Distance-Dependent Distribution of Biomarkers in Colorectal Cancer Tissues: In Vivo Study
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Patient Population
- Dukes A: Tumor invasion into the bowel wall without penetration beyond it.
- Dukes B: Tumor invasion through the bowel wall, extending into the muscle layer but without lymph node involvement.
- Dukes C: Lymph node involvement.
- Dukes D: Distant metastases.
4.2. Biochemical Parameteres
- 10 mM TRIS-HCl buffer (pH 7.4);
- 0.1 mM adenosine 5′-triphosphate (ATP);
- 1 mM dithiothreitol (DTT);
- 0.1 mM CaCl2;
- 0.25 M sucrose.
- 0.2 mL of 0.2 M HEPES buffer (pH 7.0) containing 25 mM MgCl2 and 0.5 mM CaCl2;
- 0.2 mL of bovine pancreatic DNase I solution;
- 0.2 mL of a 0.1% aqueous solution of highly polymerized DNA;
- distilled water, added to adjust the final volume to 1 mL.
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
ATA | Antitrypsin activity |
CB | Cathepsin B |
CC | Cystatin C |
CRC | Colorectal cancer |
CRP | C-reactive protein |
CTSD | Cathepsin D |
DTT | Dithiothreitol |
ELISA | Enzyme-linked immunosorbent assay |
F-actin | Filamentous actin |
G-actin | Globular actin |
HClO4 | Perchloric acid |
HEPES | 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic Acid |
LE | Leukocytic elastase |
MANOVA | Multivariate analysis of variance |
PBS | Phosphate-buffered saline |
SD | Standard deviation |
T-actin | Total actin |
TGF-β | Transforming growth factor beta |
TSA | Total sialic acid |
VEGF | Vascular endothelial growth factor |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-M.; Wei, P.-L.; Ho, C.-H.; Yeh, C.-C. Cigarette Smoking Associated with Colorectal Cancer Survival: A Nationwide, Population-Based Cohort Study. JCM 2022, 11, 913. [Google Scholar] [CrossRef]
- Biller, L.H.; Schrag, D. Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA 2021, 325, 669–685. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, M.; Yang, X.; Zhou, X.; Zhang, S. The Role of Cathepsin B in Pathophysiologies of Non-Tumor and Tumor Tissues: A Systematic Review. J. Cancer 2023, 14, 2344–2358. [Google Scholar] [CrossRef]
- Talieri, M.; Papadopoulou, S.; Scorilas, A.; Xynopoulos, D.; Arnogianaki, N.; Plataniotis, G.; Yotis, J.; Agnanti, N. Cathepsin B and Cathepsin D Expression in the Progression of Colorectal Adenoma to Carcinoma. Cancer Lett. 2004, 205, 97–106. [Google Scholar] [CrossRef]
- Skrzydlewska, E. Evaluation of Serum Cathepsin B and D in Relation to Clinicopathological Staging of Colorectal Cancer. WJG 2005, 11, 4225. [Google Scholar] [CrossRef]
- Berchem, G.; Glondu, M.; Gleizes, M.; Brouillet, J.-P.; Vignon, F.; Garcia, M.; Liaudet-Coopman, E. Cathepsin-D Affects Multiple Tumor Progression Steps in Vivo: Proliferation, Angiogenesis and Apoptosis. Oncogene 2002, 21, 5951–5955. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Huang, H.; Zheng, Z.; Yang, Q.; Wang, S.; Chen, Y.; Yu, J.; Cui, C. MYO1B Enhances Colorectal Cancer Metastasis by Promoting the F-Actin Rearrangement and Focal Adhesion Assembly via RhoA/ROCK/FAK Signaling. Ann. Transl. Med. 2021, 9, 1543. [Google Scholar] [CrossRef]
