SCAMP3-Driven Regulation of ERK1/2 and Autophagy Phosphoproteomics Signatures in Triple-Negative Breast Cancer
Abstract
1. Introduction
2. Results
2.1. SCAMP3 Knockout Enhances ERK1/2 Inhibition Effects
2.2. Phosphoproteomics Profiling Reveals SCAMP3-Dependent Signaling Networks
2.3. SCAMP3 Knockout Leads to Inhibition of ERK1/2 Pathway
2.4. SCAMP3 Regulates Pseudokinases and Other Kinase Substrates
2.5. SCAMP3 Influences Metabolic Processes in TNBC
2.6. SCAMP3 Modulates the Phosphorylation of Cell Surface Receptors
2.7. SCAMP3 Loss Disrupts Autophagic Flux
3. Discussion
4. Materials and Methods
4.1. Cell Culture and Reagents
4.2. Immunoblotting
4.3. Protein Extraction
4.4. Sample Processing
4.4.1. Phosphopeptide Enrichment
4.4.2. Tandem Mass Tag (TMT) Labeling
4.4.3. Fractionation
4.4.4. LC-MS/MS Analysis
4.4.5. Database Analysis
4.5. Identification of Dysregulated Proteins and Statistical Analyses
4.6. Ingenuity Pathway Analysis (IPA)
4.7. Kinase Enrichment Analysis
4.8. STRING Consortium Analysis Software
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
4EBP1 | Eukaryotic translation initiation factor 4E-binding protein 1 |
ABL1 | Abelson tyrosine-protein kinase 1 |
ACIN1 | Apoptotic chromatin condensation inducer in the nucleus |
ACLY | ATP-citrate lyase |
ACSS2A | Acetyl-CoA synthetase 2 |
AKT1 | Protein kinase B |
AMPKA1 | 5’-AMP-activated protein kinase catalytic subunit α1 |
ATG9 | Autophagy-related 9A |
ATM | Ataxia telangiectasia mutated |
AURKA, B | Aurora kinase A, B |
CANX | Calnexin |
CCT-α | choline-phosphate cytidylyltransferase A |
CD44 | Cluster of differentiation 44 |
CDK | Cyclin-dependent kinase |
CHK1 | Serine/threonine-protein kinase Chk1 |
CK2 | Casein kinase 2 |
CoA | Coenzyme A |
CSCs | Cancer stem cells |
CSK | C-terminal Src kinase |
CK2alpha1 | Casein kinase 2 alpha 1 |
CK2alpha2 | Casein kinase 2 alpha 2 |
DHAP | Dihydroxyacetone phosphate |
DTT | DL-dithiothreitol |
EGFR | Epidermal growth factor receptor |
ELF | E74 like ETS transcription factor |
EMT | Epithelial–mesenchymal transition |
ER | Estrogen receptor |
ERK 1/2 | Extracellular signal-regulated kinase 1/2 |
ETS1 | Protein C-ets-1 |
FBS | Fetal bovine serum |
FG | Phenylalanine glycine |
GOLGA4 | Golgin subfamily A member 4 |
GRB2 | Growth factor receptor bound protein 2 |
GSK3B | Glycogen synthase kinase 3β |
HER2 | Human epidermal growth factor receptor 2 |
HIPK2 | Homeodomain-interacting protein kinase 2 |
HSP90AB1 | Heat shock protein HSP 90-beta |
IAA | Iodoacetamide |
IKEA3 | Kinase enrichment analysis 3 |
IPA | Ingenuity Pathway Analysis Software |
JAK | Janus kinase |
KLC4 | Kinesin light chain 4 |
KNN | K-Nearest Neighbor |
KSR1 | Ras kinase suppressor |
LMNB1 | Lamin-B1 |
LC3 | Microtubule-associated protein light chain 3 |
LKB1 | Liver kinase B1 |
MAP1LC3B | Microtubule-associated protein 1 light chain 3 beta |
MAP2K2 | Dual specificity mitogen-activated protein kinase kinase 2 |
MAPK | Mitogen-activated protein kinase |
MAPK13,14 | Mitogen-activated protein kinase 13, 14 |
MAPKAPK2 | MAP kinase-activated protein kinase 2 |
MDR1 | Multidrug resistance protein |
MEK1/2 | Dual-specificity mitogen-activated protein kinase kinase 1, 2 |
MGO | Methylglyoxal |
MKK4/JNK | c-Jun N-terminal kinase/c-Jun NH 2 terminal kinase |
mTOR | Mammalian target of rapamycin |
NCAM1 | Neural cell adhesion molecule 1 |
NDRG1 | N-myc downstream-regulated gene 1 |
NUP153 | Nuclear pore complex protein 153 |
OPTN | Optineurin |
p70S6K | Ribosomal protein S6 kinase |
p90RSK | Ribosomal Protein S6 Kinase A1 |
PACS2 | Phosphofurin acidic cluster sorting protein 2 |
PAK 4 | Serine/threonine-protein kinase PAK 4 |
PCYT1A | Choline-phosphate cytidylyltransferase A |
PEAK2 | Pseudopodium enriched atypical kinase (PEAK1)-related kinase-activating pseudokinase 1 |
PI3K | Phosphatidylinositol 3-kinase |
PI4K2A | Phosphatidylinositol 4-kinase type 2-alpha |
PIM1 | Serine/threonine-protein kinase Pim-1 |
PKA | Protein kinase A |
PLEC | Plectin |
