Using Medicago sativa L. Callus Cell Extract for the Synthesis of Gold and Silver Nanoparticles
Abstract
1. Introduction
2. Results
2.1. Medicago sativa Seedling and Callus Culture Cultivation
2.2. Obtaining M. sativa Callus Culture Extracts for AgNP and AuNP Biosynthesis
2.3. Determination of Light Absorbance Intensity
2.4. Determination of Light Absorbance
2.5. Transmission Electron Microscopic Visualisation of M. sativa Callus Culture Extract
2.6. DLS and the Zeta Potential
2.7. NTA
2.8. Elemental Analysis of Biogenic NPs Using EDS
2.9. LIBS of the Tested NPs
2.10. X-Ray Diffraction (XRD) Analysis
2.11. Comparison of the Results After Exposure to the Precursor for 24 or 48 h
3. Discussion
4. Materials and Methods
4.1. Medicago sativa Seedling Cultivation
4.2. Medicago sativa Callus Culture Cultivation
4.3. Preparation of M. sativa Callus Culture Extract for AgNP and AuNP Biosynthesis
4.4. Experimental Replication
4.5. Determination of Light Absorbance Intensity
4.6. Determination of Light Absorbance
4.7. Transmission Electron Microscopy Visualisation of M. sativa Callus Culture Extract
4.8. Dynamic Light Scattering (DLS) and Zeta Potential
4.9. NP Size Distribution Analysis by Nanoparticle Tracking Analysis (NTA)
4.9.1. Sample Preparation
4.9.2. Instrument Settings and Measurement Protocol
4.10. Elemental Analysis by Energy-Dispersive X-Ray Spectroscopy (EDS)
4.11. Laser-Induced Breakdown Spectroscopy (LIBS) Analysis
4.12. X-Ray Diffraction (XRD) Analysis
4.13. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Khan, S.; Zahoor, M.; Sher Khan, R.; Ikram, M.; Islam, N.U. The Impact of Silver Nanoparticles on the Growth of Plants: The Agriculture Applications. Heliyon 2023, 9, e16928. [Google Scholar] [CrossRef] [PubMed]
- Plaksenkova, I.; Kokina, I.; Petrova, A.; Jermaļonoka, M.; Gerbreders, V.; Krasovska, M. The Impact of Zinc Oxide Nanoparticles on Cytotoxicity, Genotoxicity, and miRNA Expression in Barley (Hordeum vulgare L.) Seedling. Sci. World J. 2020, 2020, 6649746. [Google Scholar] [CrossRef] [PubMed]
- Altammar, K.A. A Review on Nanoparticles: Characteristics, Synthesis, Applications, and Challenges. Front. Microbiol. 2023, 14, 1155622. [Google Scholar] [CrossRef]
- Kokina, I.; Plaksenkova, I.; Jermaļonoka, M.; Petrova, A. Impact of Iron Oxide Nanoparticles on Yellow Medick (Medicago falcata L.) Plants. J. Plant Interact. 2020, 15, 1–7. [Google Scholar] [CrossRef]
- Nayeri, S.; Dolatyari, M.; Mouladoost, N.; Nayeri, S.; Zarghami, A.; Mirtagioglu, H.; Rostami, A. Ag/ZnO Core–Shell NPs Boost Photosynthesis and Growth Rate in Wheat Seedlings under Simulated Full Sun Spectrum. Sci. Rep. 2023, 13, 14385. [Google Scholar] [CrossRef]
- Nguyen, N.P.U.; Dang, N.T.; Doan, L.; Nguyen, T.T.H. Synthesis of Silver Nanoparticles: From Conventional to ‘Modern’ Methods—A Review. Processes 2023, 11, 2617. [Google Scholar] [CrossRef]
- Hawa, A.; Ali, A.A.; Sagadevan, S.; Wahid, Z. Silver Nanoparticles in Various New Applications. In Silver Micro-Nanoparticles Properties, Synthesis, Characterization, and Applications; IntechOpen: London, UK, 2021; pp. 1–17. [Google Scholar]
- Jiang, Z.; Li, L.; Huang, H.; He, W.; Ming, W. Progress in Laser Ablation and Biological Synthesis Processes: “Top-Down” and “Bottom-Up” Approaches for the Green Synthesis of Au/Ag Nanoparticles. Int. J. Mol. Sci. 2022, 23, 14658. [Google Scholar] [CrossRef]
