() | from norpregnane (carbon-20) | |
| Trimegestone (TMG) | ![]() | 19-norprogesterone derivative | |
| Mechanism/System | Effect of COCs | Representative Mediators/Notes |
|---|---|---|
| Activation of coagulation cascade | Increased synthesis of procoagulant factors (FII, FVII, FVIII, FX, fibrinogen) leading to hypercoagulability | Estrogen-dependent; most pronounced with third-generation progestins |
| Reduction in natural anticoagulants | Decreased protein S and antithrombin, acquired APC resistance | Degree of APC resistance correlates with estrogen dose and SHBG levels |
| Decrease in TFPI | Reduction in total/free TFPI levels, contributing to mild prothrombotic imbalance | Weak but additive effect, particularly relevant in thrombophilia |
| Endothelial dysfunction | Indirect activation, reduced nitric oxide (NO) bioavailability, oxidative stress | Mediated by inflammation and reactive oxygen species |
| Impairment of fibrinolysis | Increased TAFI levels counteract the rise in tPA/plasmin activity | Net antifibrinolytic effect; stronger with desogestrel-containing COCs |
| Platelet activation | Enhanced aggregation and adhesion, increased P-selectin | Driven by estrogen–platelet interactions |
| Inflammation | Elevated CRP, IL-6, and NF-κB activity | Reflects systemic proinflammatory milieu |
| Homocysteine–NO axis | Reduced folate/B12 absorption → ↑ homocysteine → ↓ NO synthesis | Contributes to endothelial dysfunction |
| microRNAs | Dysregulation of miR-365a-3p and miR-494-3p alters TF and protein S expression | Potential epigenetic mechanism |
| Neutrophil extracellular traps (NETs) | Release of chromatin–protein complexes promoting coagulation | Both biomarker and therapeutic target candidate |
| Lipoprotein(a) [Lp(a)] | Antifibrinolytic and proinflammatory properties; possible enhancement of COC-related thrombotic risk | Requires further clinical validation |
| Estrogen/Progestin Combination | Representative Product | Relative VTE Risk vs. Non-Users | Comments |
|---|---|---|---|
| EE 30–35 µg + levonorgestrel (2nd generation) | 30 EE/LNG | 3–4× baseline | Reference low-risk COC |
| EE 30–35 µg + desogestrel or gestodene (3rd generation) | EE/DSG, EE/GSD | 5–7× | Higher risk than EE/LNG |
| EE + drospirenone | EE/DRSP | 5–6× | ~1.5-fold higher than EE/LNG |
| EE + cyproterone acetate | EE/CPA | 6–8× | Among the highest risks |
| Low-dose EE (20 µg) + LNG | 20 EE/LNG | 2–3× | Slightly reduced risk vs. 30 µg EE |
| Estradiol valerate + dienogest | E2V/DNG | ≤LNG level | “Safer alternative” |
| 17β-Estradiol + nomegestrol acetate | E2/NOMAC | Lower than EE-based COCs | Favorable hemostatic profile |
| Estetrol (E4) + drospirenone | E4/DRSP | Presumably ↓ vs. EE/DRSP | Emerging evidence of lower VTE risk |
| Progestin-only contraceptives | POP, LNG-IUS | ≈background | Recommended for women with thrombophilia or VTE history |
| Category of Women | Mechanisms Increasing Thrombotic Risk | Preferred Contraceptive Options/Management Considerations | Approx. VTE Risk vs. Healthy Non-User |
|---|---|---|---|
| Hereditary thrombophilia (FVL, Prothrombin G20210A, antithrombin, protein C/S deficiency) | Additive effect with COC-induced APC resistance; reduced natural anticoagulants | Avoid estrogen COCs; prefer POP, implant, LNG-IUS; individualized counseling | High–very high. Heterozygous FVL + COC often quoted ~10–30× [87]; prothrombin G20210A + COC ~5–15× [84] |
