Sialidases as Potential Therapeutic Targets for Treatment of a Number of Human Diseases
Abstract
1. Introduction
2. Development of Sialidase Inhibitors
Examples of hNEU Inhibitors | Sialidase Inhibited | Cell Source of NEU | Substrate | Effect |
---|---|---|---|---|
C9-BA-DANA 1 [60] 2 | NEU1 | HEK293 cells | 4-MU-NANA 3 | IC50 = 10 µM |
Neu5Ac2en- OacOMe [61] | Coronavirus 4 HCoV-OC43- infected epithelial cells | Viral N protein | Inhibited viral replication. | |
C5-hexanamido-C9- acetamido-DANA [62] | COS-7 for overexpression of NEU1 | 4-MU-NANA | Ki of 53 ± 5 nM | |
Oseltamivir [63] | 3T3–hEGFR cells | Inhibition of EGF- stimulated sialidase activity | IC50 = 4.86 µM | |
Neu5AcN39N32en [64] | NEU2 | E. coli-expressed NEU2 | Neu5Acα2–6GalβpNP | IC50 = 13 ± 3 µM |
DANA [65] | NEU3 | E. coli-expressed NEU3 | 4-MU-NANA | Ki = 30 µM |
5-Acetamido-9-(([1,1′-biphenyl]-4-cabamoyl)-oxy)-DANA [66] | E. coli-expressed NEU3 | 4MU-NANA | IC50 = 0.31 µM | |
2AP [67] | CCl4-induced liver fibrosis in mice | Effect on liver fibrosis | Reduced liver inflammation NEU3 | |
MP [68] | Recombinant NEU3 | rhL-TGF-β1 | IC50 = 0.002 µM | |
AMPCA [68] | Recombinant NEU3 | rhL-TGF-β1 | IC50 = 0.002 µM | |
C9-4HMT-DANA [69] | NEU4 | E. coli expressed NEU4 A 2011 | 4-MU-NANA | Ki = 30 nM |
3. Microbial Sialidases
Pathogen | Cells Infected | Disease In people | Binding Site(s) | Inhibitor | Inhibitor Efficacy |
---|---|---|---|---|---|
NDV 1 HN 2 [97] | Lung epithelia. | Mild flu-like in humans, deadly in birds. | α2-3- and α2-6-linked sialic acid [98]. | 4-trifluoro-acetamido-N-trifluoroacetyl-DANA, | Viral yield reduction assay IC50 = 0.03 µM [99]. |
MuV HN [100] | Multiple types. | Mumps complications including e.g., deafness, meningitis, and infertility. | Trisaccharide receptors: α2-3SL, α2-3SLN, α2-3sLex, and oligo-GM3 [101]. | Milk-derived sialoglycopeptides with short glycans having α2-3-linked terminal sialic acids. | Inhibited infection by different strains; based on sialic acid concentration IC50 = 0.2–1 mM [100]. |
Influenza A and B [102] | Pulmonary epithelia. | Flu. | Human strain A, α2-6-, strain B α2-3- and α2-6-linked sialic acid [103]. | Oseltamivir. Zanamivir. Peramivir. | Substrate 4-MU-NANA, IC50 = 0.78 nM, IC50 = 2.08 nM, IC50 = 0.66 nM, and influenza isolate 74 A H3N2 [81]. |
Dengue serotype 2 [104] | Blood, skin, and liver. | Fever, and possibly headache, muscle or joint pain, nausea, vomiting, pain behind the eyes, swollen glands, rash. | Viral NS1 affects transcription of NEU1-4, suggesting that they help with viral Uncoating, replication and intracellular trafficking [105]. | Not a viral sialidase. | Dengue affected expression of all hNEUs [105]. |
Vibrio cholerae [106] | Intestinal mucosal cells. | Cholera. | Di-and trisialo-gangliosides terminal sialic acid-linked α2-3 and α2-8 [107]. | Neu5Gc9N32en. | Neu5Acα2-3Galßρ NP, IC50 = ~18 µM Neu5Acα2-6Galßρ NP, IC50 = ~13 µM [64]. |
Gardnerella vaginalis [108] | Genital tract. | Vaginal irritation and increases probability of pre-term birth. | Mucosal sialoglycans [109]. | 10 mM Zanamivir. | Cell invasion decreased ~50% [110]. |
C. perfringens type F 3, Nans I, J and H. I provides most of the exosialidase activity [111]. | Intestinal enterocyte type cells | Food poisoning and chronic non foodborne gastrointestinal diseases. | Linkage cleaved: I, α 2-3; J, α 2-6; and H, α 2-8 [112]. | 7-(3,4-dihydroxyphenyl)-5-hydroxy-1-(3- hydroxy-4-methoxy phenyl) hepta-1,4,6- trien-3-one (individual Nan not identified). | Substrate 4MU-NANA IC50 = 0.5 ± 0.07 µM for Nan I [113]. |
S. pneumoniae Nans A, B, and C [114] | Lung and epithelial cells. | Pneumonia, meningitis, and sepsis. | Surface protein A functions as an adhesive while sialidase degrades mucus, providing sialic acid as a bacterial nutrient [115]. | Zanamivir for NanA. 1 mM Oseltamivir for NanA. | Ki = 0.72mmM using MU-NANA [116]. Inhibited in vivo S. pneumoniae viability [115]. |
C. sordellii, NanS [117] | Soft tissue and intrauterine infections. | Toxic shock and sepsis; low survival [118]. | Acted on cervical cell sialoglycoconjugates enhancing suscept-ability to bacterial toxins [117]. | ||
Porphyromonas gingivalis [119] | Mouth. | Severe periodontitis. | Submaxillary glycoproteins. | Zanamivir. | Inhibited attachment and invasion [119]. |
4. Examples of Diseases Involving hNEUs
4.1. Fibrosis
4.2. Atherosclerosis
4.3. Diabetes
4.4. Cancer
5. Sialidase in Neuronal Development/Function
5.1. Development
5.2. Relation of Sialidase to Neural Transmission
5.3. Examples of Sialidase Misfunction in Neural Diseases
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bonten, E.; van der Spoel, A.; Fornerod, M.; Grosveld, G.; d’Azzo, A. Characterization of human lysosomal neuraminidase defines the molecular basis of the metabolic storage disorder sialidosis. Genes Dev. 1996, 10, 3156–3169. [Google Scholar] [CrossRef]
- Monti, E.; Preti, A.; Rossi, E.; Ballabio, A.; Borsani, G. Cloning and characterization of NEU2, a human gene homologous to rodent soluble sialidases. Genomics 1999, 57, 137–143. [Google Scholar] [CrossRef]
- Wada, T.; Yoshikawa, Y.; Tokuyama, S.; Kuwabara, M.; Akita, H.; Miyagi, T. Cloning, expression, and chromosomal mapping of a human ganglioside sialidase. Biochem. Biophys. Res. Commun. 1999, 261, 21–27. [Google Scholar] [CrossRef]
- Monti, E.; Bassi, M.T.; Bresciani, R.; Civini, S.; Croci, G.L.; Papini, N.; Riboni, M.; Zanchetti, G.; Ballabio, A.; Preti, A.; et al. Molecular cloning and characterization of neu4, the fourth member of the human sialidase gene family. Genomics 2004, 83, 445–453. [Google Scholar] [CrossRef]
- Pshezhetsky, A.V.; Ashmarina, M. Keeping it Trim: Roles of neuraminidases in CNS function. Glycoconj. J. 2018, 35, 375–386. [Google Scholar] [CrossRef]
- Wang, X.-Q.; Sun, P.; Paller, A.S. Ganglioside induces caveolin-1 redistribution and interaction with the epidermal growth factor receptor. J. Biol. Chem. 2002, 277, 47028–47034. [Google Scholar] [CrossRef] [PubMed]
- Miyagi, T.; Wada, T.; Iwamatsu, A.; Hata, K.; Yoshikawa, Y.; Tokuyama, S.; Sawada, M. Molecular cloning and characterization of a plasma membrane-associated sialidase specific for gangliosides. J. Biol. Chem. 1999, 274, 5004–5011. [Google Scholar] [CrossRef]
- Schengrund, C.-L. The ying and yang of ganglioside function in cancer. Cancers 2023, 15, 5362. [Google Scholar] [CrossRef] [PubMed]
- Karhadkar, T.R.; Chen, W.; Pilling, D.; Gomer, R.H. Inhibitors of the sialidase NEU3 as potential therapeutics for fibrosis. Int. J. Mol. Sci. 2023, 24, 239. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Hosono, M.; Sato, I.; Hata, K.; Wada, T.; Yamaguchi, K.; Nitta, K.; Shima, H.; Miyagi, T. Sialidase NEU3 contributes neoplastic potential on colon cancer cells as a key modulator of gangliosides by regulating Wnt signaling. Int. J. Cancer 2015, 137, 1560–1573. [Google Scholar] [CrossRef]
- Kappagantula, S.; Andrews, M.R.; Cheah, M.; Abad-Rodriguez, J.; Dotti, C.G.; Fawcett, J.W. Neu3 Sialidase-mediated ganglioside conversion is necessary for axon regeneration and is blocked in CNS axons. J. Neurosci. 2014, 34, 2477. [Google Scholar] [CrossRef]
- Pan, X.; De Aragão, C.B.P.; Velasco-Martin, J.P.; Priestman, D.A.; Wu, H.Y.; Takahashi, K.; Yamaguchi, K.; Sturiale, L.; Garozzo, D.; Platt, F.M.; et al. Neuraminidases 3 and 4 regulate neuronal function by catabolizing brain gangliosides. FASEB J. 2017, 31, 3467–3483. [Google Scholar] [CrossRef]
- Allende, M.L.; Lee, Y.T.; Byrnes, C.; Li, C.; Tuymetova, G.; Bakir, J.Y.; Nicoli, E.-R.; James, V.K.; Brodbelt, J.S.; Tifft, C.J.; et al. Sialidase NEU3 action on GM1 ganglioside Is neuroprotective in GM1 gangliosidosis. J. Lipid Res. 2023, 64, 100463. [Google Scholar] [CrossRef] [PubMed]
- Miyagi, T.; Yamamoto, K. Sialidase NEU3 and its pathological significance. Glycoconj. J. 2022, 39, 677–683, Erratum in Glycoconj. J. 2022, 39, 543. https://doi.org/10.1007/s10719-022-10075-7. [Google Scholar] [CrossRef]
- Bocquet, O.; Tembely, D.; Rioult, D.; Terryn, C.; Romier, B.; Bennasroune, A.; Blaise, S.; Sartelet, H.; Martiny, L.; Duca, L.; et al. Characterization of novel interactions with membrane NEU1 highlights new regulatory functions for the elastin receptor complex in monocyte interaction with endothelial cells. Cell Biosci. 2021, 11, 206. [Google Scholar] [CrossRef] [PubMed]