- Karunakaran, G.; Sudha, K.G.; Ali, S.; Cho, E.B. Biosynthesis of Nanoparticles from Various Biological Sources and Its Biomedical Applications. Molecules 2023, 28, 4527. [Google Scholar] [CrossRef]
- Bernabé-Antonio, A.; Martínez-Ceja, A.; Romero-Estrada, A.; Sánchez-Carranza, J.N.; Columba-Palomares, M.C.; Rodríguez-López, V.; Meza-Contreras, J.C.; Silva-Guzmán, J.A.; Gutiérrez-Hernández, J.M. Green Synthesis of Silver Nanoparticles Using Randia aculeata L. Cell Culture Extracts, Characterization, and Evaluation of Antibacterial and Antiproliferative Activity. Nanomaterials 2022, 12, 4184. [Google Scholar] [CrossRef]
- Burlec, A.F.; Ștefan, L.M.; Dodi, G.; Popa, M.; Verestiuc, L. Current Overview of Metal Nanoparticles’ Synthesis, Characterization, and Biomedical Applications, with a Focus on Silver and Gold Nanoparticles. Pharmaceuticals 2023, 16, 1410. [Google Scholar] [CrossRef]
- Hang, Y.; Wang, A.; Wu, N. Plasmonic Silver and Gold Nanoparticles: Shape- and Structure-Modulated Plasmonic Functionality for Point-of-Care Sensing, Bio-Imaging and Medical Therapy. Chem. Soc. Rev. 2024, 53, 2932–2971. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.S.; Salem, D.R.; Sani, R.K. Spectroscopy, Microscopy, and Other Techniques for Characterization of Bacterial Nanocellulose and Comparison with Plant-Derived Nanocellulose. Microb. Nat. Macromol. 2021, 2021, 419–454. [Google Scholar]
- Sakthi Devi, R.; Girigoswami, A.; Siddharth, M.; Girigoswami, K. Applications of Gold and Silver Nanoparticles in Theranostics. Appl. Biochem. Biotechnol. 2022, 194, 4187–4219. [Google Scholar] [CrossRef]
- Zhang, N.A.; Sun, J.; Yin, L.; Liu, J.; Chen, C. Silver Nanoparticles: From In Vitro Green Synthesis to In Vivo Biological Effects in Plants. Adv. Agrochem. 2023, 2, 313–323. [Google Scholar] [CrossRef]
- Ying, S.; Guan, Z.; Ofoegbu, P.C.; Clubb, P.; Rico, C.; He, F.; Hong, J. Green Synthesis of Nanoparticles: Current Developments and Limitations. Environ. Technol. Innov. 2022, 26, 102336. [Google Scholar] [CrossRef]
- Tarrahi, R.; Mahjouri, S.; Khataee, A. A Review on In Vivo and In Vitro Nanotoxicological Studies in Plants: A Headlight for Future Targets. Ecotoxicol. Environ. Saf. 2021, 208, 111697. [Google Scholar] [CrossRef]
- Barnawi, N.; Allehyani, S.; Seoudi, R. Biosynthesis and Characterization of Gold Nanoparticles and Its Application in Eliminating Nickel from Water. J. Mater. Res. Technol. 2022, 17, 537–545. [Google Scholar] [CrossRef]
- Koul, B.; Poonia, A.K.; Yadav, D.; Jin, J.O. Microbe-Mediated Biosynthesis of Nanoparticles: Applications and Future Prospects. Biomolecules 2021, 11, 886. [Google Scholar] [CrossRef]
- Ghareeb, M.A.; Abd El-Mageed, H.R.; Saif, M.; Al-Madboly, L.A.; Hassaan, N.A. Antioxidant, Antimicrobial, Cytotoxic Activities and Biosynthesis of Silver and Gold Nanoparticles Using Syzygium jambos Leaves. Pharma Chem. 2016, 8, 277–286. [Google Scholar]
- Abubakar, A.R.; Haque, M. Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. J. Pharm. Bioallied Sci. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Bolouri, P.; Salami, R.; Kouhi, S.; Kordi, M.; Asgari Lajayer, B.; Hadian, J.; Astatkie, T. Applications of Essential Oils and Plant Extracts in Different Industries. Molecules 2022, 27, 8999. [Google Scholar] [CrossRef] [PubMed]