| Non-O blood type (A/B/AB) | Higher vWF & FVIII → increased baseline coagulability; synergy with estrogen | Include blood group in risk stratification; if other risks present → prefer POP/LARC or lowest-dose EE | Low–moderate alone (~1.5–2×); additive with COC (roughly 2–4× total) [99,100,101,102] |
| Elevated lipoprotein(a) | Antifibrinolytic, pro-inflammatory; endothelial dysfunction | Check Lp(a) with family history of VTE/early CVD; prefer low-estrogen or non-estrogen methods | Low–moderate (~1.5–2×); may rise with COC [51,52] |
| Obesity (BMI ≥30 kg/m2) | Chronic inflammation, venous stasis, estrogen storage in adipose tissue | Low-dose EE or progestin-only; counsel weight control & activity | Moderate alone (~2–3×); with COC can reach 5–10× [92,93,94,95] |
| Smoking (>35 years) | Endothelial injury, platelet activation → mainly arterial risk | Strongly discourage COCs; consider POP/implant/LNG-IUS | Primarily arterial risk (MI/Stroke ↑); VTE slight–moderate ↑ [90] |
| Antiphospholipid syndrome (APS) | Persistent hypercoagulability (platelet/endothelial activation) | COCs contraindicated; use progestin-only or non-hormonal | Very high baseline; estrogen adds unacceptable risk |
| History of VTE | Prothrombotic milieu; impaired fibrinolysis | Avoid estrogen; use POP or non-hormonal (Cu-IUD, barriers) | High recurrence risk; COC adds 2–4× or more [53] |
| Hypertension/dyslipidemia | Endothelial dysfunction, oxidative stress | Consider low-dose/natural-estrogen with close monitoring, or switch to POP | Low–moderate for VTE; arterial risk predominates [96,97,98] |
| Post-oncologic or post-COVID prothrombotic states | Residual inflammation; endothelial/platelet activation | Defer/avoid COCs until labs normalize; prefer non-estrogen temporarily | Variable; often moderate–high until recovery [103,106,107] |
| Postpartum period | Physiologic hypercoagulability & venous stasis to ~6 weeks | Defer COCs until ≥6 weeks; POP or LARC preferred | Very high baseline (~20–60×); avoid estrogen early [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khizroeva, J.; Bitsadze, V.; Sukhikh, G.; Tretyakova, M.; Gris, J.-C.; Elalamy, I.; Gerotziafas, G.; Kapanadze, D.; Kvaratskheliia, M.; Tatarintseva, A.; et al. Combined Oral Contraceptives and the Risk of Thrombosis. Int. J. Mol. Sci. 2025, 26, 11010. https://doi.org/10.3390/ijms262211010
Khizroeva J, Bitsadze V, Sukhikh G, Tretyakova M, Gris J-C, Elalamy I, Gerotziafas G, Kapanadze D, Kvaratskheliia M, Tatarintseva A, et al. Combined Oral Contraceptives and the Risk of Thrombosis. International Journal of Molecular Sciences. 2025; 26(22):11010. https://doi.org/10.3390/ijms262211010
Chicago/Turabian StyleKhizroeva, Jamilya, Victoria Bitsadze, Gennady Sukhikh, Maria Tretyakova, Jean-Christophe Gris, Ismail Elalamy, Grigoris Gerotziafas, Daredzhan Kapanadze, Margaret Kvaratskheliia, Alena Tatarintseva, and et al. 2025. "Combined Oral Contraceptives and the Risk of Thrombosis" International Journal of Molecular Sciences 26, no. 22: 11010. https://doi.org/10.3390/ijms262211010
APA StyleKhizroeva, J., Bitsadze, V., Sukhikh, G., Tretyakova, M., Gris, J.-C., Elalamy, I., Gerotziafas, G., Kapanadze, D., Kvaratskheliia, M., Tatarintseva, A., Khisamieva, A., Hovancev, I., Yakubova, F., & Makatsariya, A. (2025). Combined Oral Contraceptives and the Risk of Thrombosis. International Journal of Molecular Sciences, 26(22), 11010. https://doi.org/10.3390/ijms262211010