- Smutova, V.; Albohy, A.; Pan, X.; Korchagina, E.; Miyagi, T.; Bovin, N.; Cairo, C.W.; Pshezhetsky, A.V. Structural basis for substrate specificity of mammalian neuraminidases. PLoS ONE 2014, 9, e106320. [Google Scholar] [CrossRef]
- Miyagi, T.; Hata, K.; Hasegawa, A.; Aoyagi, T. Differential effect of various inhibitors on four types of rat sialidase. Glycoconj. J. 1993, 10, 45–49. [Google Scholar] [CrossRef]
- Magesh, S.; Suzuki, T.; Miyagi, T.; Ishida, H.; Kiso, M. Homology modeling of human sialidase enzymes NEU1, NEU3 and NEU4 based on the crystal structure of NEU2: Hints for the design of selective neu3 inhibitors. J. Mol. Graph. Model. 2006, 25, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Maurice, P.; Baud, S.; Bocharova, O.V.; Bocharov, E.V.; Kuznetsov, A.S.; Kawecki, C.; Bocquet, O.; Romier, B.; Gorisse, L.; Ghirardi, M.; et al. New insights into molecular organization of human neuraminidase-1: Transmembrane topology and dimerization ability. Sci. Rep. 2016, 6, 38363. [Google Scholar] [CrossRef]
- Miyagi, T.; Yamaguchi, K. Mammalian sialidases: Physiological and pathological roles in cellular functions. Glycobiology 2012, 22, 880–896. [Google Scholar] [CrossRef]
- Seyrantepe, V.; Poupetova, H.; Froissart, R.; Zabot, M.; Maire, I.; Pshezhetsky, A.V. Molecular pathology of NEU1 gene in sialidosis. Hum. Mutat. 2003, 22, 343–352. [Google Scholar] [CrossRef]
- Annunziata, I.; d’Azzo, A. Galactosialidosis: Historic aspects and overview of investigated and emerging treatment options. Exp. Opin. Orph. Drugs 2017, 5, 131–141. [Google Scholar] [CrossRef]
- Luzina, I.G.; Lillehoj, E.P.; Lockatell, V.; Hyun, S.W.; Lugkey, K.N.; Imamura, A.; Ishida, H.; Cairo, C.W.; Atamas, S.P.; Goldblum, S.E. Therapeutic effect of neuraminidase-1–selective inhibition in mouse models of bleomycin-induced pulmonary inflammation and fibrosis. J. Pharmacol. Exp. Ther. 2021, 376, 136–146. [Google Scholar] [CrossRef]
- Du, J.; Shui, H.; Chen, R.; Dong, Y.; Xiao, C.; Hu, Y.; Wong, N.-K. Neuraminidase-1 (NEU1): Biological roles and therapeutic relevance in human disease. CIMB 2024, 46, 8031–8052. [Google Scholar] [CrossRef]
- Tringali, C.; Papini, N.; Fusi, P.; Croci, G.; Borsani, G.; Preti, A.; Tortora, P.; Tettamanti, G.; Venerando, B.; Monti, E. Properties of recombinant human cytosolic sialidase HsNEU2: The enzyme hydrolyzes monomerically dispersed GM1 ganglioside molecules. J. Biol. Chem. 2004, 279, 3169–3179. [Google Scholar] [CrossRef]
- Oh, M.; Ha, D.-I.; Son, C.; Kang, J.G.; Hwang, H.; Moon, S.B.; Kim, M.; Nam, J.; Kim, J.S.; Song, S.Y.; et al. Defect in cytosolic Neu2 sialidase abrogates lipid metabolism and impairs muscle function in Vivo. Sci. Rep. 2022, 12, 3216. [Google Scholar] [CrossRef]
- Mozzi, A.; Forcella, M.; Riva, A.; Difrancesco, C.; Molinari, F.; Martin, V.; Papini, N.; Bernasconi, B.; Nonnis, S.; Tedeschi, G.; et al. NEU3 Activity Enhances EGFR Activation without Affecting EGFR Expression and Acts on Its Sialylation Levels. Glycobiology 2015, 25, 855–868. [Google Scholar] [CrossRef] [PubMed]
- Zanchetti, G.; Colombi, P.; Manzoni, M.; Anastasia, L.; Caimi, L.; Borsani, G.; Venerando, B.; Tettamanti, G.; Preti, A.; Monti, E.; et al. Sialidase NEU3 is a peripheral membrane protein localized on the cell surface and in endosomal structures. Biochem. J. 2007, 408, 211–219. [Google Scholar] [CrossRef]
- Kakugawa, Y.; Wada, T.; Yamaguchi, K.; Yamanami, H.; Ouchi, K.; Sato, I.; Miyagi, T. Up-regulation of plasma membrane-associated ganglioside sialidase (Neu3) in human colon cancer and its involvement in apoptosis suppression. Proc. Natl. Acad. Sci. USA 2002, 99, 10718–10723. [Google Scholar] [CrossRef] [PubMed]
- Tatsuta, T.; Ito, J.; Yamamoto, K.; Sugawara, S.; Hosono, M.; Sato, M.; Miyagi, T. Sialidase NEU3 contributes to the invasiveness of bladder cancer. Biomedicines 2024, 12, 192. [Google Scholar] [CrossRef] [PubMed]
- Seyrantepe, V.; Landry, K.; Trudel, S.; Hassan, J.A.; Morales, C.R.; Pshezhetsky, A.V. Neu4, a novel human lysosomal lumen sialidase, confers normal phenotype to sialidosis and galactosialidosis cells. J. Biol. Chem. 2004, 279, 37021–37029. [Google Scholar] [CrossRef]
- Bigi, A.; Morosi, L.; Pozzi, C.; Forcella, M.; Tettamanti, G.; Venerando, B.; Monti, E.; Fusi, P. Human Sialidase NEU4 long and short are extrinsic proteins bound to outer mitochondrial membrane and the endoplasmic reticulum, respectively. Glycobiology 2010, 20, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Okun, S.; Peek, A.; Igdoura, S.A. Neuraminidase 4 (NEU4): New biological and physiological player. Glycobiology 2023, 33, 182–187. [Google Scholar] [CrossRef]
- Shiozaki, K.; Yamaguchi, K.; Takahashi, K.; Moriya, S.; Miyagi, T. Regulation of Sialyl Antigen expression in colon cancer cells by sialidase NEU4. J. Biol. Chem. 2011, 286, 21052–21061. [Google Scholar] [CrossRef] [PubMed]
- Bourguet, E.; Figurska, S.; Fra̧czek, M.M. Human neuraminidases: Structures and stereoselective inhibitors. J. Med. Chem. 2022, 65, 3002–3025. [Google Scholar] [CrossRef]
- Zhu, W.; Zhou, Y.; Guo, L.; Feng, S. Biological function of sialic acid and sialylation in human health and disease. Cell Death Discov. 2024, 10, 415. [Google Scholar] [CrossRef]
- Aljohani, M.A.; Sasaki, H.; Sun, X.-L. Cellular translocation and secretion of sialidases. J. Biol. Chem. 2024, 300, 107671. [Google Scholar] [CrossRef]
- Blix, G. Über die kohlenhydratgruppen des submaxillarismucins. Z. Physiol. Chem. 1936, 240, 43–54. [Google Scholar] [CrossRef]
- Klenk, E. Neuraminsäure, Das spaltprodukt eines neuen gehirnlipoids. Z. Physiol. Chem. 1941, 268, 50–58. [Google Scholar] [CrossRef]
- Schnaar, R.L. Glycolipid-mediated cell–cell recognition in inflammation and nerve regeneration. Arch. Biochem. Biophys. 2004, 426, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Blix, F.G.; Gottschalk, A.; Klenk, E. Proposed nomenclature in the field of neuraminic and sialic acids. Nature 1957, 179, 1088. [Google Scholar] [CrossRef] [PubMed]
- Haverkamp, J.; Veh, R.W.; Sander, M.; Schauer, R.; Kamerling, J.P.; Vliegenthart, J.G.F. Demonstration of 9-O-acetyl-N-acetylneuraminic acid in brain gangliosides from various vertebrates including man. Z. Physiol. Chem. 1977, 358, 1609–1612. [Google Scholar] [CrossRef] [PubMed]
- Mauri, L.; Sonnino, S. Alkali-labile gangliosides. Glycoconj. J. 2023, 40, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A. Genetic basis for the lack of n-glycolylneuraminic acid expression in human tissues and its implication to human evolution. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2006, 82, 93–103. [Google Scholar] [CrossRef]
- Cheeseman, J.; Badia, C.; Thomson, R.I.; Kuhnle, G.; Gardner, R.A.; Spencer, D.I.R.; Osborn, H.M.I. Quantitative standards of 4-O-acetyl- and 9-O-acetyl-N-acetylneuraminic acid for the analysis of plasma and serum. ChemBioChem 2022, 23, e202100662. [Google Scholar] [CrossRef]
- Visser, E.A.; Moons, S.J.; Timmermans, S.B.P.E.; de Jong, H.; Boltje, T.J.; Büll, C. Sialic Acid O-Acetylation: From Biosynthesis to Roles in Health and Disease. J. Biol. Chem. 2021, 297, 100906. [Google Scholar] [CrossRef]
- Simons, K.; Ikonen, E. Functional rafts in cell membranes. Nature 1997, 387, 569–572. [Google Scholar] [CrossRef]
- Hakomori, S.; Handa, K.; Iwabuchi, K.; Yamamura, S.; Prinetti, A. New insights in glycosphingolipid function: “glycosignaling domain,” a cell surface assembly of glycosphingolipids with signal transducer molecules, involved in cell adhesion coupled with signaling. Glycobiology 1998, 8, xi–xviii. [Google Scholar] [CrossRef]
- Luft, J.H. Fine Structures of capillary and endocapillary layer as revealed by ruthenium red. FASEB J. 1966, 25, 1773–1783. [Google Scholar] [PubMed]
- Martínez-Palomo, A. The surface coats of animal cells part of the personal work mentioned in this review was performed at the Institut de Recherches Scientifiques Sur Le Cancer, Villejuif, France. In International Review of Cytology; Bourne, G.H., Danielli, J.F., Jeon, K.W., Eds.; Academic Press: Cambridge, MA, USA, 1970; Volume 29, pp. 29–75. ISBN 0074-7696. [Google Scholar]
