Utilizing Network Toxicology and Molecular Dynamics Simulations to Efficiently Evaluate the Neurotoxicity and Underlying Mechanisms of the Endocrine-Disrupting Chemical Triclosan
Abstract
1. Introduction
2. Results
2.1. Target Identification
2.2. Core Genes of Triclosan-Induced Neurodevelopmental Disorder Shared Gene Network
2.3. Validation of the Core Gene Random Dataset
2.4. Enrichment Analyses for GO Terms and KEGG Pathways
2.5. Molecular Docking Analysis of Core Targets of Triclosan and Neurodevelopmental Disorders
2.6. Molecular Dynamics Simulation of Core Target Proteins
3. Discussion
4. Materials and Methods
4.1. Triclosan Target Identification and Data Collection
4.2. Neurodevelopmental Disorder Target Identification
4.3. Shared Genetic PPI Network and Core Target Identification
4.4. Protein–Protein Interaction (PPI) Network Construction
4.5. Validation of Gene Expression in Randomized Samplesn
4.6. GO and KEGG Enrichment Analysis
4.7. Molecular Docking of Triclosan with Core Target Proteins
4.8. Molecular Dynamics Simulation
4.9. Data Sources
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weatherly, L.M.; Gosse, J.A. Triclosan exposure, transformation, and human health effects. J. Toxicol. Environ. Health B Crit. Rev. 2017, 20, 447–469. [Google Scholar] [CrossRef]
- Bergman, Å.; Heindel, J.; Jobling, S.; Kidd, K.; Zoeller, R.T. State-of-the-science of endocrine disrupting chemicals, 2012. Toxicol. Lett. 2012, 211, S3. [Google Scholar] [CrossRef]
- Brose, D.A.; Kumar, K.; Liao, A.; Hundal, L.S.; Tian, G.; Cox, A.; Zhang, H.; Podczerwinski, E.W. A reduction in triclosan and triclocarban in water resource recovery facilities’ influent, effluent, and biosolids following the U.S. Food and Drug Administration’s 2013 proposed rulemaking on antibacterial products. Water Environ. Res. 2019, 91, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, S.; Kumar, R.; Driver, E.M.; Perleberg, T.D.; Yanez, A.; Johnston, B.; Halden, R.U. Mass trends of parabens, triclocarban and triclosan in Arizona wastewater collected after the 2017 FDA ban on antimicrobials and during the COVID-19 pandemic. Water Res. 2022, 222, 118894. [Google Scholar] [CrossRef]
- Zhang, D.; Lu, S. A holistic review on triclosan and triclocarban exposure: Epidemiological outcomes, antibiotic resistance, and health risk assessment. Sci. Total Environ. 2023, 872, 162114. [Google Scholar] [CrossRef] [PubMed]
- Luo, N.; Chen, J.; Chen, X.; Wang, M.; Niu, X.; Chen, G.; Deng, C.; Gao, Y.; Li, G.; An, T. Toxicity evolution of triclosan during environmental transformation and human metabolism: Misgivings in the post-pandemic era. Environ. Int. 2024, 190, 108927. [Google Scholar] [CrossRef]
- Cheng, X.; Shen, H.; Zhang, W.; Chen, B.; Xu, S.; Wu, L. Characterizing the effects of triclosan and triclocarban on the intestinal epithelial homeostasis using small intestinal organoids. J. Hazard. Mater. 2024, 479, 135734. [Google Scholar] [CrossRef] [PubMed]
- Cragoe, N.; Sprowles, J.; Woodbury, M.L.; Musaad, S.; Enright, E.; Aguiar, A.; Schantz, S.L. Associations of prenatal maternal urinary concentrations of triclosan and benzophenone-3 with cognition in 7.5-month-old infants. Environ. Res. 2024, 263 Pt 1, 119975. [Google Scholar] [CrossRef]