PLK1 | Polo-like kinase 1 |
PPP1R10 | serine/threonine-protein phosphatase 1 regulatory subunit 10 |
PPP2CA | Protein phosphatase 2a |
PR | Progesterone receptor |
PRKACA | Protein Kinase cAMP-Activated Catalytic Subunit α |
PRKCA | Protein kinase Cα |
PRKCD | Protein kinase C delta type |
PRP4K | pre-mRNA processing factor kinase |
Rab7A | Ras-related protein Rab-7a |
Raf-1 | RAF proto-oncogene serine/threonine-protein kinase |
RAS | Rat sarcoma |
ROBO1 | Roundabout homolog 1 |
rpS6 | Ribosomal subunit protein S6 |
SC3KO | SCAMP3 knockout |
SCAMP3 | Secretory carrier membrane protein 3 |
SFKs | Src family kinases |
SIK | Salt-inducible kinase |
SLK | STE20-like serine/threonine-protein kinase |
SOS | SOS Ras/Rac Guanine Nucleotide Exchange Factor 1 |
SQSTM1 | Sequestosome-1 |
Src | Proto-oncogene tyrosine-protein kinase Src |
STAT | Signal transducer and activator of transcription |
STR | Short tandem repeat |
TAO1,2 | TAO Kinase 1, 2 |
TBC1D5 | TBC1 domain family member 5 |
TBK1 | TANK-binding kinase 1 |
TFA | Trifluoroacetic acid |
TJP1 | Tight junction protein ZO-1 |
TMT | Tandem mass tag |
TNBC | Triple negative breast cancer |
TPI1 | Triosephosphate isomerase |
TPR | Translocated promoter region protein |
TSC1 | Tuberous sclerosis 1 |
WT | Wild type |
References
- Xiong, N.; Wu, H.; Yu, Z. Advancements and challenges in triple-negative breast cancer: A comprehensive review of therapeutic and diagnostic strategies. Front. Oncol. 2024, 14, 1405491. [Google Scholar] [CrossRef] [PubMed]
- Bahar, M.E.; Kim, H.J.; Kim, D.R. Targeting the RAS/RAF/MAPK pathway for cancer therapy: From mechanism to clinical studies. Signal Transduct. Target. Ther. 2023, 8, 455. [Google Scholar] [CrossRef]
- Jalali, P.; Shahmoradi, A.; Samii, A.; Mazloomnejad, R.; Hatamnejad, M.R.; Saeed, A.; Namdar, A.; Salehi, Z. The role of autophagy in cancer: From molecular mechanism to therapeutic window. Front. Immunol. 2025, 16, 1528230. [Google Scholar] [CrossRef]
- Bishnu, A.; Phadte, P.; Dhadve, A.; Sakpal, A.; Rekhi, B.; Ray, P. Molecular imaging of the kinetics of hyperactivated ERK1/2-mediated autophagy during acquirement of chemoresistance. Cell Death Dis. 2021, 12, 161. [Google Scholar] [CrossRef]
- Menon, M.B.; Dhamija, S. Beclin 1 Phosphorylation–at the Center of Autophagy Regulation. Front. Cell Dev. Biol. 2018, 6, 137. [Google Scholar] [CrossRef]
- Tang, D.; Kang, R.; Livesey, K.M.; Cheh, C.W.; Farkas, A.; Loughran, P.; Hoppe, G.; Bianchi, M.E.; Tracey, K.J.; Zeh, H.J., 3rd; et al. Endogenous HMGB1 regulates autophagy. J. Cell Biol. 2010, 190, 881–892. [Google Scholar] [CrossRef]
- Singleton, D.R.; Wu, T.T.; Castle, J.D. Three mammalian SCAMPs (secretory carrier membrane proteins) are highly related products of distinct genes having similar subcellular distributions. J. Cell Sci. 1997, 110, 2099–2107. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, Z.; Lv, P.; Zhan, Y.; Zhong, Q. SCAMP3 Promotes Glioma Proliferation and Indicates Unfavorable Prognosis via Multiple Pathways. OncoTargets Ther. 2020, 13, 3677–3687. [Google Scholar] [CrossRef]
- Zhang, X.; Sheng, J.; Zhang, Y.; Tian, Y.; Zhu, J.; Luo, N.; Xiao, C.; Li, R. Overexpression of SCAMP3 is an indicator of poor prognosis in hepatocellular carcinoma. Oncotarget 2017, 8, 109247–109257. [Google Scholar] [CrossRef] [PubMed]
- Naboulsi, W.; Bracht, T.; Megger, D.A.; Reis, H.; Ahrens, M.; Turewicz, M.; Eisenacher, M.; Tautges, S.; Canbay, A.E.; Meyer, H.E.; et al. Quantitative proteome analysis reveals the correlation between endocytosis-associated proteins and hepatocellular carcinoma dedifferentiation. Biochim. Biophys. Acta 2016, 1864, 1579–1585. [Google Scholar] [CrossRef]
- Acevedo-Díaz, A.; Morales-Cabán, B.M.; Zayas-Santiago, A.; Martínez-Montemayor, M.M.; Suárez-Arroyo, I.J. SCAMP3 Regulates EGFR and Promotes Proliferation and Migration of Triple-Negative Breast Cancer Cells through the Modulation of AKT, ERK, and STAT3 Signaling Pathways. Cancers 2022, 14, 2807. [Google Scholar] [CrossRef] [PubMed]