- Lunghi, G.; Fazzari, M.; Di Biase, E.; Mauri, L.; Chiricozzi, E.; Sonnino, S. The structure of gangliosides hides a code for determining neuronal functions. FEBS Open Bio 2021, 11, 3193–3200. [Google Scholar] [CrossRef]
- Bremer, E.G.; Hakomori, S.; Bowen-Pope, D.F.; Raines, E.; Ross, R. Ganglioside-mediated modulation of cell growth, growth factor binding, and receptor phosphorylation. J. Biol. Chem. 1984, 259, 6818–6825. [Google Scholar] [CrossRef] [PubMed]
- Lunghi, G.; Fazzari, M.; Ciampa, M.G.; Mauri, L.; Di Biase, E.; Chiricozzi, E.; Sonnino, S. Regulation of signal transduction by gangliosides in lipid rafts: Focus on GM3–IR and GM1–TrkA interactions. FEBS Lett. 2022, 596, 3124–3132. [Google Scholar] [CrossRef]
- LI, S.-C.; LI, Y.-T.; MORIYA, S.; MIYAGI, T. Degradation of GM1 and GM2 by mammalian sialidases. Biochem. J. 2001, 360, 233–237. [Google Scholar] [CrossRef]
- Chavas, L.M.; Tringali, C.; Fusi, P.; Venerando, B.; Tettamanti, G.; Kato, R.; Monti, E.; Wakatsuki, S. Crystal structure of the human cytosolic sialidase Neu2: Evidence for the dynamic nature of substrate recognition. J. Biol. Chem. 2005, 280, 469–475. [Google Scholar] [CrossRef]
- Bonten, E.J.; Campos, Y.; Zaitsev, V.; Nourse, A.; Waddell, B.; Lewis, W.; Taylor, G.; d’Azzo, A. Heterodimerization of the sialidase NEU1 with the chaperone protective protein/Cathepsin A prevents Its premature oligomerization. J. Biol. Chem. 2009, 284, 28430–28441. [Google Scholar] [CrossRef]
- Albrecht, C.; Kuznetsov, A.S.; Appert-Collin, A.; Dhaideh, Z.; Callewaert, M.; Bershatsky, Y.V.; Urban, A.S.; Bocharov, E.V.; Bagnard, D.; Baud, S.; et al. Transmembrane peptides as a new strategy to inhibit neuraminidase-1 activation. Front. Cell Dev. Biol. 2020, 8, 611121. [Google Scholar] [CrossRef]
- Rodriguez-Walker, M.; Daniotti, J.L. Human Sialidase Neu3 Is S-Acylated and Behaves Like an Integral Membrane Protein. Sci. Rep. 2017, 7, 4167. [Google Scholar] [CrossRef]
- Keil, J.M.; Rafn, G.R.; Turan, I.M.; Aljohani, M.A.; Sahebjam-Atabaki, R.; Sun, X.-L. Sialidase Inhibitors with Different Mechanisms. J. Med. Chem. 2022, 65, 13574–13593. [Google Scholar] [CrossRef] [PubMed]
- Hyun, S.W.; Liu, A.; Liu, Z.; Cross, A.S.; Verceles, A.C.; Magesh, S.; Kommagalla, Y.; Kona, C.; Ando, H.; Luzina, I.G.; et al. The NEU1-selective sialidase inhibitor, C9-butyl-amide-DANA, blocks sialidase activity and NEU1-mediated bioactivities in human lung in Vitro and murine lung in Vivo. Glycobiology 2016, 26, 834–849. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Wu, Y.; Turan, I.; Keil, J.; Li, K.; Chen, M.H.; Liu, R.; Wang, L.; Sun, X.-L.; Chen, G.-Y. Targeting intracellular Neu1 for coronavirus infection treatment. Iscience 2023, 26, 106037. [Google Scholar] [CrossRef]
- Guo, T.; Héon-Roberts, R.; Zou, C.; Zheng, R.; Pshezhetsky, A.V.; Cairo, C.W. Selective Inhibitors of Human Neuraminidase 1 (NEU1). J. Med. Chem. 2018, 61, 11261–11279. [Google Scholar] [CrossRef] [PubMed]
- Gilmour, A.M.; Abdulkhalek, S.; Cheng, T.S.; Alghamdi, F.; Jayanth, P.; O’Shea, L.K.; Geen, O.; Arvizu, L.A.; Szewczuk, M.R. A novel epidermal growth factor receptor-signaling platform and its targeted translation in pancreatic cancer. Cell Sig. 2013, 25, 2587–2603. [Google Scholar] [CrossRef]
- Khedri, Z.; Li, Y.; Cao, H.; Qu, J.; Yu, H.; Muthana, M.M.; Chen, X. Synthesis of selective inhibitors against V. cholerae sialidase and human cytosolic sialidase NEU2. Org. Biomol. Chem. 2012, 10, 6112–6120. [Google Scholar] [CrossRef]
- Albohy, A.; Mohan, S.; Zheng, R.B.; Pinto, B.M.; Cairo, C.W. Inhibitor selectivity of a new class of oseltamivir analogs against viral neuraminidase over human neuraminidase enzymes. Bioorg. Med. Chem. 2011, 19, 2817–2822. [Google Scholar] [CrossRef] [PubMed]
- Radwan, M.; Guo, T.; Carvajal, E.G.; Bekkema, B.A.R.; Cairo, C.W. Bioisosteres at C9 of 2-deoxy-2,3-didehydro-N-acetyl neuraminic acid identify selective inhibitors of NEU3. J. Med. Chem. 2024, 67, 13594–13603. [Google Scholar] [CrossRef]
- Pilling, D.; Martinez, T.C.; Gomer, R.H. Inhibition of CCl4-induced liver inflammation and fibrosis by a NEU3 inhibitor. PLoS ONE 2024, 19, e0308060. [Google Scholar] [CrossRef]
- Karhadkar, T.R.; Meek, T.D.; Gomer, R.H. Inhibiting sialidase-induced TGF-Β1 activation attenuates pulmonary fibrosis in mice. J. Pharmacol. Exp. Ther. 2021, 376, 106–117. [Google Scholar] [CrossRef]
- Albohy, A.; Zhang, Y.; Smutova, V.; Pshezhetsky, A.V.; Cairo, C.W. Identification of selective nanomolar inhibitors of the human neuraminidase, NEU4. ACS Med. Chem. Lett. 2013, 4, 532–537. [Google Scholar] [CrossRef]
- Parker, R.B.; McCombs, J.E.; Kohler, J.J. Sialidase specificity determined by chemoselective modification of complex sialylated glycans. ACS Chem Biol. 2012, 7, 1509–1514. [Google Scholar] [CrossRef]
- Corfield, T. Bacterial Sialidases—Roles in Pathogenicity and Nutrition. Glycobiology 1992, 2, 509–521. [Google Scholar] [CrossRef] [PubMed]
- DeMarco, M.L.; Woods, R.J. Atomic-Resolution Conformational Analysis of the GM3 Ganglioside in a Lipid Bilayer and Its Implications for Ganglioside–Protein Recognition at Membrane Surfaces. Glycobiology 2009, 19, 344–355. [Google Scholar] [CrossRef]
- Matrosovich, M.; Herrler, G.; Klenk, H.D. Sialic acid receptors of viruses. In SialoGlyco Chemistry and Biology II: Tools and Techniques to Identify and Capture Sialoglycans; Gerardy-Schahn, R., Delannoy, P., von Itzstein, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–28. [Google Scholar] [CrossRef]
- Palese, P.; Tobita, K.; Ueda, M.; Compans, R.W. Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology 1974, 61, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Shtyrya, Y.A.; Mochalova, L.V.; Bovin, N.V. Influenza virus neuraminidase: Structure and function. Acta Naturae 2009, 1, 26–32. [Google Scholar] [CrossRef]
- von Itzstein, M.; Wu, W.-Y.; Kok, G.B.; Pegg, M.S.; Dyason, J.C.; Jin, B.; Van Phan, T.; Smythe, M.L.; White, H.F.; Oliver, S.W.; et al. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 1993, 363, 418–423, Erratum in Nature 1993, 363, 863. https://doi.org/10.1038/365863a0. [Google Scholar] [CrossRef]
- von Itzstein, M. The war against influenza: Discovery and development of sialidase inhibitors. Nat. Rev. Drug Discov. 2007, 6, 967–974. [Google Scholar] [CrossRef]
- Hata, K.; Koseki, K.; Yamaguchi, K.; Moriya, S.; Suzuki, Y.; Yingsakmongkon, S.; Hirai, G.; Sodeoka, M.; von Itzstein, M.; Miyagi, T. Limited inhibitory effects of oseltamivir and zanamivir on human sialidases. Antimicrob. Agents Chemother. 2008, 52, 3484–3491. [Google Scholar] [CrossRef]
- Alame, M.M.; Massaad, E.; Zaraket, H. Peramivir: A Novel Intravenous Neuraminidase Inhibitor for Treatment of Acute Influenza Infections. Front. Microbiol. 2016, 7, 450. [Google Scholar] [CrossRef] [PubMed]
- Lampejo, T. Influenza and antiviral resistance: An overview. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Goto, T.; Kawai, N.; Bando, T.; Tani, N.; Chong, Y.; Ikematsu, H. In Vitro neuraminidase inhibitory concentrations (IC50) of four neuraminidase inhibitors in the Japanese 2022–23 season: Comparison with the 2010–11 to 2019–20 seasons. J. Infect. Chemother. 2024, 30, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Sehnert, B.; Mietz, J.; Rzepka, R.; Buchholz, S.; Maul-Pavicic, A.; Schaffer, S.; Nimmerjahn, F.; Voll, R.E. Neuraminidase inhibitor zanamivir ameliorates collagen-induced arthritis. Int. J. Mol. Sci. 2021, 22, 1428. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, M.; Wei, H.; Li, C.; Hu, D.; Zheng, L.; Wang, D.W. Neuraminidase inhibitor treatment is associated with decreased mortality in COVID-19 patients: A retrospective analysis. Eur. Heart J. Cardiovasc. Pharmacother. 2022, 8, 392–401. [Google Scholar] [CrossRef]
