Advanced Large-Stokes-Shift Fluorescent Probe for the Detection of Biothiols: Facilitating Accurate Indirect Measurement of β-Lactamases
Abstract
1. Introduction
2. Results and Discussion
2.1. Spectral Responses to Biothiols
2.2. HepG2 Cells and Zebrafish Imaging
2.3. Optical Responses of Bibc-DNBS Towards β-Lactamase
2.4. Mechanism Studies
2.5. β-Lactamase Inhibitor Screening
2.6. Drug Resistance
3. Materials and Methods
3.1. Materials and Instruments
3.2. Synthesis of Bibc-OH
3.3. Synthesis of Bibc-DNBS
3.4. Spectral Studies
3.5. Cells and Zebrafish Imaging
3.6. Drug Resistance Experiment
3.7. Bacteriostatic Experiment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blaser, M.J. Antibiotic use and its consequences for the normal microbiome. Science 2016, 352, 544–545. [Google Scholar] [CrossRef] [PubMed]
- Jasovsky, D.S.; Littmann, J.; Zorzet, A.N.; Cars, O. Antimicrobial resistance-A threat to the world’s sustainable developmen. Ups. J. Med. Sci. 2016, 121, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Babic, M.; Hujer, A.M.; Bonomo, R.A. What’s new in antibiotic resistance? Focus on beta-lactamases. Drug Resist. Updat. 2006, 9, 142–156. [Google Scholar] [CrossRef] [PubMed]
- Bush, K.; Jacoby, G.A.; Medeiros, A.A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 1995, 39, 1211–1233. [Google Scholar] [CrossRef]
- Li, S.H.; Feng, S.; Song, X.R.; Zheng, Q.C.; Feng, G.D.; Song, Z.G. A benzotriazole-coumarin derivative as a turn-on fluorescent probe for highly efficient and selective detection of homocysteine and its bioimaging application. Microchem. J. 2023, 185, 108293. [Google Scholar] [CrossRef]
- Wang, X.B.; Li, H.J.; Liu, C.; Hu, Y.X.; Li, M.C.; Wu, Y.C. Simple turn-on fluorescent sensor for discriminating Cys/Hcy and GSH from different fluorescent signals. Anal. Chem. 2021, 93, 2244–2253. [Google Scholar] [CrossRef]
- Zhu, L.L.; Zhang, T.G.; Ma, Y.Y.; Lin, W.Y. Discriminating Cys from GSH/H2S in vitro and in vivo with a NIR fluorescent probe. Sens. Actuators B Chem. 2020, 305, 127202. [Google Scholar] [CrossRef]
- Liu, H.B.; Xing, H.Z.; Gao, Z.G.; You, M.; Li, B.; Feng, X.Y.; Zhou, B.J.; Cong, Z.J.; Zhu, J.; Jin, M.J. A single-wavelength excited NIR fluorescence probe for distinguishing GSH/H2S and Cys/Hcy in living cells and zebrafish through separated dual-channels. Talanta 2023, 254, 124153. [Google Scholar] [CrossRef]
- Yue, L.Z.; Huang, H.W.; Song, W.H.; Lin, W.Y. Research on mitochondrial oxidative stress accompanying the diabetic process under airborne particulate matter pollution by NIR fluorescence imaging of cysteine. Chem. Eng. J. 2022, 441, 135981. [Google Scholar] [CrossRef]
- Chen, X.X.; Huang, X.Q.; Liu, G.; Tu, Y.Y.; Fan, C.B.; Pu, S.Z. A highly selective colorimetric and fluorescent probe for cysteine sensing: Application in live cell imaging and test strips. Dyes Pigments 2021, 196, 109810. [Google Scholar] [CrossRef]
- Chen, X.X.; Wang, Q.Q.; Zhuang, X.Y.; Chen, X.Y.; Deng, Q.Y.; Zhu, C.L.; Lin, L.Q. Simple, low-cost and sensitive voltammetric detection of homocysteine by using nanocarbon black as electrode material. Int. J. Electrochem. Sci. 2024, 19, 100605. [Google Scholar] [CrossRef]
- Chen, Y.H.; Xu, C.L.; Xu, H.F.; Chen, W.L.; Wang, H.H.; Wang, Z.T.; Zhang, J.S. Persistent Helicobacter pylori infection for more than 3 years leads to elevated serum homocysteine concentration: A retrospective cohort study based on a healthy Chinese population. J. Gastroenterol. Hepatol. 2021, 36, 3077–3083. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Peng, W.; Feng, W.; Wang, Y.; Chen, G.; Wang, S.; Li, S.; Li, H.; Wang, K.; Zhang, J. A novel dual-emission fluorescent probe for the simultaneous detection of H2S and GSH. Chem. Commun. 2016, 52, 4628–4631. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.L.; Wei, X.; Meng, J.; Wang, X.Y.; Chen, X.W.; Wang, J.H. Acetaldehyde-modified-cystine as an enhanced fluorescent probe for intracellular glutathione imaging. Sens. Actuat. B Chem. 2018, 268, 264–269. [Google Scholar] [CrossRef]