- Rani, N.; Singh, P.; Kumar, S.; Kumar, P.; Bhankar, V.; Kumar, K. Plant-Mediated Synthesis of Nanoparticles and Their Applications: A Review. Mater. Res. Bull. 2023, 163, 112233. [Google Scholar] [CrossRef]
- Aref, M.S.; Salem, S.S. Bio-callus Synthesis of Silver Nanoparticles, Characterization, and Antibacterial Activities via Cinnamomum camphora Callus Culture. Biocatal. Agric. Biotechnol. 2020, 27, 101689. [Google Scholar] [CrossRef]
- Kokina, I.; Plaksenkova, I.; Jankovskis, L.; Jermaļonoka, M.; Galek, R. In Vivo Biosynthesis of Au and Ag NPs Using Two Medicago sativa L. Genotypes. Appl. Sci. 2024, 14, 2066. [Google Scholar] [CrossRef]
- Dang, F.; Huang, Y.; Wang, Y.; Zhou, D.; Xing, B. Transfer and Toxicity of Silver Nanoparticles in the Food Chain. Environ. Sci. Nano 2021, 8, 1519–1535. [Google Scholar] [CrossRef]
- Rakesh, B.; Srinatha, N.; Rudresh Kumar, K.J.; Madhu, A.; Suresh Kumar, M.R.; Praveen, N. Antibacterial Activity and Spectroscopic Characteristics of Silver Nanoparticles Synthesized via Plant and In Vitro Leaf-Derived Callus Extracts of Mucuna pruriens (L.) DC. S. Afr. J. Bot. 2022, 148, 251–258. [Google Scholar]
- Ahmad, N.; Muhammad, J.; Khan, K.; Ali, W.; Fazal, H.; Ali, M.; Rahman, L.-U.; Khan, H.; Uddin, M.N.; Abbasi, B.H.; et al. Silver and Gold Nanoparticles Induced Differential Antimicrobial Potential in Calli Cultures of Prunella vulgaris. BMC Chem. 2022, 16, 20. [Google Scholar] [CrossRef]
- González-Ballesteros, N.; Rodríguez-Argüelles, M.C.; Prado-López, S.; Lastra, M.; Grimaldi, M.; Cavazza, A.; Nasi, L.; Salviati, G.; Bigi, F. Macroalgae to Nanoparticles: Study of Ulva lactuca L. Role in Biosynthesis of Gold and Silver Nanoparticles and of Their Cytotoxicity on Colon Cancer Cell Lines. Mater. Sci. Eng. C 2019, 97, 498–509, Erratum in Mater. Sci. Eng. C 2019, 102, 758. [Google Scholar] [CrossRef]
- Qamar, S.U.R.; Ahmad, J.N. Nanoparticles: Mechanism of Biosynthesis Using Plant Extracts, Bacteria, Fungi, and Their Applications. J. Mol. Liq. 2021, 334, 116040. [Google Scholar] [CrossRef]
- Ric-Varas, P.; Barceló, M.; Rivera, J.A.; Cerezo, S.; Matas, A.J.; Schückel, J.; Knox, J.P.; Posé, S.; Pliego-Alfaro, F.; Mercado, J.A. Exploring the Use of Fruit Callus Culture as a Model System to Study Color Development and Cell Wall Remodeling during Strawberry Fruit Ripening. Plants 2020, 9, 805. [Google Scholar] [CrossRef]
- Song, K.; Zhao, D.; Sun, H.; Gao, J.; Li, S.; Hu, T.; He, X. Green Nanopriming: Responses of Alfalfa (Medicago sativa L.) Seedlings to Alfalfa Extracts Capped and Light-Induced Silver Nanoparticles. BMC Plant Biol. 2022, 22, 323. [Google Scholar] [CrossRef] [PubMed]
- Haq, T.U.; Ullah, R. Green Synthesis and Characterization of Gold Nanoparticles (Au-NPs) Using Stem Extract of Euphorbia neriifolia L. and Evaluation of Their Antibacterial and Antifungal Potential. Int. J. Nanosci. 2022, 21, 2250008. [Google Scholar] [CrossRef]
- Khudier, M.A.; Hammadi, H.A.; Atyia, H.T.; Al-Karagoly, H.; Albukhaty, S.; Sulaiman, G.M.; Mahood, H.B. Antibacterial Activity of Green Synthesized Selenium Nanoparticles Using Vaccinium arctostaphylos (L.) Fruit Extract. Cogent Food Agric. 2023, 9, 2245612. [Google Scholar] [CrossRef]