- Yan, Z.-L.; Liu, A.-Y.; Wei, X.-X.; Zhang, Z.; Qin, L.; Yu, Q.; Yu, P.; Lu, K.; Yang, Y. Divalent oseltamivir analogues as potent influenza neuraminidase inhibitors. Carbohydr. Res. 2019, 477, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.P.; Schengrund, C.-L. Oligosaccharide-derivatized dendrimers: Defined multivalent inhibitors of the adherence of the cholera toxin b subunit and the heat labile enterotoxin of E. Coli to GM1. Glycoconj. J. 1997, 14, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Kitov, P.I.; Sadowska, J.M.; Mulvey, G.; Armstrong, G.D.; Ling, H.; Pannu, N.S.; Read, R.J.; Bundle, D.R. Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands. Nature 2000, 403, 669–672. [Google Scholar] [CrossRef] [PubMed]
- Kiessling, L.L.; Lamanna, A.C. Multivalency in biologicals. In Chemical Probes in Biology; Schneider, M.P., Ed.; Springer: Dordrecht, The Netherlands, 2003; pp. 345–357. [Google Scholar] [CrossRef]
- Döhrmann, S.; Levin, J.; Cole, J.N.; Borchardt, A.; Amundson, K.; Almaguer, A.; Abelovski, E.; Grewal, R.; Zuill, D.; Dedeic, N.; et al. Drug–Fc conjugate CD388 targets influenza virus neuraminidase and is broadly protective in mice. Nat. Microbiol. 2025, 10, 912–926. [Google Scholar] [CrossRef]
- Foss, S.; Sakya, S.A.; Aguinagalde, L.; Lustig, M.; Shaughnessy, J.; Cruz, A.R.; Scheepmaker, L.; Mathiesen, L.; Ruso-Julve, F.; Anthi, A.K.; et al. Human IgG Fc-engineering for enhanced plasma half-life, mucosal distribution and killing of cancer cells and bacteria. Nat. Commun. 2024, 15, 2007. [Google Scholar] [CrossRef]
- Equils, O.; Flanagan, S.; Wang, S.-S.; Vingerhoets, J.; van Duijnhoven, W.; James Mann, A.; Rojas, R.E.; Sandison, T. 573. CD388, a novel drug-fc conjugate (dfc), demonstrates prophylactic activity in an influenza human challenge model. Open Forum Infect. Dis. 2025, 12, ofae631.174. [Google Scholar] [CrossRef]
- Mann, M.C.; Thomson, R.J.; Dyason, J.C.; McAtamney, S.; Von Itzstein, M. Modelling, synthesis and biological evaluation of novel glucuronide-based probes of Vibrio cholerae sialidase. Bioorg. Med. Chem. A 2006, 14, 1518–1537. [Google Scholar] [CrossRef]
- van Heyningen, W.E.; Carpenter, C.C.J.; Pierce, N.F.; Greenough, W.B., III. Deactivation of cholera toxin by ganglioside. J. Infect. Dis. 1971, 124, 415–418. [Google Scholar] [CrossRef]
- Nicholls, J.M.; Moss, R.B.; Haslam, S.M. The use of sialidase therapy for respiratory viral infections. Antivir. Res. 2013, 98, 401–409. [Google Scholar] [CrossRef]
- Zenilman, J.M.; Fuchs, E.J.; Hendrix, C.W.; Radebaugh, C.; Jurao, R.; Nayak, S.U.; Hamilton, R.G.; McLeod Griffiss, J. Phase 1 clinical trials of DAS181, an inhaled sialidase, in healthy adults. Antivir. Res. 2015, 123, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-Y.; Armstrong, D.; Knight, J.M.; Gale, T.V.; Hawley, S.; Wang, M.; Chang, N.; Corry, D.B.; Kheradmand, F. Sialidase fusion protein protects against influenza infection in a cigarette smoke-induced model of COPD. Mucosal Immunol. 2025, 18, 467–480. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Li, J.; Snyder, G.; Huang, W.; Goldblum, S.E.; Chen, W.H.; Wang, L.-X.; McClane, B.A.; Cross, A.S. Antibody against microbial neuraminidases recognizes human sialidase 3 (NEU3): The neuraminidase/sialidase superfamily revisited. mBio 2017, 8, e00078-17. [Google Scholar] [CrossRef]
- Ganar, K.; Das, M.; Sinha, S.; Kumar, S. Newcastle Disease Virus: Current status and our understanding. Virus Res. 2014, 184, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Felipe, L.; Villar, E.; Muñoz-Barroso, I. A2-3-and A2-6-N-Linked sialic acids allow efficient interaction of Newcastle Disease virus with target cells. Glycoconj. J. 2012, 29, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Rota, P.; La Rocca, P.; Bonfante, F.; Pagliari, M.; Piccoli, M.; Cirillo, F.; Ghiroldi, A.; Franco, V.; Pappone, C.; Allevi, P.; et al. Design, synthesis, and antiviral evaluation of sialic acid derivatives as inhibitors of Newcastle Disease virus hemagglutinin-neuraminidase: A translational study on human Parainfluenza viruses. ACS Infect. Dis. 2023, 9, 617–630. [Google Scholar] [CrossRef]
- Takahashi, T.; Kurebayashi, Y.; Suzuki, S.; Konagaya, K.; Narimichi, Y.; Kobatake, E.; Fukudome, H.; Yamaguchi, T.; Sakai, F.; Arai, T.; et al. Bovine milk-derived sialylglycopeptide concentrate suppresses mumps virus infection. J. Funct. Foods 2025, 124, 106656. [Google Scholar] [CrossRef]
- Kubota, M.; Hashiguchi, T. Unique tropism and entry mechanism of mumps virus. Viruses 2021, 13, 1746. [Google Scholar] [CrossRef]
- Barberis, I.; Myles, P.; Ault, S.K.; Bragazzi, N.L.; Martini, M. History and evolution of influenza control through vaccination: From the first monovalent vaccine to universal vaccines. J. Prev. Med. Hyg. 2016, 57, E115–E120. [Google Scholar] [PubMed Central]
- Gambaryan, A.; Yamnikova, S.; Lvov, D.; Tuzikov, A.; Chinarev, A.; Pazynina, G.; Webster, R.; Matrosovich, M.; Bovin, N. Receptor specificity of influenza viruses from birds and mammals: New data on involvement of the inner fragments of the carbohydrate chain. Virology 2005, 334, 276–283. [Google Scholar] [CrossRef]
- Brathwaite Dick, O.; San Martín, J.L.; Montoya, R.H.; del Diego, J.; Zambrano, B.; Dayan, G.H. The history of Dengue outbreaks in the Americas. Amer. Soc. Trop. Med. Hyg. 2012, 87, 584–593. [Google Scholar] [CrossRef] [PubMed]
- St Clair, L.; Pujari, P.; Perera, R. Human Sialidase Activity Is Vital for Dengue Virus Serotype 2 Infection. bioRxiv 2022. [Google Scholar] [CrossRef]
- Lippi, D.; Gotuzzo, E.; Caini, S. Cholera. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [PubMed]
- Almagro-Moreno, S.; Boyd, E.F. Sialic acid catabolism confers a competitive advantage to pathogenic vibrio cholerae in the mouse intestine. Infect. Immun. 2009, 77, 3807–3816. [Google Scholar] [CrossRef]
- Chen, L.; Li, J.; Xiao, B. The role of sialidases in the pathogenesis of bacterial vaginosis and their use as a promising pharmacological target in bacterial vaginosis. Front. Cell. Infect. Microbiol. 2024, 14, 1367233. [Google Scholar] [CrossRef]
- Lewis, W.G.; Robinson, L.S.; Gilbert, N.M.; Perry, J.C.; Lewis, A.L. Degradation, foraging, and depletion of mucus sialoglycans by the vagina-adapted Actinobacterium Gardnerella Vaginalis. J. Biol. Chem. 2013, 288, 12067–12079. [Google Scholar] [CrossRef]
- Govinden, G.; Parker, J.L.; Naylor, K.L.; Frey, A.M.; Anumba, D.O.C.; Stafford, G.P. Inhibition of sialidase activity and cellular invasion by the bacterial vaginosis pathogen Gardnerella Vaginalis. Arch. Microbiol. 2018, 200, 1129–1133. [Google Scholar] [CrossRef]
- Navarro, M.A.; Li, J.; McClane, B.A.; Morrell, E.; Beingesser, J.; Uzal, F.A. NanI sialidase Is an important contributor to Clostridium Perfringens Type F Strain F4969 intestinal colonization in mice. Infect. Immun. 2018, 86, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; McClane, B.A. Contributions of NanI sialidase to Caco-2 cell adherence by Clostridium Perfringens Type A and C strains causing human intestinal disease. Infect. Immun. 2014, 82, 4620–4630. [Google Scholar] [CrossRef]
- Kim, B.R.; Park, J.-Y.; Jeong, H.J.; Kwon, H.-J.; Park, S.-J.; Lee, I.-C.; Ryu, Y.B.; Lee, W.S. Design, synthesis, and evaluation of curcumin analogues as potential inhibitors of bacterial sialidase. J. Enzym. Inhib. Med. Chem. 2018, 33, 1256–1265. [Google Scholar] [CrossRef]
- Jennings, M.P.; Day, C.J.; Atack, J.M. How bacteria utilize sialic acid during interactions with the host: Snip, snatch, dispatch, match and attach. Microbiology 2022, 168, 001157. [Google Scholar] [CrossRef] [PubMed]
- Shizukuishi, S.; Ogawa, M.; Kuroda, E.; Hamaguchi, S.; Sakuma, C.; Kakuta, S.; Tanida, I.; Uchiyama, Y.; Akeda, Y.; Ryo, A.; et al. Pneumococcal sialidase promotes bacterial survival by fine-tuning of pneumolysin-mediated membrane disruption. Cell Rep. 2024, 43, 113962. [Google Scholar] [CrossRef] [PubMed]
- Gut, H.; Xu, G.; Taylor, G.L.; Walsh, M.A. Structural basis for Streptococcus Pneumoniae NanA inhibition by influenza antivirals zanamivir and oseltamivir carboxylate. J. Mol. Biol. 2011, 409, 496–503. [Google Scholar] [CrossRef]
- Awad, M.M.; Singleton, J.; Lyras, D. The sialidase NanS enhances non-TcsL mediated cytotoxicity of Clostridium sordellii. Toxins 2016, 8, 189. [Google Scholar] [CrossRef]
- Aldape, M.; Bryant, A.; Stevens, D. Clostridium Sordellii infection: Epidemiology, clinical findings, and current perspectives on diagnosis and treatment. Clin. Infect. Dis. 2006, 43, 1436–1446. [Google Scholar] [CrossRef]