- Venugopalan, A.; Lynberg, M.; Cultraro, C.M.; Nguyen, K.D.P.; Zhang, X.; Waris, M.; Dayal, N.; Abebe, A.; Maity, T.K.; Guha, U. SCAMP3 is a mutant EGFR phosphorylation target and a tumor suppressor in lung adenocarcinoma. Oncogene 2021, 40, 3331–3346. [Google Scholar] [CrossRef]
- Ali, A.; Shafarin, J.; Muhammad, J.S.; Farhat, N.M.; Hamad, M.; Soofi, A.; Hamad, M. SCAMP3 promotes breast cancer progression through the c-MYC-β-Catenin-SQSTM1 growth and stemness axis. Cell Signal 2023, 104, 110591. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Y.; Zhang, L. Emerging trends and hot topics in the application of multi-omics in drug discovery: A bibliometric and visualized study. Curr. Pharm. Anal. 2024, 21, 20–32. [Google Scholar] [CrossRef]
- Carriere, A.; Romeo, Y.; Acosta-Jaquez, H.A.; Moreau, J.; Bonneil, E.; Thibault, P.; Fingar, D.C.; Roux, P.P. ERK1/2 phosphorylate Raptor to promote Ras-dependent activation of mTOR complex 1 (mTORC1). J. Biol. Chem. 2011, 286, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Maik-Rachline, G.; Seger, R. The ERK cascade inhibitors: Towards overcoming resistance. Drug Resist. Updates 2016, 25, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ünal, E.B.; Uhlitz, F.; Blüthgen, N. A compendium of ERK targets. FEBS Lett. 2017, 591, 2607–2615. [Google Scholar] [CrossRef]
- Rossomando, A.J.; Wu, J.; Michel, H.; Shabanowitz, J.; Hunt, D.F.; Weber, M.J.; Sturgill, T.W. Identification of Tyr-185 as the site of tyrosine autophosphorylation of recombinant mitogen-activated protein kinase p42mapk. Proc. Natl. Acad. Sci. USA 1992, 89, 5779–5783. [Google Scholar] [CrossRef]
- Martin-Vega, A.; Cobb, M.H. Navigating the ERK1/2 MAPK Cascade. Biomolecules 2023, 13, 1555. [Google Scholar] [CrossRef]
- Dougherty, M.K.; Müller, J.; Ritt, D.A.; Zhou, M.; Zhou, X.Z.; Copeland, T.D.; Conrads, T.P.; Veenstra, T.D.; Lu, K.P.; Morrison, D.K. Regulation of Raf-1 by direct feedback phosphorylation. Mol. Cell 2005, 17, 215–224. [Google Scholar] [CrossRef]
- Brunet, A.; Pagès, G.; Pouysségur, J. Growth factor-stimulated MAP kinase induces rapid retrophosphorylation and inhibition of MAP kinase kinase (MEK1). FEBS Lett. 1994, 346, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Kosako, H.; Yamaguchi, N.; Aranami, C.; Ushiyama, M.; Kose, S.; Imamoto, N.; Taniguchi, H.; Nishida, E.; Hattori, S. Phosphoproteomics reveals new ERK MAP kinase targets and links ERK to nucleoporin-mediated nuclear transport. Nat. Struct. Mol. Biol. 2009, 16, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
- Vomastek, T.; Iwanicki, M.P.; Burack, W.R.; Tiwari, D.; Kumar, D.; Parsons, J.T.; Weber, M.J.; Nandicoori, V.K. Extracellular signal-regulated kinase 2 (ERK2) phosphorylation sites and docking domain on the nuclear pore complex protein Tpr cooperatively regulate ERK2-Tpr interaction. Mol. Cell Biol. 2008, 28, 6954–6966. [Google Scholar] [CrossRef]
- Stuart, S.A.; Houel, S.; Lee, T.; Wang, N.; Old, W.M.; Ahn, N.G. A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol. Cell Proteom. 2015, 14, 1599–1615. [Google Scholar] [CrossRef] [PubMed]
- Gille, H.; Kortenjann, M.; Strahl, T.; Shaw, P.E. Phosphorylation-dependent formation of a quaternary complex at the c-fos SRE. Mol. Cell Biol. 1996, 16, 1094–1102. [Google Scholar] [CrossRef]
- Lucet, I.S.; Daly, R.J. View from the PEAKs: Insights from structural studies on the PEAK family of pseudokinases. Curr. Opin. Struct. Biol. 2024, 89, 102932. [Google Scholar] [CrossRef]
- Lecointre, C.; Fourgous, E.; Montarras, I.; Kerneur, C.; Simon, V.; Boublik, Y.; Bonenfant, D.; Robert, B.; Martineau, P.; Roche, S. Oncogenic Signalling of PEAK2 Pseudokinase in Colon Cancer. Cancers 2022, 14, 2981. [Google Scholar] [CrossRef]
- Okada, M. Regulation of the SRC family kinases by Csk. Int. J. Biol. Sci. 2012, 8, 1385–1397. [Google Scholar] [CrossRef]