- Parveen, M.; Kumar, A.; Khan, M.S.; Rehman, R.; Furkan, M.; Khan, R.H.; Nami, S.A. Comparative Study of Biogenically Synthesized Silver and Gold Nanoparticles of Acacia auriculiformis Leaves and Their Efficacy Against Alzheimer’s and Parkinson’s Disease. Int. J. Biol. Macromol. 2022, 203, 292–301. [Google Scholar]
- Zare-Bidaki, M.; Aramjoo, H.; Mizwari, Z.M.; Mohammadparast-Tabas, P.; Javanshir, R.; Mortazavi-Derazkola, S. Cytotoxicity, Antifungal, Antioxidant, Antibacterial, and Photodegradation Potential of Silver Nanoparticles Mediated via Medicago sativa Extract. Arab. J. Chem. 2022, 15, 103842. [Google Scholar] [CrossRef]
- Ehsanpour, A.; Fatahian, N. Effects of Salt and Proline on Medicago sativa Callus. Plant Cell Tissue Organ Cult. 2003, 73, 53–56. [Google Scholar] [CrossRef]
- Albayrak Turgut, B.; Bezirganoglu, İ. Callus Induction and Bioactive Compounds Production from Various Cultivars of Medicago sativa L. (Alfalfa). J. Inst. Sci. Technol. 2023, 13, 1625–1632. [Google Scholar]
- Páramo, L.; Feregrino-Pérez, A.A.; Vega-González, M.; Escobar-Alarcón, L.; Esquivel, K. Medicago sativa L. Plant Response against Possible Eustressors (Fe, Ag, Cu)-TiO2: Evaluation of Physiological Parameters, Total Phenol Content, and Flavonoid Quantification. Plants 2023, 12, 659. [Google Scholar]
- Hegazy, H.S.; Rabie, G.H.; Shaaban, L.D.; Raie, D.S. Extracellular synthesis of silver nanoparticles by callus of Medicago sativa. Life Sci. J. 2014, 11, 1211–1214. [Google Scholar]
- Hegazy, H.S.; Shabaan, L.D.; Rabie, G.H.; Raie, D.S. Biosynthesis of Silver Nanoparticles Using Cell-Free Callus Exudates of Medicago sativa L. Pak. J. Bot. 2015, 47, 1825–1829. [Google Scholar]
- Singh, H.; Desimone, M.F.; Pandya, S.; Jasani, S.; George, N.; Adnan, M.; Aldarhami, A.; Bazaid, A.S.; Alderhami, S.A. Revisiting the Green Synthesis of Nanoparticles: Uncovering Influences of Plant Extracts as Reducing Agents for Enhanced Synthesis Efficiency and Its Biomedical Applications. Int. J. Nanomed. 2023, 18, 4727–4750. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.; Yadav, K.; Jagadevan, S. A Comprehensive Review on Green Synthesis of Nature-Inspired Metal Nanoparticles: Mechanism, Application and Toxicity. J. Clean. Prod. 2020, 272, 122880. [Google Scholar] [CrossRef]
- Parashar, U.K.; Kumar, V.; Bera, T.; Saxena, P.S.; Nath, G.; Srivastava, S.K.; Giri, R.; Srivastava, A. Study of Mechanism of Enhanced Antibacterial Activity by Green Synthesis of Silver Nanoparticles. Nanotechnology 2011, 22, 415104. [Google Scholar] [CrossRef] [PubMed]
- Alhumaydhi, F.A. Green Synthesis of Gold Nanoparticles Using Extract of Pistacia chinensis and Their In Vitro and In Vivo Biological Activities. J. Nanomater. 2022, 2022, 5544475. [Google Scholar] [CrossRef]
- Ahmad, N.; Jabeen, M.; Haq, Z.U.; Ahmad, I.; Wahab, A.; Islam, Z.U.; Khan, M.Y. Green Fabrication of Silver Nanoparticles Using Euphorbia serpens Kunth Aqueous Extract, Their Characterization, and Investigation of Its In Vitro Antioxidative, Antimicrobial, Insecticidal, and Cytotoxic Activities. Biomed. Res. Int. 2022, 2022, 5562849. [Google Scholar] [CrossRef]