- Chen, X.; Mou, L.; Qu, J.; Wu, L.; Liu, C. Adverse effects of triclosan exposure on health and potential molecular mechanisms. Sci. Total Environ. 2023, 879, 163068. [Google Scholar] [CrossRef]
- Guo, J.; Wu, C.; Zhang, J.; Xiao, H.; Lv, S.; Lu, D.; Qi, X.; Feng, C.; Liang, W.; Chang, X.; et al. Early life triclosan exposure and neurodevelopment of children at 3 years in a prospective birth cohort. Int. J. Hyg. Environ. Health 2020, 224, 113427. [Google Scholar] [CrossRef]
- Doi, M.; Usui, N.; Shimada, S. Prenatal Environment and Neurodevelopmental Disorders. Front. Endocrinol. 2022, 13, 860110. [Google Scholar] [CrossRef]
- Parenti, I.; Rabaneda, L.G.; Schoen, H.; Novarino, G. Neurodevelopmental Disorders: From Genetics to Functional Pathways. Trends Neurosci. 2020, 43, 608–621. [Google Scholar] [CrossRef]
- Ruszkiewicz, J.A.; Li, S.; Rodriguez, M.B.; Aschner, M. Is Triclosan a neurotoxic agent? J. Toxicol. Environ. Health B Crit. Rev. 2017, 20, 104–117. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh-Tabari, S.; Esfahani, M.L.; Hoseini, S.M.; Rahimi, A. Neurobehavioral toxicity of triclosan in mice. Food Chem. Toxicol. 2019, 130, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.I.; Koustas, E.; Vesterinen, H.M.; Sutton, P.; Atchley, D.S.; Kim, A.N.; Campbell, M.; Donald, J.M.; Sen, S.; Bero, L.; et al. Application of the Navigation Guide systematic review methodology to the evidence for developmental and reproductive toxicity of triclosan. Environ. Int. 2016, 92–93, 716–728. [Google Scholar] [CrossRef]
- Diao, W.; Qian, Q.; Sheng, G.; He, A.; Yan, J.; Dahlgren, R.A.; Wang, X.; Wang, H. Triclosan targets miR-144 abnormal expression to induce neurodevelopmental toxicity mediated by activating PKC/MAPK signaling pathway. J. Hazard. Mater. 2022, 431, 128560. [Google Scholar] [CrossRef]
- Wang, D.; Liu, J.; Jiang, H. Triclosan regulates the Nrf2/HO-1 pathway through the PI3K/Akt/JNK signaling cascade to induce oxidative damage in neurons. Environ. Toxicol. 2021, 36, 1953–1964. [Google Scholar] [CrossRef]
- Hao, Y.; Meng, L.; Zhang, Y.; Chen, A.; Zhao, Y.; Lian, K.; Guo, X.; Wang, X.; Du, Y.; Wang, X.; et al. Effects of chronic triclosan exposure on social behaviors in adult mice. J. Hazard. Mater. 2022, 424 Pt C, 127562. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.N.; Jung, E.-M.; Yoo, Y.-M.; Lee, J.-H.; Jeung, E.-B. Perinatal Exposure to Triclosan Results in Abnormal Brain Development and Behavior in Mice. Int. J. Mol. Sci. 2020, 21, 4009. [Google Scholar] [CrossRef]
- Wei, Z.; Ni, X.; Cui, H.; Shu, C.; Peng, Y.; Li, Y.; Liu, J. Neurotoxic effects of triclosan in adolescent mice: Pyruvate kinase M2 dimer regulated Signal transducer and activator of transcription 3 phosphorylation mediated microglia activation and neuroinflammation. Sci. Total Environ. 2024, 942, 173739. [Google Scholar] [CrossRef]
- Santana, A.B.; Spelta, L.E.; Martinez-Sobalvarro, J.V.; Garcia, R.C.T.; dos Reis, T.M.; Torres, L.H.L. Gestational triclosan exposure and its effects on childneurodevelopment—A systematic review. Reprod. Toxicol. 2025, 132, 108849. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Hu, Y.; Lv, C.; Shi, R.; Zhang, Y.; Tang, W.; Yu, X.; Tian, Y.; Gao, Y. Associations between repeated measurements of childhood triclosan exposure and physical growth at 7 years. Chemosphere 2022, 307, 135970. [Google Scholar] [CrossRef]