- Frey, A.M.; Satur, M.J.; Phansopa, C.; Honma, K.; Urbanowicz, P.A.; Spencer, D.I.R.; Pratten, J.; Bradshaw, D.; Sharma, A.; Stafford, G. Characterization of Porphyromonas gingivalis sialidase and disruption of its role in host-pathogen interactions. Microbiol. Read. 2019, 165, 1181–1197. [Google Scholar] [CrossRef]
- Frost, J.R.; Shaikh, S.; Severini, A. Exploring the mumps virus glycoproteins: A review. Viruses 2022, 14, 1335. [Google Scholar] [CrossRef] [PubMed]
- Rustmeier, N.H.; Strebl, M.; Stehle, T. The symmetry of viral sialic acid binding sites–implications for antiviral strategies. Viruses 2019, 11, 947. [Google Scholar] [CrossRef]
- Rood, J.I.; Adams, V.; Lacey, J.; Lyras, D.; McClane, B.A.; Melville, S.B.; Moore, R.J.; Popoff, M.R.; Sarker, M.R.; Songer, J.G.; et al. Expansion of the Clostridium Perfringens toxin-based typing scheme. Anaerobe 2018, 53, 5–10. [Google Scholar] [CrossRef]
- Pilling, D.; Sahlberg, K.; Karhadkar, T.R.; Chen, W.; Gomer, R.H. The sialidase NEU3 promotes pulmonary fibrosis in mice. Resp. Res. 2022, 23, 215. [Google Scholar] [CrossRef]
- Demina, E.P.; Smutova, V.; Pan, X.; Fougerat, A.; Guo, T.; Zou, C.; Chakraberty, R.; Snarr, B.D.; Shiao, T.C.; Roy, R.; et al. Neuraminidases 1 and 3 trigger atherosclerosis by desialylating low-density lipoproteins and increasing their uptake by macrophages. J. Amer. Heart Assoc. 2021, 10, e018756. [Google Scholar] [CrossRef]
- Lipina, C.; Nardi, F.; Grace, H.; Hundal, H.S. NEU3 sialidase as a marker of insulin sensitivity: Regulation by fatty acids. Cell. Signal. 2015, 27, 1742–1750. [Google Scholar] [CrossRef]
- Itokazu, Y.; Fuchigami, T.; Morgan, J.C.; Yu, R.K. Intranasal infusion of GD3 and GM1 gangliosides downregulates alpha-synuclein and controls tyrosine hydroxylase gene in a PD model mouse. Mol. Ther. 2021, 29, 3059–3071. [Google Scholar] [CrossRef] [PubMed]
- Tamada, Y.; Nomura, H.; Aoki, D.; Irimura, T. A possible inhibitory role of sialic acid on MUC1 in peritoneal dissemination of clear cell-type ovarian cancer cells. Molecules 2021, 26, 5962. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Zemskova, M.A.; Hanss, A.D.; Kim, M.M.; Summer, R.; Kim, K.C. Muc1 deficiency exacerbates pulmonary fibrosis in a mouse model of silicosis. Biochem. Biophys. Res. Commun. 2017, 493, 1230–1235. [Google Scholar] [CrossRef]
- Fernandez, I.E.; Eickelberg, O. The impact of TGF-β on lung fibrosis: From targeting to biomarkers. Proc. Amer. Thorac. Soc. 2012, 9, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Milara, J.; Ballester, B.; Montero, P.; Escriva, J.; Artigues, E.; Alós, M.; Pastor-Clerigues, A.; Morcillo, E.; Cortijo, J. MUC1 intracellular bioactivation mediates lung fibrosis. Thorax 2020, 75, 132. [Google Scholar] [CrossRef]
- Ballester, B.; Milara, J.; Cortijo, J. The role of mucin 1 in respiratory diseases. Eur. Respir. Rev. 2021, 30, 200149. [Google Scholar] [CrossRef]
- Mei, S.; Li, D.; Wang, A.; Zhu, G.; Zhou, B.; Li, N.; Qin, Y.; Zhang, Y.; Jiang, S. The role of sialidase Neu1 in respiratory diseases. Resp. Res. 2024, 25, 134. [Google Scholar] [CrossRef]
- Chen, W.; Pilling, D.; Gomer, R.H. The mRNA-binding protein DDX3 mediates TGF-Β1 upregulation of translation and promotes pulmonary fibrosis. JCI Insight 2023, 8, e167566. [Google Scholar] [CrossRef]
- Xiao, P.-T.; Hao, J.-H.; Kuang, Y.-J.; Dai, C.-X.; Rong, X.-L.; Jiang, L.-L.; Xie, Z.-S.; Zhang, L.; Chen, Q.-Q.; Liu, E.-H. Targeting neuraminidase 4 attenuates kidney fibrosis in mice. Adv. Sci. 2024, 11, 2406936. [Google Scholar] [CrossRef]
- Chen, Q.-Q.; Liu, K.; Shi, N.; Ma, G.; Wang, P.; Xie, H.-M.; Jin, S.-J.; Wei, T.-T.; Yu, X.-Y.; Wang, Y.; et al. Neuraminidase 1 promotes renal fibrosis development in male mice. Nat. Commun. 2023, 14, 1713. [Google Scholar] [CrossRef]
- Loomba, R.; Friedman, S.L.; Shulman, G.I. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 2021, 184, 2537–2564. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, B.; Jin, T.; Ocansey, D.K.W.; Jiang, J.; Mao, F. Intestinal fibrosis in inflammatory bowel disease and the prospects of mesenchymal stem cell therapy. Front. Immunol. 2022, 13, 835005. [Google Scholar] [CrossRef] [PubMed]
- Miklavcic, J.J.; Hart, T.D.; Lees, G.M.; Shoemaker, G.K.; Schnabl, K.L.; Larsen, B.M.K.; Bathe, O.F.; Thomson, A.B.T.; Mazurak, V.C.; Clandinin, M.T. Increased catabolism and decreased unsaturation of ganglioside in patients with inflammatory bowel disease. World Gastroenterol. 2015, 21, 10080–10090. [Google Scholar] [CrossRef]
- Finsterwalder, R.; Ganesan, M.K.; Leb, H.; Habertheuer, A.; Basilio, J.; Lang, I.; Krunic, M.; Wiedemann, D.; Petzelbauer, P. Hypoxia/reperfusion predisposes to atherosclerosis. PLoS ONE 2018, 13, e0205067. [Google Scholar] [CrossRef] [PubMed]
- Kashirskikh, D.A.; Markin, A.M.; Sobenin, I.A.; Orekhov, A.N. Study of the role of human endogenous neuraminidases in atherosclerotic lesions of the thoracic aorta. Atherosclerosis 2020, 315, e114–e115. [Google Scholar] [CrossRef]
- Fougerat, A.; Pan, X.; Smutova, V.; Heveker, N.; Cairo, C.W.; Issad, T.; Larrivée, B.; Medin, J.A.; Pshezhetsky, A.V. Neuraminidase 1 activates insulin receptor and reverses insulin resistance in obese mice. Mol. Metab. 2018, 12, 76–88. [Google Scholar] [CrossRef]
- Yujin, N.; Miwako, N.; Fumiko, K.-N. Neu1 sialidase interacts with perilipin 1 on lipid droplets and inhibits lipolysis in 3T3-L1 Adipocytes. Genes Cells 2017, 22, 485–492. [Google Scholar] [CrossRef]
- White, E.J.; Gyulay, G.; Lhoták, Š.; Szewczyk, M.M.; Chong, T.; Fuller, M.T.; Dadoo, O.; Fox-Robichaud, A.E.; Austin, R.C.; Trigatti, B.L.; et al. Sialidase down-regulation reduces non-hdl cholesterol, inhibits leukocyte transmigration, and attenuates atherosclerosis in ApoE knockout mice. J. Biol. Chem. 2018, 293, 14689–14706. [Google Scholar] [CrossRef]
- Zeng, S.; Wen, Y.; Yu, C. Desialylation of ATG5 by sialidase (NEU1) promotes macrophages autophagy and exacerbates inflammation under hypoxia. Cell. Signal. 2023, 112, 110927. [Google Scholar] [CrossRef] [PubMed]
- Packard, R.R.S.; Libby, P. Inflammation in atherosclerosis: From vascular biology to biomarker discovery and risk prediction. Clinical Chem. 2008, 54, 24–38. [Google Scholar] [CrossRef]
- Sasaki, A.; Hata, K.; Suzuki, S.; Sawada, M.; Wada, T.; Yamaguchi, K.; Obinata, M.; Tateno, H.; Suzuki, H.; Miyagi, T. Overexpression of plasma membrane-associated sialidase attenuates insulin signaling in transgenic mice. J. Biol. Chem. 2003, 278, 27896–27902. [Google Scholar] [CrossRef]
- Alghamdi, F.; Guo, M.; Abdulkhalek, S.; Crawford, N.; Amith, S.R.; Szewczuk, M.R. A Novel Insulin Receptor-Signaling Platform and Its Link to Insulin Resistance and Type 2 Diabetes. Cell. Signal. 2014, 26, 1355–1368. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.; Bai, X.-C. The Activation Mechanism of the Insulin Receptor: A Structural Perspective. Annu. Rev. Biochem. 2023, 92, 247–272. [Google Scholar] [CrossRef] [PubMed]
- Currie, G.A.; Bagshawe, K.D. Tumour Specific Immunogenicity of Methylcholanthrene-Induced Sarcoma Cells after Incubation in Neuraminidase. Br. J. Cancer 1969, 23, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Simmons, R.L.; Rios, A.; Ray, P.K. Regression of established methylcholanthrene tumors by intratumor injections of Vibrio Cholerae neuraminidase. J. Surg. Oncol. 1972, 4, 298–305. [Google Scholar] [CrossRef]
- Schengrund, C.-L.; Duff, R.; Rosenberg, A. Sialidase activity of oncogenic cells transformed by Herpes Simplex virus. Virology 1974, 58, 595–599. [Google Scholar] [CrossRef]
- Yogeeswaran, G.; Hakomori, S. Cell contact-dependent ganglioside changes in mouse 3t3 fibroblasts and a suppressed sialidase activity on cell contact. Biochemistry 1975, 14, 2151–2156. [Google Scholar] [CrossRef]
- Tringali, C.; Lupo, B.; Silvestri, I.; Papini, N.; Anastasia, L.; Tettamanti, G.; Venerando, B. The plasma membrane sialidase neu3 regulates the malignancy of renal carcinoma cells by controlling Β1 integrin internalization and recycling. J. Biol. Chem. 2012, 287, 42835–42845. [Google Scholar] [CrossRef]
