Swiprosin-1 Negatively Regulates Osteoclast Differentiation and Bone Resorption via Akt/MAPK/NF-κB Pathway and αvβ3 Integrin-Dependent Signaling
Abstract
1. Introduction
2. Results
2.1. SWS1 Is Downregulated During Osteoclastogenesis and Suppresses Osteoclast Differentiation and Function
2.2. SWS1 Knockdown Enhances RANKL-Induced Signaling and Osteoclast-Related Gene Expression
2.3. SWS1 Deficiency Promotes Osteoclast Hyperactivation and Trabecular Bone Loss In Vivo and Ex Vivo
2.4. SWS1 Modulates Osteoclast Cytoskeletal Signaling via the Src–Syk–Cbl–Cortactin Pathway
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Animal Experiments
4.3. Cell Culture
4.4. Cell Proliferation Assay
4.5. F-Actin Ring Formation and Immunofluorescence
4.6. Bone Resorption Assay
4.7. Quantitative Real-Time PCR (qRT-PCR)
4.8. Western Blotting
4.9. siRNA Transfection
4.10. Micro-Computed Tomography (Micro-CT)
4.11. Histological Staining
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SWS1 | Swiprosin-1 |
KO | Knockout |
NF-κB | Nuclear factor-kappa B |
RANK | Receptor activator of NF-κB |
TRAFs | Tumor necrosis factor receptor-associated factors |
MAPKs | Mitogen-activated protein kinases |
NFATc1 | Nuclear factor of activated T cells cytoplasmic 1 |
OSCAR | Osteoclast-associated receptor |
Atp6v0d2 | v-ATPase subunit d2 |
Ctsk | Cathepsin K |
EFhd2 | EF-hand domain-containing protein 2 |
LPS | Lipopolysaccharide |
SH3 | Src homology 3 |
MNCs | Multinucleated cells |
BV | Bone volume |
Tb.Sp | Trabecular separation |
Tb.Th | Trabecular thickness |
Tb.N | Trabecular number |
BMD | Bone mineral density |
Oc.S/BS | Osteoclast surface per bone surface |
M-CSF | Macrophage colony-stimulating factor |
IACUC | Institutional Animal Care and Use Committee |
BMM | Bone marrow-derived macrophage |
WT | Wild-type |
DAPI | 4′, 6-diamidino-2-phenylindole dihydrochloride |
VitD3 | 1,25-dihydroxyvitamin D3 |
PGE2 | Prostaglandin E2 |
qRT-PCR | Quantitative Real Time-PCR |
PBS | Phosphate-buffered saline |
TBST | Tris-buffered saline with 0.1% Tween 20 |
siRNA | Small interfering RNA |
siSWS1 | siRNA for SWS1 |
Micro-CT | Micro-computed tomography |
References
- Robling, A.G.; Castillo, A.B.; Turner, C.H. Biomechanical and molecular regulation of bone remodeling. Annu. Rev. Biomed. Eng. 2006, 8, 455–498. [Google Scholar] [CrossRef]
- Peacock, M. Calcium metabolism in health and disease. Clin. J. Am. Soc. Nephrol. 2010, 5, S23–S30. [Google Scholar] [CrossRef]
- Kobayashi, N.; Kadono, Y.; Naito, A.; Matsumoto, K.; Yamamoto, T.; Tanaka, S.; Inoue, J. Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J. 2001, 20, 1271–1280. [Google Scholar] [CrossRef]
- Darnay, B.G.; Haridas, V.; Ni, J.; Moore, P.A.; Aggarwal, B.B. Characterization of the intracellular domain of receptor activator of NF-κB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-κB and c-Jun N-terminal kinase. J. Biol. Chem. 1998, 273, 20551–20555. [Google Scholar] [CrossRef]
- Takayanagi, H. Osteoimmunology: Shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 2007, 7, 292–304. [Google Scholar] [CrossRef]
- Nedeva, I.R.; Vitale, M.; Elson, A.; Hoyland, J.A.; Bella, J. Role of OSCAR signaling in osteoclastogenesis and bone disease. Front. Cell Dev. Biol. 2021, 9, 641162. [Google Scholar] [CrossRef]
- Nakamura, I.; Duong, L.T.; Rodan, S.B.; Rodan, G.A. Involvement of αvβ3 integrins in osteoclast function. J. Bone Miner. Metab. 2007, 25, 337–344. [Google Scholar] [CrossRef]
- Wu, H.; Xu, G.; Li, Y.P. Atp6v0d2 is an essential component of the osteoclast-specific proton pump that mediates extracellular acidification in bone resorption. J. Bone Miner. Res. 2008, 24, 871–885. [Google Scholar] [CrossRef]