- Calkins, C.C.; Sloane, B.F. Mammalian Cysteine Protease Inhibitors: Biochemical Properties and Possible Roles in Tumor Progression. Biol. Chem. Hoppe Seyler 1995, 376, 71–80. [Google Scholar] [PubMed]
- Leto, G.; Crescimanno, M.; Flandina, C. On the Role of Cystatin C in Cancer Progression. Life Sci. 2018, 202, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Bian, B.; Mongrain, S.; Cagnol, S.; Langlois, M.-J.; Boulanger, J.; Bernatchez, G.; Carrier, J.C.; Boudreau, F.; Rivard, N. Cathepsin B Promotes Colorectal Tumorigenesis, Cell Invasion, and Metastasis. Mol. Carcinog. 2016, 55, 671–687. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Dong, H.; Yang, S.; Guo, H. Cathepsins in Digestive Cancers. Oncotarget 2017, 8, 41690–41700. [Google Scholar] [CrossRef]
- Abdulla, M.-H.; Valli-Mohammed, M.-A.; Al-Khayal, K.; Shkieh, A.A.; Zubaidi, A.; Ahmad, R.; Al-Saleh, K.; Al-Obeed, O.; McKerrow, J. Cathepsin B Expression in Colorectal Cancer in a Middle East Population: Potential Value as a Tumor Biomarker for Late Disease Stages. Oncol. Rep. 2017, 37, 3175–3180. [Google Scholar] [CrossRef]
- Zhang, J.; He, P.; Zhong, Q.; Li, K.; Chen, D.; Lin, Q.; Liu, W. Increasing Cystatin C and Cathepsin B in Serum of Colorectal Cancer Patients. Clin. Lab. 2017, 63, 365–371. [Google Scholar] [CrossRef]
- Tamhane, T.; Njenga, R.W.; Burden, R.E.; Büth, H.; Maelandsmo, G.M.; Haugen, M.H.; Scott, C.J.; Brix, K. Trafficking of Full-Length and N-Terminally Truncated Cathepsin B in Human Colorectal Carcinoma Cells. Appl. Sci. 2021, 11, 11936. [Google Scholar] [CrossRef]
- Sebzda, T.; Gnus, J.; Dziadkowiec, B.; Latka, M.; Gburek, J. Diagnostic Usefulness of Selected Proteases and Acute Phase Factors in Patients with Colorectal Adenocarcinoma. WJG 2021, 27, 6673–6688. [Google Scholar] [CrossRef]
- Sebzda, T.; Karwacki, J.; Cichoń, A.; Modrzejewska, K.; Heimrath, J.; Łątka, M.; Gnus, J.; Gburek, J. Association of Serum Proteases and Acute Phase Factors Levels with Survival Outcomes in Patients with Colorectal Cancer. Cancers 2024, 16, 2471. [Google Scholar] [CrossRef]
- Sebzda, T.; Hanczyc, P.; Saleh, Y.; Akinpelumi, B.-F.; Siewinski, M.; Rudnicki, J. Effect of Vitamin E and Human Placenta Cysteine Peptidase Inhibitor on Expression of Cathepsins B and L in Implanted Hepatoma Morris 5123 Tumor Model in Wistar Rats. WJG 2005, 11, 587. [Google Scholar] [CrossRef]
- Sebzda, T.; Gburek, J.; Rząca, M.; Pfanhauser, M.; Pilecki, W.; Siewiński, M.; Warwas, M. Comparison of Cathepsin B Activity and the Ratio of Cathepsin B to Cysteine Peptidase Inhibitor in Human Colorectal Cancer Tissue. Adv. Clin. Exp. Med. 2009, 18, 41–45. [Google Scholar]