- González-Conde, M.; Vega, J.; López-Figueroa, F.; García-Castro, M.; Moscoso, A.; Sarabia, F.; López-Romero, J.M. Green Synthesis of Silver Nanoparticles and Its Combination with Pyropia columbina (Rhodophyta) Extracts for a Cosmeceutical Application. Nanomaterials 2023, 13, 1010. [Google Scholar] [CrossRef]
- Kokina, I.; Sledevskis, E.; Gerbreders, V.; Grauda, D.; Jermaļonoka, M.; Valaine, K.; Gavarāne, I.; Pigiņka, I.; Filipovičs, M.; Rashal, I. Reaction of Flax (Linum usitatissimum L.) Calli Culture to Supplement of Medium by Carbon Nanoparticles. Proc. Latv. Acad. Sci. Sect. B 2012, 66, 200–209. [Google Scholar] [CrossRef]
- Xia, Q.H.; Zheng, L.P.; Zhao, P.F.; Wang, J.W. Biosynthesis of Silver Nanoparticles Using Artemisia annua Callus for Inhibiting Stem-End Bacteria in Cut Carnation Flowers. IET Nanobiotechnol. 2017, 11, 185–192. [Google Scholar] [CrossRef]
- Jankovskis, L.; Kokina, I.; Plaksenkova, I.; Jermaļonoka, M. Impact of Different Nanoparticles on Common Wheat (Triticum aestivum L.) Plants, Course, and Intensity of Photosynthesis. Sci. World J. 2022, 2022, 3693869. [Google Scholar] [CrossRef]
- Worakitjaroenphon, S.; Shanmugam, P.; Boonyuen, S.; Smith, S.M.; Chookamnerd, K. Green Synthesis of Silver and Gold Nanoparticles Using Oroxylum indicum Plant Extract for Catalytic and Antimicrobial Activity. Biomass Convers. Biorefin. 2023, 15, 25765–25776. [Google Scholar] [CrossRef]
- Saha, N.; Trivedi, P.; Dutta Gupta, S. Surface Plasmon Resonance (SPR)-Based Optimization of Biosynthesis of Silver Nanoparticles from Rhizome Extract of Curculigo orchioides Gaertn. and Its Antioxidant Potential. J. Clust. Sci. 2016, 27, 1893–1912. [Google Scholar] [CrossRef]
- Sathiyaraj, S.; Suriyakala, G.; Gandhi, A.D.; Babujanarthanam, R.; Almaary, K.S.; Chen, T.W.; Kaviyarasu, K. Biosynthesis, Characterization, and Antibacterial Activity of Gold Nanoparticles. J. Infect. Public Health 2021, 14, 1842–1847. [Google Scholar] [CrossRef] [PubMed]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Sawosz, E.; Chwalibog, A.; Szeliga, J.; Sawosz, F.; Grodzik, M.; Rupiewicz, M.; Niemiec, T.; Kacprzyk, K. Visualization of Gold and Platinum Nanoparticles Interacting with Salmonella enteritidis and Listeria monocytogenes. Int. J. Nanomed. 2010, 5, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Sosnowska, M.; Kutwin, M.; Adamiak, A.; Gawin, K.; Bugajska, Ż.; Daniluk, K. Green Synthesis of Silver Nanoparticles Using Aqueous Mint (Mentha piperita) and Cabbage (Brassica oleracea var. Capitata) Extracts and Their Antibacterial Activity. Ann. Wars. Univ. Life Sci. SGGW Anim. Sci. 2017, 56, 137–145. [Google Scholar] [CrossRef]
- Huang, J.; Sun, J.; Shao, K.; Lin, Y.; Liu, Z.; Fu, Y.; Mu, L. Green Hydrothermal Synthesis and Applications of Sorbus pohuashanensis/Aronia melanocarpa Extracts Functionalized-Au/Ag/AuAg Nanoparticles. J. Renew. Mater. 2022, 11, 1807–1821. [Google Scholar] [CrossRef]
- Alwhibi, M.S.; Ortashi, K.M.; Hendi, A.A.; Awad, M.A.; Soliman, D.A.; El-Zaidy, M. Green Synthesis, Characterization and Biomedical Potential of Ag&Au Core–Shell Noble Metal Nanoparticles. J. King Saud. Univ. Sci. 2022, 34, 102000. [Google Scholar]
- ElMitwalli, O.S.; Barakat, O.A.; Daoud, R.M.; Akhtar, S.; Henari, F.Z. Green Synthesis of Gold Nanoparticles Using Cinnamon Bark Extract, Characterization, and Fluorescence Activity in Au/Eosin Y Assemblies. J. Nanopart. Res. 2020, 22, 1–9. [Google Scholar]