- Coutsias, E.A.; Wester, M.J. RMSD and Symmetry. J. Comput. Chem. 2019, 40, 1496–1508. [Google Scholar] [CrossRef] [PubMed]
- Sharanya, C.S.; Wilbee, D.S.; Sathi, S.N.; Natarajan, K. Computational screening combined with well-tempered metadynamics simulations identifies potential TMPRSS2 inhibitors. Sci. Rep. 2024, 14, 16197. [Google Scholar] [CrossRef]
- Limantoro, J.; De Liyis, B.G.; Sutedja, J.C. Akt signaling pathway: A potential therapy for Alzheimer’s disease through glycogen synthase kinase 3 beta inhibition. Egypt. J. Neurol. Psychiatry Neurosurg. 2023, 59, 147. [Google Scholar] [CrossRef]
- Tavassoly, O.; Sato, T.; Tavassoly, I. Inhibition of Brain Epidermal Growth Factor Receptor Activation: A Novel Target in Neurodegenerative Diseases and Brain Injuries. Mol. Pharmacol. 2020, 98, 13–22. [Google Scholar] [CrossRef]
- Szybińska, A.; Leśniak, W. P53 Dysfunction in Neurodegenerative Diseases—The Cause or Effect of Pathological Changes? Aging Dis. 2017, 8, 506–518. [Google Scholar] [CrossRef]
- Kumar, B.H.; Kabekkodu, S.P.; Pai, K.S.R. Structural insights of AKT and its activation mechanism for drug development. Mol. Divers. 2025. [Google Scholar] [CrossRef]
- Huang, C.-F.; Liu, S.-H.; Su, C.-C.; Fang, K.-M.; Yen, C.-C.; Yang, C.-Y.; Tang, F.-C.; Liu, J.-M.; Wu, C.-C.; Lee, K.-I.; et al. Roles of ERK/Akt signals in mitochondria-dependent and endoplasmic reticulum stress-triggered neuronal cell apoptosis induced by 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene, a major active metabolite of bisphenol A. Toxicology 2021, 455, 152764. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, P.; Gunasekaran, T.I.; Belloy, M.E.; Reyes-Dumeyer, D.; Jülich, D.; Tayran, H.; Yilmaz, E.; Flaherty, D.; Turgutalp, B.; Sukumar, G.; et al. Rare genetic variation in fibronectin 1 (FN1) protects against APOEε4 in Alzheimer’s disease. Acta Neuropathol. 2024, 147, 70. [Google Scholar] [CrossRef]
- Chen, S.; Peng, J.; Sherchan, P.; Ma, Y.; Xiang, S.; Yan, F.; Zhao, H.; Jiang, Y.; Wang, N.; Zhang, J.H.; et al. TREM2 activation attenuates neuroinflammation and neuronal apoptosis via PI3K/Akt pathway after intracerebral hemorrhage in mice. J. Neuroinflamm. 2020, 17, 168. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhang, Y.; Yang, Z.; Liu, M.; Zhang, C.; Zhao, Y.; Song, C. ω-3 DPA Protected Neurons from Neuroinflammation by Balancing Microglia M1/M2 Polarizations through Inhibiting NF-κB/MAPK p38 Signaling and Activating Neuron-BDNF-PI3K/AKT Pathways. Mar. Drugs 2021, 19, 587. [Google Scholar] [CrossRef]
- Wang, L.; Tian, S.; Ruan, S.; Wei, J.; Wei, S.; Chen, W.; Hu, H.; Qin, W.; Li, Y.; Yuan, H.; et al. Neuroprotective effects of cordycepin on MPTP-induced Parkinson’s disease mice via suppressing PI3K/AKT/mTOR and MAPK-mediated neuroinflammation. Free Radic. Biol. Med. 2024, 216, 60–77. [Google Scholar] [CrossRef]
- Zhang, R.; Wen, H.; Lin, Z.; Li, B.; Zhou, X.; Wang, Q. Molecular Mechanisms of Phthalates in Depression: An Analysis Based on Network Toxicology and Molecular Docking. Int. J. Mol. Sci. 2025, 26, 8215. [Google Scholar] [CrossRef]