- Chu, Y.F.; Cen, Y.J.; Song, Y.X.; Xu, Z.X.; Hu, L.P.; Li, H.Q.; Yang, C.L. A novel coumarin-based fluorescent probe for selective detection of cysteine over homocysteine. Color. Technol. 2020, 136, 381–388. [Google Scholar] [CrossRef]
- Zhong, K.L.; Zhou, S.Y.; Yan, X.M.; Hou, S.H.; Li, X.P.; Tang, L.J. A novel D-π-A type NBD-based fluorescent probe for ultrafast and distinguishable detection of Hcy/Cys and its bioimaging application. J. Lumin. 2020, 224, 117330. [Google Scholar] [CrossRef]
- Jiang, C.Y.; Huang, H.J.; Kang, X.Y.; Yang, L.; Xi, Z.; Sun, H.Y.; Pluth, M.D.; Yi, L. NBD-based synthetic probes for sensing small molecules and proteins: Design, sensing mechanisms and biological applications. Chem. Soc. Rev. 2021, 50, 7436–7495. [Google Scholar] [CrossRef]
- Yao, J.F.; Yin, G.X.; Yu, T.; Li, H.T.; Yin, P. Simultaneous sensing of cysteine/homocysteine and glutathione with a fluorescent probe based on a single atom replacement strategy. Anal. Methods 2021, 13, 1358–1363. [Google Scholar] [CrossRef]
- Guo, T.T.; Chen, X.Y.; Qu, W.B.; Yang, B.; Tian, R.W.; Geng, Z.R.; Wang, Z.L. Red and Near-Infrared Fluorescent Probe for Distinguishing Cysteine and Homocysteine through Single-Wavelength Excitation with Distinctly Dual Emissions. Anal. Chem. 2022, 94, 5006–5013. [Google Scholar] [CrossRef]
- Mostafa, I.M.; Liu, H.Z.; Hanif, S.; Shah Gilani, M.R.H.; Guan, Y.R.; Xu, G.B. Synthesis of a novel electrochemical probe for the sensitive and selective detection of biothiols and its clinical applications. Anal. Chem. 2022, 94, 6853–6859. [Google Scholar] [CrossRef]
- Li, P.; Lee, S.M.; Kim, H.Y.; Kim, S.; Park, S.; Park, K.S.; Park, H.G. Colorimetric detection of individual biothiols by tailor made reactions with silver nanoprisms. Sci. Rep. 2021, 11, 3937–3945. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Fujiwara, T.; Funatsu, T.; Tsunoda, M. Quantification of intracellular thiols by HPLC-fluorescence detection. Molecules 2021, 26, 2365. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Miao, S.Y.; Tan, J.H.; Zhang, Q. Capillary Electrophoresis: A Three-Year Literature Review. Anal. Chem. 2024, 96, 7799–7816. [Google Scholar] [CrossRef] [PubMed]
- Li, C.J.; Ji, P.; Liu, X.; Feng, G.D.; Song, Z.G.; Guo, Y.P. A new ratiometric fuorescent probe for rapid and highly selective detection of Cysteine in bovine serum. Anal. Sci. 2024, 40, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zhang, Y.K.; Ren, M.G.; Liu, K.Y.; Wu, Q.; Zhang, C.L.; Wang, S.J.; Kong, F.G. A fluorescent probe for detecting H2O2 and delivering H2S in lysosomes and its application in maintaining the redox environments. Talanta 2024, 273, 125894. [Google Scholar] [CrossRef]
- Li, D.C.; Han, Q.M.; Mao, R.F.; Qiu, Z.Y.; Xi, J. A novel tricyanofuran-based near-infrared fluorescent probe for rapid detection and discrimination of Cys/Hcy and GSH/H2S. Tetrahedron Lett. 2024, 143, 155115. [Google Scholar] [CrossRef]
- Liu, X.; Lei, H.B.; Hu, Y.X.; Zou, X.R.; Ran, H.Y.; Cai, Q.N.; Huang, J.J.; Liu, C. Construction of a mitochondria-targeted near-infrared fluorescence turn-on fluorescent probe for H2S detection and imaging in living cells and drug-induced mice inflammatory models. Spectrochim. Acta Part A 2024, 306, 123574. [Google Scholar] [CrossRef]