- Lotinun, S.; Kiviranta, R.; Matsubara, T.; Alzate, J.A.; Neff, L.; Lüth, A.; Koskivirta, I.; Kleuser, B.; Vacher, J.; Vuorio, E.; et al. Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation. J. Clin. Investig. 2013, 123, 666–681. [Google Scholar] [CrossRef]
- Vuadens, F.; Rufer, N.; Kress, A.; Corthésy, P.; Schneider, P.; Tissot, J.D. Identification of swiprosin 1 in human lymphocytes. Proteomics 2004, 4, 2216–2220. [Google Scholar] [CrossRef]
- Tu, Y.; Zhang, L.; Tong, L.; Wang, Y.; Zhang, S.; Wang, R.; Li, L.; Wang, Z. EFhd2/swiprosin-1 regulates LPS-induced macrophage recruitment via enhancing actin polymerization and cell migration. Int. Immunopharmacol. 2018, 55, 263–271. [Google Scholar] [CrossRef]
- Avramidou, A.; Kroxzek, C.; Lang, C.; Schuh, W.; Jäck, H.M.; Mielenz, D. The novel adaptor protein Swiprosin-1 enhances BCR signals and contributes to BCR-induced apoptosis. Cell Death Differ. 2007, 14, 1936–1947. [Google Scholar] [CrossRef]
- Kroczek, C.; Lang, C.; Brachs, S.; Grohmann, M.; Dütting, S.; Schweizer, A.; Nitschke, L.; Feller, S.M.; Jäck, H.-M.; Mielenz, D. Swiprosin-1/EFhd2 controls B cell receptor signaling through the assembly of the B cell receptor, Syk, and phospholipase C γ2 in membrane rafts. J. Immunol. 2010, 184, 3665–3676. [Google Scholar] [CrossRef]
- Ramesh, T.P.; Kim, Y.-D.; Kwon, M.-S.; Jun, C.-D.; Kim, S.-W. Swiprosin-1 regulates cytokine expression of human mast cell line HMC-1 through actin remodeling. Immune Netw. 2009, 9, 274–284. [Google Scholar] [CrossRef]
- Kogias, G.; Kornhuber, J.; Reimer, D.; Mielenz, D.; Müller, C.P. Swiprosin-1/ EFhd2: From immune regulator to personality and brain disorders. Neurosignals 2019, 27, 1–19. [Google Scholar] [CrossRef]
- Huh, Y.H.; Oh, S.; Yeo, Y.R.; Chae, I.H.; Kim, S.H.; Lee, J.S.; Yun, S.J.; Choi, K.Y.; Ryu, J.-H.; Jun, C.-D.; et al. Swiprosin-1 stimulates cancer invasion and metastasis by increasing the Rho family of GTPase signaling. Oncotarget 2015, 6, 13060–13071. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Tu, Y.; Sun, Y.-M.; Li, Y.; Wang, R.-M.; Cao, Y.; Li, L.; Zhang, L.-C.; Wang, Z.-B. Swiprosin-1 deficiency impairs macrophage immune response of septic mice. J. Clin. Investig. 2018, 3, e95396. [Google Scholar] [CrossRef]
- Dütting, S.; Brachs, S.; Mielenz, D. Fraternal twins: Swiprosin-1/EFhd2 and Swiprosin-2/EFhd1, two homologous EF-hand containing calcium binding adaptor proteins with distinct functions. Cell Commun. Signal. 2011, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Seales, E.C.; Micoli, K.J.; McDonald, J.M. Calmodulin is a critical regulator of osteoclastic differentiation, function, and survival. J. Cell. Biochem. 2006, 97, 45–55. [Google Scholar] [CrossRef]
- Lee, S.-H.; Ihn, H.J.; Park, E.K.; Kim, J.-E. S100 calcium-binding protein P secreted from megakaryocytes promotes osteoclast maturation. Int. J. Mol. Sci. 2021, 22, 6129. [Google Scholar] [CrossRef] [PubMed]
- Wada, T.; Nakashima, T.; Hiroshi, N.; Penninger, J.M. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol. Med. 2006, 12, 17–25. [Google Scholar] [CrossRef]
- Boyle, W.J.; Simonet, W.S.; Lacey, D.L. Osteoclast differentiation and activation. Nature 2003, 423, 337–342. [Google Scholar] [CrossRef]
- Takayanagi, H. Mechanistic insight into osteoclast differentiation in osteoimmunology. J. Mol. Med. 2005, 83, 170–179. [Google Scholar] [CrossRef]
- Boyce, B.F.; Xing, L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch. Biochem. Biophys. 2008, 473, 139–146. [Google Scholar] [CrossRef]
- Asagiri, M.; Takayanagi, H. The molecular understanding of osteoclast differentiation. Bone 2007, 40, 251–264. [Google Scholar] [CrossRef]