- Senda, Y.; Murata-Kamiya, N.; Hatakeyama, M. C-terminal Src kinase-mediated EPIYA phosphorylation of Pragmin creates a feed-forward C-terminal Src kinase activation loop that promotes cell motility. Cancer Sci. 2016, 107, 972–980. [Google Scholar] [CrossRef]
- Gao, Q.; Mechin, I.; Kothari, N.; Guo, Z.; Deng, G.; Haas, K.; McManus, J.; Hoffmann, D.; Wang, A.; Wiederschain, D.; et al. Evaluation of cancer dependence and druggability of PRP4 kinase using cellular, biochemical, and structural approaches. J. Biol. Chem. 2013, 288, 30125–30138. [Google Scholar] [CrossRef]
- Paskevicius, T.; Farraj, R.A.; Michalak, M.; Agellon, L.B. Calnexin, More Than Just a Molecular Chaperone. Cells 2023, 12, 403. [Google Scholar] [CrossRef]
- Myhill, N.; Lynes, E.M.; Nanji, J.A.; Blagoveshchenskaya, A.D.; Fei, H.; Carmine Simmen, K.; Cooper, T.J.; Thomas, G.; Simmen, T. The subcellular distribution of calnexin is mediated by PACS-2. Mol. Biol. Cell 2008, 19, 2777–2788. [Google Scholar] [CrossRef]
- Enríquez-Flores, S.; De la Mora-De la Mora, I.; García-Torres, I.; Flores-López, L.A.; Martínez-Pérez, Y.; López-Velázquez, G. Human Triosephosphate Isomerase Is a Potential Target in Cancer Due to Commonly Occurring Post-Translational Modifications. Molecules 2023, 28, 6163. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Li, J.; Wang, F.; Wei, J.; Yang, Z.; Sun, M.; Liu, J.; Wen, M.; Huang, W.; Chen, Z.; et al. Protein modifications throughout the lung cancer proteome unravel the cancer-specific regulation of glycolysis. Cell Rep. 2021, 37, 110137. [Google Scholar] [CrossRef]
- Lee, W.H.; Choi, J.S.; Byun, M.R.; Koo, K.T.; Shin, S.; Lee, S.K.; Surh, Y.J. Functional inactivation of triosephosphate isomerase through phosphorylation during etoposide-induced apoptosis in HeLa cells: Potential role of Cdk2. Toxicology 2010, 278, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Stein, B.D.; Ferrarone, J.R.; Gardner, E.E.; Chang, J.W.; Wu, D.; Hollstein, P.E.; Liang, R.J.; Yuan, M.; Chen, Q.; Coukos, J.S.; et al. LKB1-Dependent Regulation of TPI1 Creates a Divergent Metabolic Liability between Human and Mouse Lung Adenocarcinoma. Cancer Discov. 2023, 13, 1002–1025. [Google Scholar] [CrossRef]
- Pavlova, N.N.; Thompson, C.B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016, 23, 27–47. [Google Scholar] [CrossRef]
- Hatipoglu, A.; Menon, D.; Levy, T.; Frias, M.A.; Foster, D.A. Inhibiting glutamine utilization creates a synthetic lethality for suppression of ATP citrate lyase in KRas-driven cancer cells. PLoS ONE 2022, 17, e0276579. [Google Scholar] [CrossRef]
- Berwick, D.C.; Hers, I.; Heesom, K.J.; Moule, S.K.; Tavare, J.M. The identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes. J. Biol. Chem. 2002, 277, 33895–33900. [Google Scholar] [CrossRef]
- Jackowski, S.; Fagone, P. CTP:Phosphocholine Cytidylyltransferase: Paving the Way from Gene to Membrane. J. Biol. Chem. 2005, 280, 853–856. [Google Scholar] [CrossRef] [PubMed]
- Arnold, R.S.; DePaoli-Roach, A.A.; Cornell, R.B. Binding of CTP:phosphocholine cytidylyltransferase to lipid vesicles: Diacylglycerol and enzyme dephosphorylation increase the affinity for negatively charged membranes. Biochemistry 1997, 36, 6149–6156. [Google Scholar] [CrossRef] [PubMed]
- Agassandian, M.; Zhou, J.; Tephly, L.A.; Ryan, A.J.; Carter, A.B.; Mallampalli, R.K. Oxysterols Inhibit Phosphatidylcholine Synthesis via ERK Docking and Phosphorylation of CTP:Phosphocholine Cytidylyltransferase. J. Biol. Chem. 2005, 280, 21577–21587. [Google Scholar] [CrossRef]
- Yue, L.; McPhee, M.J.; Gonzalez, K.; Charman, M.; Lee, J.; Thompson, J.; Winkler, D.F.H.; Cornell, R.B.; Pelech, S.; Ridgway, N.D. Differential dephosphorylation of CTP:phosphocholine cytidylyltransferase upon translocation to nuclear membranes and lipid droplets. Mol. Biol. Cell 2020, 31, 1047–1059. [Google Scholar] [CrossRef] [PubMed]
- Cornell, R.B.; Kalmar, G.B.; Kay, R.J.; Johnson, M.A.; Sanghera, J.S.; Pelech, S.L. Functions of the C-terminal domain of CTP: Phosphocholine cytidylyltransferase. Effects of C-terminal deletions on enzyme activity, intracellular localization and phosphorylation potential. Biochem. J. 1995, 310 Pt. 2, 699–708. [Google Scholar] [CrossRef]