- Mohamad, B.J.; Zghair, K.H.; Zghair, F.; Mohammed, R.S. Assessment the Immunohistochemical Expression of Cathepsin D in Iraqi Patients with Colorectal Carcinoma. Iraqi J. Sci. 2015, 56, 3337–3345. [Google Scholar]
- Khalifa, S.E.; Khairy, R.A.; Bassam, A.M. Expression of Cathepsin D and BCL-2 in Colorectal Carcinoma, and Their Correlation with Proliferation Indices. Egypt. J. Pathol. 2016, 36, 276–281. [Google Scholar] [CrossRef]
- Ghazanfar, S.; Fatima, I.; Aslam, M.; Musharraf, S.G.; Sherman, N.E.; Moskaluk, C.; Fox, J.W.; Akhtar, M.W.; Sadaf, S. Identification of Actin Beta-like 2 (ACTBL2) as Novel, Upregulated Protein in Colorectal Cancer. J. Proteom. 2017, 152, 33–40. [Google Scholar] [CrossRef]
- Sousa-Squiavinato, A.C.M.; Rocha, M.R.; Barcellos-de-Souza, P.; De Souza, W.F.; Morgado-Diaz, J.A. Cofilin-1 Signaling Mediates Epithelial-Mesenchymal Transition by Promoting Actin Cytoskeleton Reorganization and Cell-Cell Adhesion Regulation in Colorectal Cancer Cells. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2019, 1866, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.M.A.; Patel, R.; Bommareddy, R.R.; Khalid, K.M.; Acevedo-Duncan, M. The Modulation of Actin Dynamics via Atypical Protein Kinase-C Activated Cofilin Regulates Metastasis of Colorectal Cancer Cells. Cell Adhes. Migr. 2019, 13, 106–120. [Google Scholar] [CrossRef]
- Gehren, A.S.; Rocha, M.R.; De Souza, W.F.; Morgado-Díaz, J.A. Alterations of the Apical Junctional Complex and Actin Cytoskeleton and Their Role in Colorectal Cancer Progression. Tissue Barriers 2015, 3, e1017688. [Google Scholar] [CrossRef]
- Malicka-Błaszkiewicz, M.; Styczeń, I.; Nowak, D.; Hańczycowa, H.; Ponikowski, P.; Sebzda, T. Actin Content and Polymerization in Tumour, Liver and Serum of the Hepatoma Morris 5123 Tumour Bearing Rats. Mater. Med. Pol. 1995, 27, 115–118. [Google Scholar]
- Malicka-Blaszkiewicz, M.; Roth, J.S. Evidence for the Presence of DNase—Actin Complex in L1210 Leukemia Cells. FEBS Lett. 1983, 153, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Malicka-Blaszkiewicz, M.; Roth, J.S. Some Factors Affecting the Interaction between Actin in Leukemic L1210 Cells and DNase I. Biochem. Biophys. Res. Commun. 1981, 102, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Barrett, A.J.; Kirschke, H. Cathepsin B, Cathepsin H, and Cathepsin L. Methods Enzymol. 1981, 80, 535–561. [Google Scholar] [CrossRef]
- Barrett, A.J. Fluorimetric Assays for Cathepsin B and Cathepsin H with Methylcoumarylamide Substrates. Biochem. J. 1980, 187, 909–912. [Google Scholar] [CrossRef] [PubMed]
Parameter | Study Population (n = 37) |
---|---|
Sex, n (%) | |
Female | 17 (45.9) |
Male | 20 (54.1) |
Age, years | 68.0 ± 5.6; 69.0 (59–78) |
Tumor location, n (%) | |
Colon | 11 (29.7) |
Sigmoid colon | 7 (18.9) |
Rectum | 12 (32.4) |
Any location + distant metastases | 7 (18.9) |
Histological grade, n (%) | |
G2 | 31 (83.8) |