- Shiga, K.; Takahashi, K.; Sato, I.; Kato, K.; Saijo, S.; Moriya, S.; Hosono, M.; Miyagi, T. Upregulation of sialidase NEU3 in head and neck squamous cell carcinoma associated with lymph node metastasis. Cancer Sci. 2015, 106, 1544–1553. [Google Scholar] [CrossRef]
- Takahashi, K.; Proshin, S.; Yamaguchi, K.; Yamashita, Y.; Katakura, R.; Yamamoto, K.; Shima, H.; Hosono, M.; Miyagi, T. Sialidase NEU3 defines invasive potential of human glioblastoma cells by regulating calpain-mediated proteolysis of focal adhesion proteins. Biochim. Biophys. Acta (BBA) Gen. Subj. 2017, 1861, 2778–2788. [Google Scholar] [CrossRef]
- Rhodes, D.R.; Yu, J.; Shanker, K.; Deshpande, N.; Varambally, R.; Ghosh, D.; Barrette, T.; Pander, A.; Chinnaiyan, A.M. ONCOMINE: A Cancer Microarray Database and Integrated Data-Mining Platform. Neoplasia 2004, 6, 1–6. [Google Scholar] [CrossRef]
- Zhou, X.; Zhai, Y.; Liu, C.; Yang, G.; Guo, J.; Li, G.; Sun, C.; Qi, X.; Li, X.; Guan, F. Sialidase NEU1 suppresses progression of human bladder cancer cells by inhibiting fibronectin-integrin A5β1 interaction and Akt signaling pathway. Cell Commun. Signal. 2020, 18, 44. [Google Scholar] [CrossRef]
- Wu, Z.; He, L.; Yang, L.; Fang, X.; Peng, L. Potential role of NEU1 in hepatocellular carcinoma: A study based on comprehensive bioinformatical analysis. Front. Mol. Biosci. 2021, 8, 651525. [Google Scholar] [CrossRef]
- Peng, Q.; Gao, L.; Cheng, H.B.; Wang, J.S.; Wang, J. Sialidase Neu1 may serve as a potential biomarker of proliferation, migration and prognosis in melanoma. World J. Oncol. 2022, 13, 222–234. [Google Scholar] [CrossRef]
- Ren, L.; Zhang, L.; Huang, S.; Zhu, Y.; Li, W.; Fang, S.; Shen, L.; Gao, Y. Effects of sialidase NEU1 siRNA on proliferation, apoptosis, and invasion in human ovarian cancer. Mol. Cell. Biochem. 2016, 411, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Tringali, C.; Lupo, B.; Anastasia, L.; Papini, N.; Monti, E.; Bresciani, R.; Tettamanti, G.; Venerando, B. Expression of sialidase Neu2 in leukemic K562 cells induces apoptosis by impairing Bcr-Abl/Src kinases signaling. J. Biol. Chem. 2007, 282, 14364–14372. [Google Scholar] [CrossRef]
- Satyavarapu, E.M.; Nath, S.; Mandal, C. Desialylation of Atg5 by sialidase (Neu2) enhances autophagosome formation to induce anchorage-dependent cell death in ovarian cancer cells. Cell Death Discov. 2021, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Nath, S.; Mandal, C.; Chatterjee, U.; Mandal, C. Association of cytosolic sialidase Neu2 with plasma membrane enhances fas-mediated apoptosis by impairing PI3K-Akt/mTOR-mediated pathway in pancreatic cancer cells. Cell Death Dis. 2018, 9, 210, Erratum in Cell Death Dis. 2022, 13, 242. [Google Scholar] [CrossRef] [PubMed]
- Koseki, K.; Wada, T.; Hosono, M.; Hata, K.; Yamaguchi, K.; Nitta, K.; Miyagi, T. Human cytosolic sialidase NEU2-low general tissue expression but involvement in PC-3 prostate cancer cell survival. Biochem. Biophys. Res. Commun. 2012, 428, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Ueno, S.; Saito, S.; Wada, T.; Yamaguchi, K.; Satoh, M.; Arai, Y.; Miyagi, T. Plasma membrane-associated sialidase is up-regulated in renal cell carcinoma and promotes interleukin-6-induced apoptosis suppression and cell motility. J. Biol. Chem. 2006, 281, 7756–7764. [Google Scholar] [CrossRef]
- Silvestri, I.; Testa, F.; Zappasodi, R.; Cairo, C.W.; Zhang, Y.; Lupo, B.; Galli, R.; Di Nicola, M.; Venerando, B.; Tringali, C. Sialidase NEU4 is involved in glioblastoma stem cell survival. Cell Death Dis. 2014, 5, e1381. [Google Scholar] [CrossRef]
- Tringali, C.; Cirillo, F.; Lamorte, G.; Papini, N.; Anastasia, L.; Lupo, B.; Silvestri, I.; Tettamanti, G.; Venerando, B. NEU4L sialidase overexpression promotes Β-catenin signaling in neuroblastoma cells, enhancing stem-like malignant cell growth. Int. J. Cancer 2012, 131, 1768–1778. [Google Scholar] [CrossRef]
- Shi, J.; Zhou, R.; Wang, S.; Liu, Y.; Tian, B.; Liu, Y.; Chen, Y.; Hu, T.; Mu, Y.; Wang, S.; et al. NEU4-mediated desialylation enhances the activation of the oncogenic receptors for the dissemination of ovarian carcinoma. Oncogene 2024, 43, 3556–3569. [Google Scholar] [CrossRef]
- Rosenberg, A.; Schengrund, C.L. Gangliosides, glycosidases, and sialidase in the brain and eyes of developing chickens. Biochemistry 1971, 10, 2424–2428. [Google Scholar] [CrossRef] [PubMed]
- Ohman, R.; Svennerholm, L. The activity of ganglioside sialidase in the developing human brain. J. Neurochem. 1971, 18, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Melo-Braga, M.N.; Schulz, M.; Liu, Q.; Swistowski, A.; Palmisano, G.; Engholm-Keller, K.; Jakobsen, L.; Zeng, X.; Larsen, M.R. Comprehensive quantitative comparison of the membrane proteome, phosphoproteome, and sialiome of human embryonic and neural stem cells. Mol. Cell. Proteomics 2014, 13, 311–328. [Google Scholar] [CrossRef]
- Takahashi, K.; Mitoma, J.; Hosono, M.; Shiozaki, K.; Sato, C.; Yamaguchi, K.; Kitajima, K.; Higashi, H.; Nitta, K.; Shima, H.; et al. Sialidase NEU4 hydrolyzes polysialic acids of neural cell adhesion molecules and negatively regulates neurite formation by hippocampal neurons. J. Biol. Chem. 2012, 287, 14816–14826. [Google Scholar] [CrossRef]
- Honda, A.; Hayasaka, O.; Mio, K.; Fujimura, K.; Kotani, T.; Komatsu, M.; Shiozaki, K. The involvement of Nile Tilapia (Oreochromis niloticus) Neu4 sialidase in neural differentiation during early ontogenesis. Biochimie 2021, 185, 105–116. [Google Scholar] [CrossRef]
- Shiozaki, K.; Koseki, K.; Yamaguchi, K.; Shiozaki, M.; Narimatsu, H.; Miyagi, T. Developmental change of sialidase Neu4 expression in murine brain and its involvement in the regulation of neuronal cell differentiation. J. Biol. Chem. 2009, 284, 21157–21164. [Google Scholar] [CrossRef]
- Yu, R.K.; Macala, L.J.; Taki, T.; Weinfeld, H.M.; Yu, F.S. Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J. Neurochem. 1988, 50, 1825–1829. [Google Scholar] [CrossRef]
- Yu, R.K.; Tsai, Y.-T.; Ariga, T. Functional Roles of Gangliosides in Neurodevelopment: An Overview of Recent Advances. Neurochem. Res. 2012, 37, 1230–1244. [Google Scholar] [CrossRef] [PubMed]
- Kracun, I.; Rosner, H.; Drnovsek, V.; Vukelic, Z.; Cosovic, C.; Trbojevic-Cepe, M.; Kubat, M. Gangliosides in the human brain development and aging. Neurochem. Int. 1992, 20, 421–431. [Google Scholar] [CrossRef]
- Ha, K.-T.; Lee, Y.-C.; Cho, S.-H.; Kim, J.-K.; Kim, C.-H. Molecular characterization of membrane type and ganglioside-specific sialidase (Neu3) expressed in E. coli. Mol. Cells 2004, 17, 267–273. [Google Scholar] [CrossRef]
- Sipione, S.; Monyror, J.; Galleguillos, D.; Steinberg, N.; Kadam, V. Gangliosides in the brain: Physiology, pathophysiology and therapeutic applications. Front. Neurosci. 2020, 14, 572965. [Google Scholar] [CrossRef]
- McClenahan, F.; Dimitriou, C.; Koutsakis, C.; Dimitrakopoulos, D.; Arampatzis, A.; Kakouri, P.; Kourla, M.; Oikonomou, S.; Andreopoulou, E.; Patsonis, M.; et al. Isolation of neural stem and oligodendrocyte progenitor cells from the brain of live rats. Stem Cell Rep. 2021, 16, 2534–2547. [Google Scholar] [CrossRef] [PubMed]
- Fanzani, A.; Colombo, F.; Giuliani, R.; Preti, A.; Marchesini, S. Cytosolic sialidase Neu2 upregulation during PC12 cells differentiation. FEBS Lett. 2004, 566, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Akyildiz Demir, S.; Seyrantepe, V. Identification of cytoplasmic sialidase NEU2-associated proteins by LC-MS/MS. Turk. J. Biochem. 2019, 44, 462–472. [Google Scholar] [CrossRef]
- Bachir, A.I.; Horwitz, A.R.; Nelson, W.J.; Bianchini, J.M. Actin-Based adhesion modules mediate cell interactions with the extracellular matrix and neighboring cells. Cold Spring Harb. Perspect. Biol. 2017, 9, a023234. [Google Scholar] [CrossRef]
- Gentile, J.E.; Carrizales, M.G.; Koleske, A.J. Control of synapse structure and function by actin and its regulators. Cells 2022, 11, 603. [Google Scholar] [CrossRef]
- Sajo, M.; Sugiyama, H.; Yamamoto, H.; Tanii, T.; Matsuki, N.; Ikegaya, Y.; Koyama, R. Neuraminidase-dependent degradation of polysialic acid is required for the lamination of newly generated neurons. PLoS ONE 2016, 11, e0146398. [Google Scholar] [CrossRef]