- He, T.-T.; Li, X.; Ma, J.-Z.; Yang, Y.; Zhu, S.; Zeng, J.; Luo, L.; Yin, Y.-L.; Cao, L.-Y. Triclocarban and triclosan promote breast cancer progression in vitro and in vivo via activating G protein-coupled estrogen receptor signaling pathways. Sci. Total Environ. 2024, 931, 172782. [Google Scholar] [CrossRef]
- Wnuk, A.; Rzemieniec, J.; Przepiórska, K.; Pietrzak, B.A.; Maćkowiak, M.; Kajta, M. Prenatal Exposure to Triclocarban Impairs ESR1 Signaling and Disrupts Epigenetic Status in Sex-Specific Ways as Well as Dysregulates the Expression of Neurogenesis- and Neurotransmitter-Related Genes in the Postnatal Mouse Brain. Int. J. Mol. Sci. 2021, 22, 13121. [Google Scholar] [CrossRef]
- Socodato, R.; Portugal, C.C.; Canedo, T.; Rodrigues, A.; Almeida, T.O.; Henriques, J.F.; Vaz, S.H.; Magalhães, J.; Silva, C.M.; Baptista, F.I.; et al. Microglia Dysfunction Caused by the Loss of Rhoa Disrupts Neuronal Physiology and Leads to Neurodegeneration. Cell Rep. 2020, 31, 107796. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, X.; Gan, J.; Chen, S.; Xiao, Z.-X.; Cao, Y. CB-Dock2: Improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022, 50, W159–W164. [Google Scholar] [CrossRef] [PubMed]
Smile | Structure |
---|---|
C1=CC(=C(C=C1Cl)O)OC2=C(C=C(C=C2)Cl)Cl |
Database Name | Access Address |
---|---|
PubChem | https://pubchem.ncbi.nlm.nih.gov/ |
TargetNet | http://targetnet.scbdd.com/calcnet/index/ |
SwissTargetPrediction | http://www.swisstargetprediction.ch/ |
CTD | http://ctdbase.org/ |
GeneCards | https://www.genecards.org/ |
OMIM | https://omim.org/ |
DisGeNET | https://www.disgenet.org/ |
UniProt | https://www.uniprot.org/ |
STRING | https://string-db.org/ |
GEO | https://www.ncbi.nlm.nih.gov/geo/ |
Metascape | https://metascape.org/ |
RCSB PDB | https://www.rcsb.org/ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Du, Y.; Ji, J.; Wang, C.; Yu, Z.; Li, X.; Lv, Y.; Guan, S. Utilizing Network Toxicology and Molecular Dynamics Simulations to Efficiently Evaluate the Neurotoxicity and Underlying Mechanisms of the Endocrine-Disrupting Chemical Triclosan. Int. J. Mol. Sci. 2025, 26, 9458. https://doi.org/10.3390/ijms26199458
Wang H, Du Y, Ji J, Wang C, Yu Z, Li X, Lv Y, Guan S. Utilizing Network Toxicology and Molecular Dynamics Simulations to Efficiently Evaluate the Neurotoxicity and Underlying Mechanisms of the Endocrine-Disrupting Chemical Triclosan. International Journal of Molecular Sciences. 2025; 26(19):9458. https://doi.org/10.3390/ijms26199458
Chicago/Turabian StyleWang, Hao, Yunyun Du, Jin Ji, Chunyan Wang, Zexin Yu, Xianjia Li, Yueyi Lv, and Suzhen Guan. 2025. "Utilizing Network Toxicology and Molecular Dynamics Simulations to Efficiently Evaluate the Neurotoxicity and Underlying Mechanisms of the Endocrine-Disrupting Chemical Triclosan" International Journal of Molecular Sciences 26, no. 19: 9458. https://doi.org/10.3390/ijms26199458
APA StyleWang, H., Du, Y., Ji, J., Wang, C., Yu, Z., Li, X., Lv, Y., & Guan, S. (2025). Utilizing Network Toxicology and Molecular Dynamics Simulations to Efficiently Evaluate the Neurotoxicity and Underlying Mechanisms of the Endocrine-Disrupting Chemical Triclosan. International Journal of Molecular Sciences, 26(19), 9458. https://doi.org/10.3390/ijms26199458