- Schreiber, T.B.; Mäusbacher, N.; Kéri, G.; Cox, J.; Daub, H. An integrated phosphoproteomics work flow reveals extensive network regulation in early lysophosphatidic acid signaling. Mol. Cell Proteom. 2010, 9, 1047–1062. [Google Scholar] [CrossRef]
- Tzircotis, G.; Thorne, R.F.; Isacke, C.M. Directional sensing of a phorbol ester gradient requires CD44 and is regulated by CD44 phosphorylation. Oncogene 2006, 25, 7401–7410. [Google Scholar] [CrossRef]
- Teo, W.S.; Holliday, H.; Karthikeyan, N.; Cazet, A.S.; Roden, D.L.; Harvey, K.; Konrad, C.V.; Murali, R.; Varghese, B.A.; Thankamony, A.P.; et al. Id Proteins Promote a Cancer Stem Cell Phenotype in Mouse Models of Triple Negative Breast Cancer via Negative Regulation of Robo1. Front. Cell Dev. Biol. 2020, 8, 552. [Google Scholar] [CrossRef]
- Rezniczek, G.A.; Grunwald, C.; Hilal, Z.; Scheich, J.; Reifenberger, G.; Tannapfel, A.; Tempfer, C.B. ROBO1 Expression in Metastasizing Breast and Ovarian Cancer: SLIT2-induced Chemotaxis Requires Heparan Sulfates (Heparin). Anticancer Res. 2019, 39, 1267–1273. [Google Scholar] [CrossRef]
- Wang, Y.T.; Tsai, C.F.; Hong, T.C.; Tsou, C.C.; Lin, P.Y.; Pan, S.H.; Hong, T.M.; Yang, P.C.; Sung, T.Y.; Hsu, W.L.; et al. An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J. Proteome Res. 2010, 9, 5582–5597. [Google Scholar] [CrossRef]
- Carosi, J.M.; Hein, L.K.; Sandow, J.J.; Dang, L.V.P.; Hattersley, K.; Denton, D.; Kumar, S.; Sargeant, T.J. Autophagy captures the retromer-TBC1D5 complex to inhibit receptor recycling. Autophagy 2024, 20, 863–882. [Google Scholar] [CrossRef]
- Roy, S.; Debnath, J. Autophagy enables retromer-dependent plasma membrane translocation of SLC2A1/GLUT1 to enhance glucose uptake. Autophagy 2017, 13, 2013–2014. [Google Scholar] [CrossRef]
- Popovic, D.; Akutsu, M.; Novak, I.; Harper, J.W.; Behrends, C.; Dikic, I. Rab GTPase-activating proteins in autophagy: Regulation of endocytic and autophagy pathways by direct binding to human ATG8 modifiers. Mol. Cell Biol. 2012, 32, 1733–1744. [Google Scholar] [CrossRef]
- Yamamoto, H.; Matsui, T. Molecular Mechanisms of Macroautophagy, Microautophagy, and Chaperone-Mediated Autophagy. J. Nippon. Med. Sch. 2024, 91, 2–9. [Google Scholar] [CrossRef]
- Rybin, V.O.; Guo, J.; Harleton, E.; Feinmark, S.J.; Steinberg, S.F. Regulatory autophosphorylation sites on protein kinase C-delta at threonine-141 and threonine-295. Biochemistry 2009, 48, 4642–4651. [Google Scholar] [CrossRef]
- Crowe, M.S.; Zavorotinskaya, T.; Voliva, C.F.; Shirley, M.D.; Wang, Y.; Ruddy, D.A.; Rakiec, D.P.; Engelman, J.A.; Stuart, D.D.; Freeman, A.K. RAF-Mutant Melanomas Differentially Depend on ERK2 Over ERK1 to Support Aberrant MAPK Pathway Activation and Cell Proliferation. Mol. Cancer Res. 2021, 19, 1063–1075. [Google Scholar] [CrossRef]
- Gagliardi, M.; Pitner, M.K.; Park, J.; Xie, X.; Saso, H.; Larson, R.A.; Sammons, R.M.; Chen, H.; Wei, C.; Masuda, H.; et al. Differential functions of ERK1 and ERK2 in lung metastasis processes in triple-negative breast cancer. Sci. Rep. 2020, 10, 8537. [Google Scholar] [CrossRef]
- Hong, S.K.; Wu, P.K.; Park, J.I. A cellular threshold for active ERK1/2 levels determines Raf/MEK/ERK-mediated growth arrest versus death responses. Cell Signal 2018, 42, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wu, X.; Zhang, Z.; Fang, L.; Yang, B.; Li, Y. ELF1 suppresses autophagy to reduce cisplatin resistance via the miR-152-3p/NCAM1/ERK axis in lung cancer cells. Cancer Sci. 2023, 114, 2650–2663. [Google Scholar] [CrossRef]