- Ielo, I.; Rando, G.; Giacobello, F.; Sfameni, S.; Castellano, A.; Galletta, M.; Drommi, D.; Rosace, G.; Plutino, M.R. Synthesis, Chemical–Physical Characterization, and Biomedical Applications of Functional Gold Nanoparticles: A Review. Molecules 2021, 26, 5823. [Google Scholar] [CrossRef]
- Panchamoorthy, R.; Mohan, U.; Muniyan, A. Apium graveolens-Reduced Phytofabricated Gold Nanoparticles and Their Impacts on the Glucose Utilization Pattern of the Isolated Rat Hemidiaphragm. Heliyon 2022, 8, e08805. [Google Scholar] [CrossRef]
- Shafey, A.M.E. Green Synthesis of Metal and Metal Oxide Nanoparticles from Plant Leaf Extracts and Their Applications: A Review. Green Process. Synth. 2020, 9, 304–339. [Google Scholar] [CrossRef]
- Singh, H.; Du, J.; Singh, P.; Yi, T.H. Ecofriendly Synthesis of Silver and Gold Nanoparticles by Euphrasia officinalis Leaf Extract and Its Biomedical Applications. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1163–1170. [Google Scholar] [CrossRef] [PubMed]
- Giri, A.K.; Jena, B.; Biswal, B.; Pradhan, A.K.; Arakha, M.; Acharya, S.; Acharya, L. Green Synthesis and Characterization of Silver Nanoparticles Using Eugenia roxburghii DC. Extract and Activity against Biofilm-Producing Bacteria. Sci. Rep. 2022, 12, 8383. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Baek, D.R.; Kim, J.S.; Joo, S.W.; Lim, J.K. Green Synthesis of Silver Nanoparticles with Size Distribution Depending on Reducing Species in Glycerol at Ambient pH and Temperatures. ACS Omega 2020, 5, 16246–16254. [Google Scholar] [CrossRef] [PubMed]
- Mussin, J.; Robles-Botero, V.; Casañas-Pimentel, R.; Rojas, F.; Angiolella, L.; San Martin-Martinez, E.; Giusiano, G. Antimicrobial and Cytotoxic Activity of Green Synthesis Silver Nanoparticles Targeting Skin and Soft Tissue Infectious Agents. Sci. Rep. 2021, 11, 14566. [Google Scholar] [CrossRef]
- Pochapski, D.J.; Carvalho Dos Santos, C.; Leite, G.W.; Pulcinelli, S.H.; Santilli, C.V. Zeta Potential and Colloidal Stability Predictions for Inorganic Nanoparticle Dispersions: Effects of Experimental Conditions and Electrokinetic Models on the Interpretation of Results. Langmuir 2021, 37, 13379–13389. [Google Scholar] [CrossRef]
- Habeeb Rahuman, H.B.; Dhandapani, R.; Narayanan, S.; Palanivel, V.; Paramasivam, R.; Subbarayalu, R.; Muthupandian, S. Medicinal Plants Mediated the Green Synthesis of Silver Nanoparticles and Their Biomedical Applications. IET Nanobiotechnol. 2022, 16, 115–144. [Google Scholar] [CrossRef]
- Shahzadi, S.; Fatima, S.; Shafiq, Z.; Janjua, M.R.S.A. A Review on Green Synthesis of Silver Nanoparticles (SNPs) Using Plant Extracts: A Multifaceted Approach in Photocatalysis, Environmental Remediation, and Biomedicine. RSC Adv. 2025, 15, 3858–3903. [Google Scholar] [CrossRef]
- Mortazavi-Derazkola, S.; Ebrahimzadeh, M.A.; Amiri, O.; Goli, H.R.; Rafiei, A.; Kardan, M.; Salavati-Niasari, M. Facile Green Synthesis and Characterization of Crataegus microphylla Extract-Capped Silver Nanoparticles (CME@Ag-NPs) and Its Potential Antibacterial and Anticancer Activities against AGS and MCF-7 Human Cancer Cells. J. Alloys Compd. 2020, 820, 153186. [Google Scholar] [CrossRef]
- Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef]