- Fan, G.W.; Zhang, B.; Wang, J.M.; Wang, N.N.; Qin, S.C.; Zhao, W.L.; Zhang, J. Accurate construction of NIR probe for visualizing HClO fluctuations in type I, type II diabetes and diabetic liver disease assisted by theoretical calculation. Talanta 2024, 268, 125298. [Google Scholar] [CrossRef]
- Shen, K.Y.; Hu, Y.Z.; Fei, Q.; Wang, E.F.; Ren, J.; Fan, G.R.; Wang, F.Y. Rational design of dual-channel response fluorescent probe and its application for highly efficient biothiols imaging in living samples. J. Photochem. Photobiol. A Chem. 2024, 448, 115341. [Google Scholar] [CrossRef]
- Tehrani, K.H.M.E.; Martin, N.I. β-lactam/β-lactamase inhibitor combinations: An update. Medchem. Commun. 2018, 9, 1439–1456. [Google Scholar] [CrossRef]
- Thai, H.B.D.; Yu, J.K.; Park, B.S.; Park, Y.J.; Min, S.J.; Ahn, D.R. A fluorogenic substrate of beta-lactamases and its potential as a probe to detect the bacteria resistant to the third-generation oxyimino-cephalosporins. Biosens. Bioelectron. 2016, 77, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Xiao, L.; Ding, Y.W.; Xiang, Y.; Tong, A.J. A simple design of fluorescent probes for indirect detection of β-lactamase based on AIE and ESIPT processes. J. Mater. Chem. B 2018, 6, 3922–3926. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.L.; Liu, L.K.; Liu, X.B.; Liu, Q.; Hou, P.; Wang, H.; Xia, C.H.; Li, G.; Ma, C.H.; Chen, S. Simultaneous discrimination of Cys/Hcy and GSH with simple fluorescent probe under a single-wavelength excitation and its application in living cells, tumor tissues, and zebrafish. Front. Chem. 2022, 10, 856994. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Kishore, D. An insight into hexamethylenetetramine: A versatile reagent in organic synthesis. J. Iran. Chem. Soc. 2013, 10, 1193–1228. [Google Scholar] [CrossRef]
- Ma, C.H.; Yan, D.L.; Hou, P.; Liu, X.B.; Wang, H.; Xia, C.H.; Li, G.; Chen, S. Bioimaging and sensing thiols in vivo and tumor tissues based on a near-infrared fluorescent probe with large Stokes shift. Molecules 2023, 28, 5702. [Google Scholar] [CrossRef]
- Ding, Y.; Li, Z.; Xu, C.C.; Qin, W.J.; Wu, Q.; Wang, X.C.; Cheng, X.M.; Li, L.; Huang, W. Fluorogenic probes/inhibitors of beta-lactamase and their applications in drug-resistant bacteria. Angew. Chem. Int. Ed. 2021, 60, 24–40. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Yan, D.; Ma, Y.; Hou, P.; Qi, P.; Zhang, X.; Liu, Y.; Chen, S. Advanced Large-Stokes-Shift Fluorescent Probe for the Detection of Biothiols: Facilitating Accurate Indirect Measurement of β-Lactamases. Int. J. Mol. Sci. 2025, 26, 525. https://doi.org/10.3390/ijms26020525
Liu L, Yan D, Ma Y, Hou P, Qi P, Zhang X, Liu Y, Chen S. Advanced Large-Stokes-Shift Fluorescent Probe for the Detection of Biothiols: Facilitating Accurate Indirect Measurement of β-Lactamases. International Journal of Molecular Sciences. 2025; 26(2):525. https://doi.org/10.3390/ijms26020525
Chicago/Turabian StyleLiu, Likun, Dongling Yan, Yukun Ma, Peng Hou, Pengfei Qi, Xue Zhang, Yitong Liu, and Song Chen. 2025. "Advanced Large-Stokes-Shift Fluorescent Probe for the Detection of Biothiols: Facilitating Accurate Indirect Measurement of β-Lactamases" International Journal of Molecular Sciences 26, no. 2: 525. https://doi.org/10.3390/ijms26020525
APA StyleLiu, L., Yan, D., Ma, Y., Hou, P., Qi, P., Zhang, X., Liu, Y., & Chen, S. (2025). Advanced Large-Stokes-Shift Fluorescent Probe for the Detection of Biothiols: Facilitating Accurate Indirect Measurement of β-Lactamases. International Journal of Molecular Sciences, 26(2), 525. https://doi.org/10.3390/ijms26020525