- Sashida, G.; Bae, N.; Di Giandomenico, S.; Asai, T.; Gurvich, N.; Bazzoli, E.; Liu, Y.; Huang, G.; Zhao, X.; Menendez, S.; et al. The mef/elf4 transcription factor fine tunes the DNA damage response. Cancer Res. 2011, 71, 4857–4865. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Zhang, Z.; Wang, Y.; Li, S.; Zhang, J.; Wu, Z.; Sun, M.; Jiang, J.; Liu, D.; Ji, X.; et al. Transcription factor ELF4 in physiology and diseases: Molecular roles and clinical implications. Genes Dis. 2025, 12, 101394. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Shay, C.; Saba, N.F.; Teng, Y. Cancer metabolism and carcinogenesis. Exp. Hematol. Oncol. 2024, 13, 10. [Google Scholar] [CrossRef]
- Lyssiotis, C.A.; Cantley, L.C. Acetate fuels the cancer engine. Cell 2014, 159, 1492–1494. [Google Scholar] [CrossRef]
- Kamphorst, J.J.; Chung, M.K.; Fan, J.; Rabinowitz, J.D. Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer Metab. 2014, 2, 23. [Google Scholar] [CrossRef]
- Schug, Z.T.; Peck, B.; Jones, D.T.; Zhang, Q.; Grosskurth, S.; Alam, I.S.; Goodwin, L.M.; Smethurst, E.; Mason, S.; Blyth, K.; et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 2015, 27, 57–71. [Google Scholar] [CrossRef]
- Yelek, C.; Mignion, L.; Joudiou, N.; Terrasi, R.; Gourgue, F.; Van Hul, M.; Delzenne, N.; Gallez, B.; Corbet, C.; Muccioli, G.G.; et al. Acetate: Friend or foe against breast tumour growth in the context of obesity? J. Cell. Mol. Med. 2020, 24, 14195–14204. [Google Scholar] [CrossRef]
- Ciraku, L.; Bacigalupa, Z.A.; Ju, J.; Moeller, R.A.; Le Minh, G.; Lee, R.H.; Smith, M.D.; Ferrer, C.M.; Trefely, S.; Izzo, L.T.; et al. O-GlcNAc transferase regulates glioblastoma acetate metabolism via regulation of CDK5-dependent ACSS2 phosphorylation. Oncogene 2022, 41, 2122–2136. [Google Scholar] [CrossRef]
- Calhoun, S.; Duan, L.; Maki, C.G. Acetyl-CoA synthetases ACSS1 and ACSS2 are 4-hydroxytamoxifen responsive factors that promote survival in tamoxifen treated and estrogen deprived cells. Transl. Oncol. 2022, 19, 101386. [Google Scholar] [CrossRef] [PubMed]
- Saito, R.d.F.; Andrade, L.N.d.S.; Bustos, S.O.; Chammas, R. Phosphatidylcholine-Derived Lipid Mediators: The Crosstalk Between Cancer Cells and Immune Cells. Front. Immunol. 2022, 13, 768606. [Google Scholar] [CrossRef] [PubMed]
- Yao, N.; Li, W.; Xu, G.; Duan, N.; Yu, G.; Qu, J. Choline metabolism and its implications in cancer. Front. Oncol. 2023, 13, 1234887. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Taftaf, R.; Kawaguchi, M.; Chang, Y.F.; Chen, W.; Entenberg, D.; Zhang, Y.; Gerratana, L.; Huang, S.; Patel, D.B.; et al. Homophilic CD44 Interactions Mediate Tumor Cell Aggregation and Polyclonal Metastasis in Patient-Derived Breast Cancer Models. Cancer Discov. 2019, 9, 96–113. [Google Scholar] [CrossRef]
- Xu, H.; Niu, M.; Yuan, X.; Wu, K.; Liu, A. CD44 as a tumor biomarker and therapeutic target. Exp. Hematol. Oncol. 2020, 9, 36. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, Q.; Wang, H.; Yang, X.; Mu, H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct. Target. Ther. 2024, 9, 26. [Google Scholar] [CrossRef]
- Qin, F.; Zhang, H.; Ma, L.; Liu, X.; Dai, K.; Li, W.; Gu, F.; Fu, L.; Ma, Y. Low Expression of Slit2 and Robo1 is Associated with Poor Prognosis and Brain-specific Metastasis of Breast Cancer Patients. Sci. Rep. 2015, 5, 14430. [Google Scholar] [CrossRef]
- Gu, F.; Ma, Y.; Zhang, J.; Qin, F.; Fu, L. Function of Slit/Robo signaling in breast cancer. Front. Med. 2015, 9, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Corkery, D.P.; Clarke, L.E.; Gebremeskel, S.; Salsman, J.; Pinder, J.; Le Page, C.; Meunier, L.; Xu, Z.; Mes-Masson, A.M.; Berman, J.N.; et al. Loss of PRP4K drives anoikis resistance in part by dysregulation of epidermal growth factor receptor endosomal trafficking. Oncogene 2018, 37, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Montembault, E.; Dutertre, S.; Prigent, C.; Giet, R. PRP4 is a spindle assembly checkpoint protein required for MPS1, MAD1, and MAD2 localization to the kinetochores. J. Cell Biol. 2007, 179, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Habib, E.B.; Mathavarajah, S.; Dellaire, G. Tinker, Tailor, Tumour Suppressor: The Many Functions of PRP4K. Front. Genet. 2022, 13, 839963. [Google Scholar] [CrossRef]