- Rauwel, P.; Küünal, S.; Ferdov, S.; Rauwel, E. A Review on the Green Synthesis of Silver Nanoparticles and Their Morphologies Studied via TEM. Adv. Mater. Sci. Eng. 2015, 2015, 682749. [Google Scholar] [CrossRef]
- Varghese Alex, K.; Tamil Pavai, P.; Rugmini, R.; Shiva Prasad, M.; Kamakshi, K.; Sekhar, K.C. Green Synthesized Ag Nanoparticles for Bio-Sensing and Photocatalytic Applications. ACS Omega 2020, 5, 13123–13129. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Singh, P.; Sardar, M. Peroxidase Assisted Biosynthesis of Silver and Gold Nanoparticles: Characterization and Computational Study. Adv. Mater. Lett. 2015, 6, 194–200. [Google Scholar] [CrossRef]
- Nkosi, N.C.; Basson, A.K.; Ntombela, Z.G.; Dlamini, N.G.; Pullabhotla, R.V. Green Synthesis, Characterization and Application of Silver Nanoparticles Using Bioflocculant: A Review. Bioengineering 2024, 11, 492. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Kaur, H.; Sharma, A. Study of SPR Peak Shifting of Silver Nanoparticles with Change in Surrounding Medium. Mater. Today Proc. 2021, 37, 3574–3576. [Google Scholar] [CrossRef]
- Tian, Y.; Tian, D.; Peng, X.; Qiu, H. Critical Parameters to Standardize the Size and Concentration Determination of Nanomaterials by Nanoparticle Tracking Analysis. Int. J. Pharm. 2024, 656, 124097. [Google Scholar] [CrossRef]
- Fraire, J.C.; Pérez, L.A.; Coronado, E.A. Cluster Size Effects in the Surface-Enhanced Raman Scattering Response of Ag and Au Nanoparticle Aggregates: Experimental and Theoretical Insight. J. Phys. Chem. C 2013, 117, 23090–23107. [Google Scholar] [CrossRef]
- Udayabhaskararao, T.; Pradeep, T. New Protocols for the Synthesis of Stable Ag and Au Nanocluster Molecules. J. Phys. Chem. Lett. 2013, 4, 1553–1564. [Google Scholar] [CrossRef]
- Filipe, V.; Hawe, A.; Jiskoot, W. Critical Evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the Measurement of Nanoparticles and Protein Aggregates. Pharm. Res. 2010, 27, 796–810. [Google Scholar] [CrossRef]
- Malloy, A.; Carr, B. Nanoparticle Tracking Analysis—The Halo™ System. Part. Part. Syst. Charact. 2006, 23, 197–204. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Klug, H.P.; Alexander, L.E. X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed.; Wiley-Interscience: New York, NY, USA, 1974; ISBN 978-0-471-49369-3. [Google Scholar]







| Precursor and Exposure Time (h) | Precursor Concentration (mg/L) | Absorbance (a.u.) at 286 nm for ‘La Bella Campagnola’ | Absorbance (a.u.) Peak at 534 nm for ‘La Bella Campagnola’ | Absorbance (a.u.) at 286 nm for ‘Kometa’ | Absorbance (a.u.) at 534 nm for ‘Kometa’ |
|---|---|---|---|---|---|
| 24 h | |||||
| Control | 2.0 | - | 1.3 | - | |
| HAuCl4 | 200 | 3.3 | 1.8 | 4.4 | 2.3 |
| AgNO3 | 1000 | 2.3 | - | 1.8 | - |
| 48 h | |||||
| Control | 2.1 | - | 1.2 | - | |
| HAuCl4 | 200 | 3.1 | 1.9 | 4.7 | 2.3 |
| AgNO3 | 1000 | 2.3 | - | 1.8 | - |
| Sample | NPs | Z-Average from DLS | Polydispersity Index | Zeta Potential (mV) | Size Based on Microscopy (nm) |
|---|---|---|---|---|---|
| ‘Kometa’ Control | - | 260 ± 70 | 0.28 ± 0.03 | −10. ± 3 | - |
| ‘Kometa’ HAuCl4 | Au | 1074 ± 10 ↑ | 0.61 ± 0.05 ↑ * | −16 ± 1 ↓ * | 28 ± 18 |
| ‘Kometa’ AgNO3 | Ag | 324 ± 53 ↑ | 0.44 ± 0.03 ↑ * | −15 ± 1 ↓ * | 27 ± 4 |
| ‘La Bella Campagnola’ Control | - | 551 ± 20 | 0.33 ± 0.05 | −13 ± 1 | - |