G3 | 6 (16.2) |
Dukes’ classification, n (%) | |
B | 14 (37.8) |
C | 16 (43.2) |
D | 7 (18.9) |
Biochemical Parameter | Tumor Center | 2 cm From the Margin | 5 cm From the Margin |
---|---|---|---|
Cathepsin B, mU/g | 696.2 ± 318.1; 654.1 (167.8–1274.2) | 238.4 ± 141.2; 207.8 (50.6–550.5) | 129.9 ± 103.9; 93.1 (18.9–515.1) |
Cathepsin D, U/mg | 0.11 ± 0.13; 0.05 (0.01–0.48) | 0.11 ± 0.13; 0.05 (0.01–0.48) | 0.12 ± 0.15; 0.04 (0.02–0.53) |
Anti-papain activity, U/mg | 0.03 ± 0.02; 0.02 (0.01–0.09) | 0.03 ± 0.02; 0.03 (0.01–0.07) | 0.03 ± 0.01; 0.03 (0.01–0.06) |
Protein, mg/mL | 8.2 ± 2.3; 7.8 (5.2–13.8) | 8.3 ± 1.4; 8.5 (6.0–11.2) | 9.14 ± 2.8; 8.5 (6.0–16.8) |
G-actin, U/mg | 119.8 ± 31.4; 128.0 (76.0–181.0) | 106.3 ± 25.7; 95.8 (76.8–169.0) | 110.2 ± 26.3; 112.0 (60.0–162.0) |
F-actin, U/mg | 1523.5 ± 492.4; 1445.0 (670.0–2258.0) | 1362.0 ± 479.8; 1435.0 (711.0–2288.0) | 1044.7 ± 546.2; 1115.0 (263.0–2138.0) |
T-actin, U/mg | 1655.4 ± 484.9; 1521.0 (1001.0–2432.0) | 1411.84 ± 458.5; 1421.0 (809.0–2301.0) | 1141.1 ± 563.6; 1212.0 (345.0–2253.0) |
G-actin/T-actin ratio, % | 8.1 ± 3.7 | 8.0 ± 1.9 | 12.2 ± 6.8 |
F-actin/G-actin ratio, % | 13.9 ± 6.1 | 12.8 ± 3.6 | 9.4 ± 4.5 |
Biochemical Parameter | Tumor Center vs. 2 cm From the Margin | Tumor Center vs. 5 cm From the Margin | 2 cm From the Margin vs. 5 cm From the Margin |
---|---|---|---|
Cathepsin B | <0.001 | <0.001 | <0.001 |
Cathepsin D | 0.283 | 0.242 | 0.250 |
Anti-papain activity | 0.795 | 0.784 | 0.650 |
Protein | 0.774 | 0.106 | 0.102 |
G-actin | 0.049 | 0.164 | 0.524 |
F-actin | 0.163 | <0.001 | 0.011 |
T-actin | 0.032 | <0.001 | 0.028 |
G-actin/T-actin ratio, % | 0.896 | 0.002 | 0.001 |
F-actin/G-actin ratio, % | 0.381 | 0.001 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebzda, T.; Karwacki, J.; Sobala, M.; Filipowski, H.; Łątka, M.; Gnus, J.; Gburek, J. Distance-Dependent Distribution of Biomarkers in Colorectal Cancer Tissues: In Vivo Study. Int. J. Mol. Sci. 2025, 26, 9367. https://doi.org/10.3390/ijms26199367
Sebzda T, Karwacki J, Sobala M, Filipowski H, Łątka M, Gnus J, Gburek J. Distance-Dependent Distribution of Biomarkers in Colorectal Cancer Tissues: In Vivo Study. International Journal of Molecular Sciences. 2025; 26(19):9367. https://doi.org/10.3390/ijms26199367
Chicago/Turabian StyleSebzda, Tadeusz, Jakub Karwacki, Mateusz Sobala, Henryk Filipowski, Mirosław Łątka, Jan Gnus, and Jakub Gburek. 2025. "Distance-Dependent Distribution of Biomarkers in Colorectal Cancer Tissues: In Vivo Study" International Journal of Molecular Sciences 26, no. 19: 9367. https://doi.org/10.3390/ijms26199367
APA StyleSebzda, T., Karwacki, J., Sobala, M., Filipowski, H., Łątka, M., Gnus, J., & Gburek, J. (2025). Distance-Dependent Distribution of Biomarkers in Colorectal Cancer Tissues: In Vivo Study. International Journal of Molecular Sciences, 26(19), 9367. https://doi.org/10.3390/ijms26199367