- Ghani, M.U.; Shi, J.; Du, Y.; Zhong, L.; Cui, H. A comprehensive review on the dynamics of protein kinase CK2 in cancer development and optimizing therapeutic strategies. Int. J. Biol. Macromol. 2024, 280, 135814. [Google Scholar] [CrossRef]
- Götz, C.; Kartarius, S.; Schetting, S.; Montenarh, M. Immunologically defined subclasses of the protein kinase CK2 beta-subunit in prostate carcinoma cell lines. Mol. Cell Biochem. 2005, 274, 181–187. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, D.; Wang, X.; Fang, J.; Liu, X.; Song, J.; Li, X.; Ren, X.; Li, Q.; Li, Q.; et al. Calnexin Impairs the Antitumor Immunity of CD4+ and CD8+ T Cells. Cancer Immunol. Res. 2019, 7, 123–135. [Google Scholar] [CrossRef]
- Reggiori, F.; Komatsu, M.; Finley, K.; Simonsen, A. Autophagy: More than a nonselective pathway. Int. J. Cell Biol. 2012, 2012, 219625. [Google Scholar] [CrossRef]
- Roy, S.; Leidal, A.M.; Ye, J.; Ronen, S.M.; Debnath, J. Autophagy-Dependent Shuttling of TBC1D5 Controls Plasma Membrane Translocation of GLUT1 and Glucose Uptake. Mol. Cell 2017, 67, 84–95.e5. [Google Scholar] [CrossRef]
- Popovic, D.; Dikic, I. TBC1D5 and the AP2 complex regulate ATG9 trafficking and initiation of autophagy. EMBO Rep. 2014, 15, 392–401. [Google Scholar] [CrossRef]
- Wang, J.; Whiteman, M.W.; Lian, H.; Wang, G.; Singh, A.; Huang, D.; Denmark, T. A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1. J. Biol. Chem. 2009, 284, 21412–21424. [Google Scholar] [CrossRef]
- Rabanal-Ruiz, Y.; Byron, A.; Wirth, A.; Madsen, R.; Sedlackova, L.; Hewitt, G.; Nelson, G.; Stingele, J.; Wills, J.C.; Zhang, T.; et al. mTORC1 activity is supported by spatial association with focal adhesions. J. Cell Biol. 2021, 220, e202004010. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Lu, Y.; Zhou, G.; Hui, F.; Xu, L.; Viau, C.; Spigelman, A.F.; MacDonald, P.E.; Wishart, D.S.; Li, S.; et al. MetaboAnalyst 6.0: Towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Res. 2024, 52, W398–W406. [Google Scholar] [CrossRef] [PubMed]
- Bi, R.; Liu, P. Sample size calculation while controlling false discovery rate for differential expression analysis with RNA-sequencing experiments. BMC Bioinform. 2016, 17, 146. [Google Scholar] [CrossRef]
- Ni, Y.; Seffernick, A.E.; Onar-Thomas, A.; Pounds, S.B. Computing Power and Sample Size for the False Discovery Rate in Multiple Applications. Genes 2024, 15, 344. [Google Scholar] [CrossRef]
- Baccarella, A.; Williams, C.R.; Parrish, J.Z.; Kim, C.C. Empirical assessment of the impact of sample number and read depth on RNA-Seq analysis workflow performance. BMC Bioinform. 2018, 19, 423. [Google Scholar] [CrossRef]
- Lamarre, S.; Frasse, P.; Zouine, M.; Labourdette, D.; Sainderichin, E.; Hu, G.; Le Berre-Anton, V.; Bouzayen, M.; Maza, E. Optimization of an RNA-Seq Differential Gene Expression Analysis Depending on Biological Replicate Number and Library Size. Front. Plant Sci. 2018, 9, 108. [Google Scholar] [CrossRef] [PubMed]
- Kuleshov, M.V.; Xie, Z.; London, A.B.K.; Yang, J.; Evangelista, J.E.; Lachmann, A.; Shu, I.; Torre, D.; Ma’ayan, A. KEA3: Improved kinase enrichment analysis via data integration. Nucleic Acids Res. 2021, 49, W304–W316. [Google Scholar] [CrossRef] [PubMed]
Accession No. | Gene | Description | Phosphosite | log2(FC) 1 |
---|---|---|---|---|
P35658 | NUP214 | Nuclear pore complex protein Nup214 | S940 ↓ | −3.21 |
P27824 | CANX | Calnexin | S554 ↓ | −1.98 |
P36507 | MAP2K2 | Dual specificity mitogen-activated protein kinase kinase 2 | T394 ↓ | −1.94 |
P04049 | RAF1 | RAF proto-oncogene serine/threonine-protein kinase | S43 ↓ | −1.59 |
Q96CV9 | OPTN | Optineurin | S526 ↓ | −1.50 |
Q13501 | SQSTM1 | Sequestosome-1 | S272 ↓ | −1.47 |
Q92609 | TBC1D5 | TBC1 domain family member 5 | S554 ↓ | −1.46 |
P28482 | MAPK1 | Mitogen-activated protein kinase 1 | T185 ↓ | −1.15 |
P49790 | NUP153 | Nuclear pore complex protein Nup153 | S209 ↓ | −2.00 |
S334 ↑ | +1.99 |