- Fremuth, L.E.; Hu, H.; van de Vlekkert, D.; Annunziata, I.; Weesner, J.A.; d’Azzo, A. Neuraminidase 1 Regulates neuropathogenesis by governing the cellular state of microglia via modulation of Trem2 sialylation. Cell Rep. 2025, 44, 115204. [Google Scholar] [CrossRef]
- Minami, A.; Meguro, Y.; Ishibashi, S.; Ishii, A.; Shiratori, M.; Sai, S.; Horii, Y.; Shimizu, H.; Fukumoto, H.; Shimba, S.; et al. Rapid regulation of sialidase activity in response to neural activity and sialic acid removal during memory processing in rat hippocampus. J. Biol. Chem. 2017, 292, 5645–5654. [Google Scholar] [CrossRef]
- Minami, A.; Otsubo, T.; Ieno, D.; Ikeda, K.; Kanazawa, H.; Shimizu, K.; Ohata, K.; Yokochi, T.; Horii, Y.; Fukumoto, H.; et al. Visualization of sialidase activity in mammalian tissues and cancer detection with a novel fluorescent sialidase substrate. PLoS ONE 2014, 9, e81941. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, H.; Dityatev, A. Polysialic acid in brain development and synaptic plasticity. In SialoGlyco Chemistry and Biology I: Biosynthesis, Structural Diversity and Sialoglycopathologies; Gerardy-Schahn, R., Delannoy, P., von Itzstein, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 55–96. ISBN 978-3-662-47940-7. [Google Scholar] [CrossRef]
- Varbanov, H.; Jia, S.; Kochlamazashvili, G.; Bhattacharya, S.; Buabeid, M.A.; El Tabbal, M.; Hayani, H.; Stoyanov, S.; Sun, W.; Thiesler, H.; et al. Rescue of synaptic and cognitive functions in polysialic acid-deficient mice and dementia models by short polysialic acid fragments. Neurobiol. Dis. 2023, 180, 106079. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-C.; Stein, J.W.; Lynch, C.L.; Tran, H.T.; Lee, C.-Y.; Coleman, R.; Hatch, A.; Antontsev, V.G.; Chy, H.S.; O’Brien, C.M.; et al. Glycosyltransferase ST6GAL1 contributes to the regulation of pluripotency in human pluripotent stem cells. Sci. Rep. 2015, 5, 13317. [Google Scholar] [CrossRef]
- Simpson, M.A.; Cross, H.; Proukakis, C.; Priestman, D.A.; Neville, D.C.A.; Reinkensmeier, G.; Wang, H.; Wiznitzer, M.; Gurtz, K.; Verganelaki, A.; et al. Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nat. Genet. 2004, 36, 1225–1229. [Google Scholar] [CrossRef]
- Husain, S.; Yildirim-Toruner, C.; Rubio, J.P.; Field, J. Variants of ST8SIA1 are associated with risk of developing multiple sclerosis. PLoS ONE 2008, 3, e2653. [Google Scholar] [CrossRef] [PubMed]
- Pshezhetsky, A.V.; Richard, C.; Michaud, L.; Igdoura, S.; Wang, S.; Elsliger, M.-A.; Qu, J.; Leclerc, D.; Gravel, R.; Dallaire, L. Cloning, expression and chromosomal mapping of human lysosomal sialidase and characterization of mutations in sialidosis. Nat. Genet. 1997, 15, 316–320. [Google Scholar] [CrossRef]
- Lowden, J.; O’brien, J. Sialidosis: A review of human neuraminidase deficiency. Amer. J. Hum. Genet. 1979, 31, 1–18. [Google Scholar] [PubMed Central]
- Fan, S.-P.; Lee, N.-C.; Lin, C.-H. Clinical and electrophysiological characteristics of a type 1 sialidosis patient with a novel deletion mutation in NEU1 gene. J. Formos. Med. Assoc. 2020, 119, 406–412. [Google Scholar] [CrossRef]
- Canafoglia, L.; Robbiano, A.; Pareyson, D.; Panzica, F.; Nanetti, L.; Giovagnoli, A.R.; Venerando, A.; Gellera, C.; Franceschetti, S.; Zara, F. Expanding sialidosis spectrum by genome-wide screening. Neurology 2014, 82, 2003–2006. [Google Scholar] [CrossRef]
- Peng, M.L.; Chau, S.F.; Chien, J.Y.; Woon, P.Y.; Chen, Y.C.; Cheang, W.M.; Tsai, H.Y.; Huang, S.P. Genetic insights and clinical implications of NEU1 mutations in sialidosis. Genes 2025, 16, 151. [Google Scholar] [CrossRef] [PubMed]
- van der Spoel, A.; Bonten, E.; d’Azzo, A. Transport of human lysosomal neuraminidase to mature lysosomes requires protective protein/cathepsin A. EMBO J. 1998, 17, 1588–1597. [Google Scholar] [CrossRef]
- Dorsey, E.R.; Sherer, T.; Okun, M.S.; Bloem, B.R. The emerging evidence of the parkinson pandemic. J. Park. Dis. 2018, 8, S3–S8. [Google Scholar] [CrossRef] [PubMed]
- Hadjiconstantinou, N.; Rossetti, Z.; Paxton, R.; Neff, N. Administration of GMI ganglioside restores the dopamine content in striatum after chronic treatment with MPTP. Neuropharmacology 1986, 25, 1075–1077. [Google Scholar] [CrossRef]
- Herrero, M.; Perez-Otan, I.; Oset, C.; Kastner, A.; Hirsch, E.; Luquin, M.; Obes, J.; Del Rio, J. GM-1 Ganglioside promotes the recovery of surviving midbrain dopaminergic neurons in MPTP-treated monkeys. J. Neurosci. 1993, 56, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Pope-Coleman, A.; Schneider, J. Effects of chronic GM1 ganglioside treatment on cognitieve and motor deficits in a slowly progressing model of parkinsonism in non-human primates. Restor. Neurol. Neurosci. 1998, 12, 255–266. [Google Scholar] [CrossRef]
- Wu, G.; Lu, Z.; Kulkarni, N.; Ledeen, R.W. Deficiency of ganglioside GM1 correlates with parkinson’s disease in mice and humans. J. Neurosci. Res. 2012, 90, 1997–2008. [Google Scholar] [CrossRef]
- Schneider, J.S. GM1 ganglioside as a disease-modifying therapeutic for parkinson’s disease: A multi-functional glycosphingolipid that targets multiple parkinson’s disease-relevant pathogenic mechanisms. Int. J. Mol. Sci. 2023, 24, 9183. [Google Scholar] [CrossRef]
- Mata, C.S.V.; Mitchell, J.C. In-Vivo synthesis of GM1 ganglioside through CRISPR-Cas9 mutation in CHO-K1, chinese hamster ovary cells (Cricetulus griseus). FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Di Biase, E.; Lunghi, G.; Maggioni, M.; Fazzari, M.; Pomè, D.Y.; Loberto, N.; Ciampa, M.G.; Fato, P.; Mauri, L.; Sevin, E.; et al. GM1 oligosaccharide crosses the human blood–brain barrier in vitro by a paracellular route. Int. J. Mol. Sci. 2020, 21, 2858. [Google Scholar] [CrossRef]
- Schneider, J.S.; Seyfried, T.N.; Choi, H.-S.; Kidd, S.K. Intraventricular sialidase administration enhances GM1 ganglioside expression and is partially neuroprotective in a mouse model of parkinson’s disease. PLoS ONE 2015, 10, e0143351. [Google Scholar] [CrossRef]
- Chiricozzi, E.; Mauri, L.; Lunghi, G.; Di Biase, E.; Fazzari, M.; Maggioni, M.; Valsecchi, M.; Prioni, S.; Loberto, N.; Pomè, D.Y. Parkinson’s disease recovery by GM1 oligosaccharide treatment in the B4galnt1+/− mouse model. Sci. Rep. 2019, 9, 19330. [Google Scholar] [CrossRef]
- Wu, G.; Lu, Z.-H.; Seo, J.H.; Alselehdar, S.K.; DeFrees, S.; Ledeen, R.W. Mice deficient in GM1 manifest both motor and non-motor symptoms of parkinson’s disease; successful treatment with synthetic GM1 ganglioside. Exper. Neurol. 2020, 329, 113284. [Google Scholar] [CrossRef]
- Timur, Z.K.; Inci, O.K.; Demir, S.A.; Seyrantepe, V. Sialidase Neu4 deficiency is associated with neuroinflammation in mice. Glycoconj. J. 2021, 38, 649–667. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, C. Microglia and neurodegeneration: The role of systemic inflammation. Glia 2013, 61, 71–90. [Google Scholar] [CrossRef] [PubMed]
- Delaveris, C.S.; Wang, C.L.; Riley, N.M.; Li, S.; Kulkarni, R.U.; Bertozzi, C.R. Microglia mediate contact-independent neuronal network remodeling via secreted neuraminidase-3 associated with extracellular vesicles. ACS Cent. Sci. 2023, 9, 2108–2114. [Google Scholar] [CrossRef]
- Annunziata, I.; Patterson, A.; Helton, D.; Hu, H.; Moshiach, S.; Gomero, E.; Nixon, R.; d’Azzo, A. Lysosomal NEU1 deficiency affects amyloid precursor protein levels and amyloid-β secretion via deregulated lysosomal exocytosis. Nat. Commun. 2013, 4, 2734. [Google Scholar] [CrossRef]
- Choo-Smith, L.-P.; Garzon-Rodriguez, W.; Glabe, C.G.; Surewicz, W.K. Acceleration of amyloid fibril formation by specific binding of abeta-(1-40) peptide to ganglioside-containing membrane vesicles. J. Biol. Chem. 1997, 272, 22987–22990. [Google Scholar] [CrossRef]
- Williamson, M.P.; Suzuki, Y.; Bourne, N.T.; Asakura, T. Binding of amyloid β-peptide to ganglioside micelles is dependent on histidine-13. Biochem. J. 2006, 397, 483–490. [Google Scholar] [CrossRef]