| ‘La Bella Campagnola’ HAuCl4 | Au | 1074 ± 19 ↑ | 0.54 ± 0.03 ↑ * | −17± 1 ↓ * | 17 ± 7 |
| ‘La Bella Campagnola’ AgNO3 | Ag | 320 ± 9 ↓ | 0.44 ± 0.07 ↑ * | −16 ± 1 ↓ * | 58 ± 8 |
| Sample | Mode (nm) | Mean (nm) ± 95% CI (From–To) | D90 (nm) | Concentration (Particles/mL) |
|---|---|---|---|---|
| ‘Kometa’ AgNO3 | 128 ± N/A | 220 ± (218–222) | 385 ± N/A | 7 × 108 ± N/A |
| ‘Kometa’ HAuCl4 | 128 ± N/A | 243 ± (240–246) | 440 ± N/A | 9 × 108 ± N/A |
| ‘Kometa’ Control | 253 ± N/A | 284 ± (281–287) | 492 ± N/A | 6 × 108 ± N/A |
| ‘La Bella Campagnola’ AgNO3 | 143 ± N/A | 219 ± (217–221) | 384 ± N/A | 4 × 108 ± N/A |
| ‘La Bella Campagnola’ HAuCl4 | 173 ± N/A | 242 ± (239–245) | 449 ± N/A | 4 × 108 ± N/A |
| ‘La Bella Campagnola ‘Control | 183 ± N/A | 238 ± (235–241) | 404 ± N/A | 6 × 108 ± N/A |
| Elemental Weight [%] | ‘Kometa’ Control | ‘Kometa’ HAuCl4 | ‘Kometa’ AgNO3 | ‘La Bella Campagnola’ Control | ‘La Bella Campagnola’ HAuCl4 | ‘La Bella Campagnola’ AgNO3 |
|---|---|---|---|---|---|---|
| C | 40.5 ± 1 | 43.1 ± 1 | 40.9 ± 0.9 | 40.6 ± 1 | 42.8 ± 1 | 39.2 ± 0.8 |
| O | 24 ± 1 | 2.1 ± 0.2 | 1.9 ± 0.1 | 23.25 ± 1 | 2.1 ± 0.1 | 1.8 ± 0.1 |
| Na | 1.8 ± 0.2 | 0.85 ± 0.07 | 0.93 ± 0.06 | 1.5 ± 0.2 | 0.81 ± 0.05 | 0.88 ± 0.06 |
| Mg | 0.18 ± 0.05 | 0.14 ± 0.03 | 0.17 ± 0.04 | 0.22 ± 0.04 | 0.15 ± 0.03 | 0.19 ± 0.04 |
| Si | 27.5 ± 2 | 3.6 ± 0.4 | 4 ± 0.5 | 28 ± 1 | 3 ± 0.3 | 4.1 ± 0.6 |
| Cl | 0.3 ± 0.1 | 9.9 ± 0.8 | 5.7 ± 0.6 | 0.5± 0.1 | 10.2 ± 0.9 | 5.3 ± 0.7 |
| K | 2.5 ± 0.3 | 11.9 ± 1.2 | 7.4 ± 1.1 | 2.1 ± 0.4 | 12 ± 1 | 7.9 ± 1 |
| Ca | 1.11 ± 0.2 | 2.4 ± 0.3 | 1.9 ± 0.2 | 1.1 ± 0.3 | 2.4 ± 0.2 | 2.1 ± 0.3 |
| Au | 0.00 | 25 ± 3 | 0.00 | 0.00 | 26 ± 2 | 0.00 |
| Ag | 0.00 | 0.00 | 39 ± 3 | 0.00 | 0.00 | 41 ± 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokina, I.; Plaksenkova, I.; Jankovskis, L.; Jermaļonoka, M.; Krzemiński, P.; Mošenoka, A.; Ostrowska, A.; Galek, R.; Sledevskis, E.; Krasovska, M.; et al. Using Medicago sativa L. Callus Cell Extract for the Synthesis of Gold and Silver Nanoparticles. Int. J. Mol. Sci. 2025, 26, 10772. https://doi.org/10.3390/ijms262110772
Kokina I, Plaksenkova I, Jankovskis L, Jermaļonoka M, Krzemiński P, Mošenoka A, Ostrowska A, Galek R, Sledevskis E, Krasovska M, et al. Using Medicago sativa L. Callus Cell Extract for the Synthesis of Gold and Silver Nanoparticles. International Journal of Molecular Sciences. 2025; 26(21):10772. https://doi.org/10.3390/ijms262110772
Chicago/Turabian StyleKokina, Inese, Ilona Plaksenkova, Lauris Jankovskis, Marija Jermaļonoka, Patryk Krzemiński, Aleksandra Mošenoka, Agnieszka Ostrowska, Renata Galek, Eriks Sledevskis, Marina Krasovska, and et al. 2025. "Using Medicago sativa L. Callus Cell Extract for the Synthesis of Gold and Silver Nanoparticles" International Journal of Molecular Sciences 26, no. 21: 10772. https://doi.org/10.3390/ijms262110772
APA StyleKokina, I., Plaksenkova, I., Jankovskis, L., Jermaļonoka, M., Krzemiński, P., Mošenoka, A., Ostrowska, A., Galek, R., Sledevskis, E., Krasovska, M., Mežaraupe, L., Nasiłowska, B., Skrzeczanowski, W., Chrunik, M., & Kutwin, M. (2025). Using Medicago sativa L. Callus Cell Extract for the Synthesis of Gold and Silver Nanoparticles. International Journal of Molecular Sciences, 26(21), 10772. https://doi.org/10.3390/ijms262110772