Accession No. | Gene | Protein Description | Phosphosite | log2(FC) 1 | Putative Kinase |
---|---|---|---|---|---|
P08238 | HSP90AB1 | Heat shock protein 90β | S226 ↓ | −3.41 | CK2alpha1 |
S255 ↓ | −3.05 | ||||
Q9NTI5 | PDS5B | Sister chromatid cohesion protein PDS5 homolog B | T1370 ↓ | −3.24 | CDK1 |
Q14134 | TRIM29 | Tripartite motif-containing protein 29 | S552 ↓ | −3.11 | MAPK2 |
P60174 | TPI1 | Triosephosphate isomerase | S21 ↓ | −2.92 | SIK, PKA, CDK2 |
Q8WWI1 | LMO7 | LIM domain only protein 7 | S751 ↓ | −2.75 | AurB |
Q14980 | NUMA1 | Nuclear mitotic apparatus protein 1 | S1969 ↓ | −2.60 | AurA-B |
P29966 | MARCKS | Myristoylated alanine-rich C-kinase substrate | S170 ↓ | −2.49 | PRKCA |
Q16181 | SEPTIN7 | Septin-7 | T426 ↓ | −2.45 | TAO1/2 |
Q14814 | MEF2D | Myocyte-specific enhancer factor 2D | S231 ↓ | −2.43 | MAPK13/14 |
Q92974 | ARHGEF2 | Rho guanine nucleotide exchange factor 2 | S960 ↓ | −2.31 | CDK1 |
Q8WX93 | PALLD | Palladin | S641 ↓ | −2.30 | CDK1 |
Q96E09 | PABIR1 | PPP2R1A-PPP2R2A interacting phosphatase regulator 1 | S37 ↓ | −2.16 | CHK1 |
Q86YV5 | PRAG1 | Inactive tyrosine-protein kinase PRAG1 | S745 ↓ | −2.06 | PRP4K |
P17096-2 | HMGA1 | High mobility group protein HMG-I/HMG-Y | T42 ↓ | −2.04 | CDK1 HIPK2 |
Q14247 | CTTN | Src substrate cortactin | T401 ↓ | −1.93 | AMPKA1 |
P16070 | CD44 | CD44 antigen | S697 ↓ | −1.87 | PRKCA |
Q86VM9 | ZC3H18 | Zinc finger CCCH domain-containing protein 18 | S534 ↓ | −1.82 | PLK1 |
P53396 | ACLY | ATP-citrate synthase | S455 ↓ | −1.75 | AKT1 |
P06702 | S100A9 | Protein S100-A9 | T113 ↓ | −1.73 | MAPK14 |
Q9UQN3 | CHMP2B | Charged multivesicular body protein 2b | S199 ↓ | −1.68 | TBK1 |
Q9NZT2 | OGFR | Opioid growth factor receptor | S378 ↓ | −1.65 | CDK1 |
P04049 | RAF1 | RAF proto-oncogene serine/threonine-protein kinase | S43 ↓ | −1.59 | PRKCA |
Q9UQE7 | SMC3 | Structural maintenance of chromosomes protein 3 | S1067 ↓ | −1.57 | ATM; CK2alpha1, CK2alpha2 |
Q9UKV3 | ACIN1 | Apoptotic chromatin condensation inducer in the nucleus | S183 ↓ | −1.56 | Pim1 |
Q13501 | SQSTM1 | Sequestosome-1 | S272 ↓ | −1.47 | CDK1; CDKL5 |
Q96D71 | REPS1 | RalBP1-associated Eps domain-containing protein | S709 ↓ | −1.46 | p90RSK |
P67870 | CSNK2B | Casein kinase II subunit beta | S209 ↑ | +3.06 | CDK1 |
P49585 | PCYT1A | Choline-phosphate cytidylyltransferase A | S362 ↑ | +2.48 | CK2alpha1 |
Q92597 | NDRG1 | Protein NDRG1 | S330 ↑ | +2.19 | Pim1; PRKCA |
Q9NSK0 | KLC4 | Kinesin light chain 4 | S590 ↑ | +2.17 | AMPKA2 |
Q8ND76 | CCNY | Cyclin-Y | S326 ↑ | +1.85 | AMPKA1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Cabán, B.M.; Cantres-Rosario, Y.M.; Tosado-Rodríguez, E.L.; Roche-Lima, A.; Meléndez, L.M.; Boukli, N.M.; Suarez-Arroyo, I.J. SCAMP3-Driven Regulation of ERK1/2 and Autophagy Phosphoproteomics Signatures in Triple-Negative Breast Cancer. Int. J. Mol. Sci. 2025, 26, 9577. https://doi.org/10.3390/ijms26199577
Morales-Cabán BM, Cantres-Rosario YM, Tosado-Rodríguez EL, Roche-Lima A, Meléndez LM, Boukli NM, Suarez-Arroyo IJ. SCAMP3-Driven Regulation of ERK1/2 and Autophagy Phosphoproteomics Signatures in Triple-Negative Breast Cancer. International Journal of Molecular Sciences. 2025; 26(19):9577. https://doi.org/10.3390/ijms26199577
Chicago/Turabian StyleMorales-Cabán, Beatriz M., Yadira M. Cantres-Rosario, Eduardo L. Tosado-Rodríguez, Abiel Roche-Lima, Loyda M. Meléndez, Nawal M. Boukli, and Ivette J. Suarez-Arroyo. 2025. "SCAMP3-Driven Regulation of ERK1/2 and Autophagy Phosphoproteomics Signatures in Triple-Negative Breast Cancer" International Journal of Molecular Sciences 26, no. 19: 9577. https://doi.org/10.3390/ijms26199577
APA StyleMorales-Cabán, B. M., Cantres-Rosario, Y. M., Tosado-Rodríguez, E. L., Roche-Lima, A., Meléndez, L. M., Boukli, N. M., & Suarez-Arroyo, I. J. (2025). SCAMP3-Driven Regulation of ERK1/2 and Autophagy Phosphoproteomics Signatures in Triple-Negative Breast Cancer. International Journal of Molecular Sciences, 26(19), 9577. https://doi.org/10.3390/ijms26199577