- Yanagisawa, K. Role of gangliosides in alzheimer’s disease. Biochim. Biophys. Acta (BBA)-Biomembr. 2007, 1768, 1943–1951. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.A.; Henry, J.E.; Good, T.A. Attenuation of β-amyloid-induced toxicity by sialic-acid-conjugated dendrimers: Role of sialic acid attachment. Brain Res. 2007, 1161, 95–105. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.; Ughetto, S.; Mahjoum, S.; Nair, A.V.; Breakefield, X.O. Uptake, functionality, and re-release of extracellular vesicle-encapsulated cargo. Cell Rep. 2022, 39, 110651. [Google Scholar] [CrossRef]
- Sanderson, R.D.; Bandari, S.K.; Vlodavsky, I. Proteases and glycosidases on the surface of exosomes: Newly discovered mechanisms for extracellular remodeling. Matrix Biol. 2019, 7576, 160–169. [Google Scholar] [CrossRef]
- Hardy, J.A.; Higgins, G.A. Alzheimer’s Disease: The amyloid cascade hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef]
- Patel, M.; Wang, Y.; Bartom, E.T.; Dhir, R.; Nephew, K.P.; Matei, D.; Murmann, A.E.; Lengyel, E.; Peter, M.E. The ratio of toxic-to-nontoxic mirnas predicts platinum sensitivity in ovarian cancer. Cancer Res. 2021, 81, 3985–4000. [Google Scholar] [CrossRef]
- Paudel, B.; Jeong, S.-Y.; Martinez, C.P.; Rickman, A.; Haluck-Kangas, A.; Bartom, E.T.; Fredriksen, K.; Affaneh, A.; Kessler, J.A.; Mazzulli, J.R.; et al. Death induced by survival gene elimination (DISE) correlates with neurotoxicity in alzheimer’s disease and aging. Nat. Commun. 2024, 15, 264. [Google Scholar] [CrossRef]
Human Sialidase | Catalytic Substrate Specificity | Subcellular Distribution | pH Optimum | Examples of Associated Diseases |
---|---|---|---|---|
NEU1 | β2 integrin and ICAM-1 [15]; α2,6-linked Sia [16]; oligosaccharides and short glycopeptides [17] | Intra-lysosomal [1,18]; plasma membrane [19] | 4.5–4.7 [20] | Sialidosis [21,22], fibrosis [23], and cardiovascular [24] |
NEU2 | Oligosaccharides, glycopeptides, and gangliosides [25] | Cytosol [18] | 5.6 [25] | Lipid metabolism/-motor function [26] |
NEU3 | Gangliosides except GM1 and GM2 [7], EGFR [27], and α2,6-linked Sia [16] | Outer surface of the plasma membrane and endo-somes [7,18,28] | 4.5–4.8 and 6.0–6.5 [3] | Fibrosis [9], cancer (e.g., [29,30]), neuronal function [12,14] |
NEU4 | Oligosaccharides, glycoproteins, and gangliosides [31] | Lysosomes, NEU4l 1 mitochondria and NEU4s endoplasmic reticulum [18,31,32] | 3.5 is optimum but remains active over a range of pH [31] | Neuronal function [12], clearance of sialidosis and galactosialidosis products from cells ([31], recent review [33]), and inhibition of colon cancer cell motility and growth [34] |
Ganglioside | Saccharide Composition |
---|---|
GD1α | Neu5Acα2-3aGalβ1-3(Neu5Acα2-6b)GalNAcβ1-4Galβ1-4Glcβ1-c |
GM3 | Neu5Acα2-3Galβ1-4Glcβ1- |
GM2 | GalNAcβ1-4(Neu5Acα2-3)Galβ1-4Glcβ1- |
GM1a | Galβ1-3GalNAcβ1-4(Neu5Acα2-3) Galβ1-4Glcβ1- |
GD1a | Neu5Acα2-3Galβ1-3GalNAcβ1-4(Neu5Acα2-3) Galβ1-4Glcβ1- |
GT1a | Neu5Acα2-8Neu5Acα2-3Galβ1-3GalNAcβ1-4(Neu5Acα2-3)Galβ1-4Glcβ1- |
GD3 | Neu5Acα2-8Neu5Acα2-3Galβ1-4Glcβ1- |
GD2 | GalNAcβ1-4 (Neu5Acα2-8Neu5Acα2-3)Galβ1-4Glcβ1- |
GD1b | Galβ1-3GalNAcβ1-4 (Neu5Acα2-8Neu5Acα2-3)Galβ1-4Glcβ1- |
GT1b | Neu5Acα2-3Galβ1-3GalNAcβ1-4 (Neu5Acα2-8Neu5Acα2-3)Galβ1-4Glcβ1- |
GQ1b | Neu5Acα2-8Neu5Acα2-3Galβ1-3GalNAcβ1-4 (Neu5Acα2-8Neu5Acα2-3)Galβ1-4Glcβ1- |
GT3 | Neu5Acα2-8Neu5Acα2-8Neu5Acα2-3Galβ1-4Glcβ1- |
GT2 | GalNAcβ1-4(Neu5Acα2-8Neu5Acα2-8Neu5Acα2-3)Galβ1-4Glcβ1- |
GT1c | Galβ1-3GalNAcβ1-4(Neu5Acα2-8Neu5Acα2-8Neu5Acα2-3)Galβ1-4Glcβ1- |
hNEU | Cancer | NEU Expression and Cellular Effect | Mechanism NEU Affects |
---|---|---|---|
1 | Bladder | Increased NEU1 expression correlates with improved prognosis; increased apoptosis and reduced mobility of cancer cells [157]. | Disrupted FN-integrin α5β1 interaction; inactivated Akt signaling pathway [157]. |
Hepatocellular carcinoma | Tend to see increased NEU1 correlate with increased grade or stage and higher mRNA for NEU1 correlated with poorer survival, indicating that it could be used as a prognostic marker [158]. | Higher NEU1 expression correlated with the inhibition of immune function, as indicated by fewer B, CD8+ T, NK, and T helper cells [158]. | |
Melanoma | Increased NEU1 enhanced proliferation and tumor progression of melanoma cells. Potential biomarker for diagnosis [159]. | Enhanced expression of CDK2 and CD44; decreased expression of CASP3 and CASP8 [159]. | |
Ovarian | NEU1 siRNA inhibited proliferation, enhanced apoptosis and decreased invasion by cancer cells [160]. | Reduced expression of ATP5B and ATP5J [160]. | |
2 | Myeloid leukemia | Suppression: NEU2 is not normally expressed by K562 chronic myeloid leukemia cells [161]. | Expression of NEU2 impairs Bcr-Abl activity, modifying signaling and making the cells more sensitive to apoptotic stimuli [161]. |
Ovarian | Decreased expression, enhanced apoptosis [162]. | Decreased desialylation of Atg5 decreases the autophagosome formation needed to induce anchorage-dependent cell death of ovarian cancer cells [162]. | |
Pancreatic ductal adenocarcinoma | Reduced expression reduced apoptosis and enhanced cell migration [163]. | Induction of the overexpression of NEU2 resulted in its association with plasma membrane-associated Fas. Catalyzed release of α2-6 sialyl residues induce apoptosis. Additionally, reduced migration and invasion [163]. | |
Prostate | Relatively high expression of NEU2 needed for cell survival and motility [164]. | Cell survival and motility required NEU2, with elevated NEU2 expression dependent upon the expression of Runx2 and Sp3 [164]. | |
3 | Bladder | Highly expressed, NEU3 contributes to bladder cancer cell invasiveness [30]. | NEU3 activates ERK and PI3K signaling [30]. |
Colon | Elevated in restricted cases of human colon cancer [29]. | NEU3 inhibited apoptosis, and was accompanied by increased Bcl-2 and lactosyl ceramide, plus a decrease in caspase [29]. Can activate EGFR by catalyzing removal of its sialyl residues [27]. | |
Glioblastoma multiforme | Down-regulation of NEU3 expression disrupted focal adhesions, enhancing invasion and migration [155]. | Reduced NEU3 resulted in reduced calpain-dependent proteolysis and GM3 [155]. | |
Head and neck squamous cell carcinoma | Up-regulated expression of NEU3 promoted cell mobility and invasion [154]. | Enhanced phosphorylation of epidermal growth factor receptor (EGFR), and an EGFR inhibitor, AG1478 [154]. | |
Renal cell carcinoma | Increased NEU3 mRNA, suppresses apoptosis and promotes cell motility [165]. | Increase in Gal-Cer and IL6-mediated signaling [165], controls the activation of EGFR, ß1-integrin and focal adhesion kinase (FAK)/protein kinase B (AKT) signaling [153] | |
4 | Colon | Decreased expression is associated with increased cell invasion and proliferation [34]. | Can catalyze desialylation of sialyl Lewis antigens expressed on O-glycans [34]. |
Glioblastoma, most lethal brain tumor | Upregulated in glioblastoma stem cells and their maintenance [166]. | Maintenance of the SHH and Wnt/β-catenin pathways that promote an embryonic stem cell-like gene expression signature [166]. | |
Neuroblastoma | NH4l is overexpressed in neuroblastoma cells. There is an enhanced proliferation rate and a more undifferentiated phenotype [167]. | Hyperactivation of the Wnt/β-catenin signaling pathway [167]. | |
Ovarian carcinoma | Increased NEU4 in disseminated cells correlates with poorer survival [168]. | Enhanced cancer cell motility and epithelial-mesenchymal transition desialylated EGFR, activating it [168]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schengrund, C.-L. Sialidases as Potential Therapeutic Targets for Treatment of a Number of Human Diseases. Int. J. Mol. Sci. 2025, 26, 8733. https://doi.org/10.3390/ijms26178733
Schengrund C-L. Sialidases as Potential Therapeutic Targets for Treatment of a Number of Human Diseases. International Journal of Molecular Sciences. 2025; 26(17):8733. https://doi.org/10.3390/ijms26178733
Chicago/Turabian StyleSchengrund, Cara-Lynne. 2025. "Sialidases as Potential Therapeutic Targets for Treatment of a Number of Human Diseases" International Journal of Molecular Sciences 26, no. 17: 8733. https://doi.org/10.3390/ijms26178733
APA StyleSchengrund, C.-L. (2025). Sialidases as Potential Therapeutic Targets for Treatment of a Number of Human Diseases. International Journal of Molecular Sciences, 26(17), 8733. https://doi.org/10.3390/ijms26178733