- Kim, K.; Kim, J.H.; Lee, J.; Jin, H.M.; Kook, H.; Kim, K.K.; Lee, S.Y.; Kim, N. MafB negatively regulates RANKL-mediated osteoclast differentiation. Blood 2007, 109, 3253–3259. [Google Scholar] [CrossRef]
- Kim, N.; Takami, M.; Rho, J.; Josien, R.; Choi, Y. A novel member of the leukocyte receptor complex regulates osteoclast differentiation. J. Exp. Med. 2002, 195, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Koga, T.; Inui, M.; Inoue, K.; Kim, S.; Suematsu, A.; Kobayashi, E.; Iwata, T.; Ohnishi, H.; Matozaki, T.; Kodama, T.; et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 2004, 428, 758–763. [Google Scholar] [CrossRef] [PubMed]
- Duong, L.T.; Rodan, G.A. Integrin-mediated signaling in the regulation of osteoclast adhesion and activation. Front. Biosci. 1998, 3, d757–d768. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Kitaura, H.; Reeve, J.; Long, F.; Tybulewicz, V.L.J.; Shattil, S.; Ginsberg, M.H.; Ross, F.P.; Teitelbaum, S.L. Syk, c-Src, the αvβ3 integrin, and ITAM immunoreceptors, in concert, regulate osteoclastic bone resorption. J. Cell Biol. 2007, 176, 877–888. [Google Scholar] [CrossRef]
- Izawa, T.; Zou, W.; Chappel, J.C.; Ashley, J.W.; Feng, X.; Teitelbaum, S.L. c-Src links a RANK/αvβ3 integrin complex to the osteoclast cytoskeleton. Mol. Cell. Biol. 2012, 32, 2943–2953. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Amling, M.; Neff, L.; Peyman, A.; Uhlmann, E.; Levy, J.B.; Baron, R. c-Cbl is downstream of c-Src in a signalling pathway necessary for bone resorption. Nature 1996, 383, 528–531. [Google Scholar] [CrossRef]
- Chen, K.; Ng, P.Y.; Chen, R.; Hu, D.; Berry, S.; Baron, R.; Gori, F. Sfrp4 repression of the Ror2/Jnk cascade in osteoclasts protects cortical bone from excessive endosteal resorption. Proc. Natl. Acad. Sci. USA 2019, 116, 14138–14143. [Google Scholar] [CrossRef]
- Chen, K.; Chen, X.; Lang, C.; Yuan, X.; Huang, J.; Li, Z.; Xu, M.; Wu, K.; Zhou, C.; Li, Q.; et al. CircFam190a: A critical positive regulator of osteoclast differentiation via enhancement of the AKT1/HSP90β complex. Exp. Mol. Med. 2023, 55, 2051–2066. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, G.; Liu, X.; Dai, M.; Zhang, B. Icariin inhibits RANKL-induced osteoclastogenesis via modulation of the NF-κB and MAPK signaling pathways. Biochem. Biophys. Res. Commun. 2019, 508, 902–906. [Google Scholar] [CrossRef] [PubMed]
- Gan, Z.; Huang, J.; Xu, M.; Yuan, X.; Shang, X.; Chen, X.; Chen, K. Micheliolide prevents estrogen deficiency-induced bone loss via inhibiting osteoclast bone resorption. Aging 2023, 15, 10732–10745. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Ivashkiv, L.B. Negative regulation of osteoclastogenesis and bone resorption by cytokines and transcriptional repressors. Arthritis Res. Ther. 2011, 13, 234. [Google Scholar] [CrossRef] [PubMed]
- Ambrosi, T.H.; Taheri, S.; Chen, K.; Sinha, R.; Wang, Y.; Hunt, E.J.; Goodnough, L.H.; Murphy, M.P.; Steininger, H.M.; Hoover, M.Y.; et al. Human skeletal development and regeneration are shaped by functional diversity of stem cells across skeletal sites. Cell Stem Cell 2025, 32, 811–823. [Google Scholar] [CrossRef]
- Baney, M.E.; Kraus, W.C.; Chen, K.; Herber, C.B.; Torok, Z.; Nikkanen, J.; Rodriguez, R.; Zhang, X.; Castro-Navarro, F.; Wang, Y.; et al. A maternal brain hormone that builds bone. Nature 2024, 632, 357–365. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheon, Y.-H.; Kwak, S.C.; Chung, C.H.; Lee, C.H.; Lee, M.S.; Kim, J.-Y. Swiprosin-1 Negatively Regulates Osteoclast Differentiation and Bone Resorption via Akt/MAPK/NF-κB Pathway and αvβ3 Integrin-Dependent Signaling. Int. J. Mol. Sci. 2025, 26, 8613. https://doi.org/10.3390/ijms26178613
Cheon Y-H, Kwak SC, Chung CH, Lee CH, Lee MS, Kim J-Y. Swiprosin-1 Negatively Regulates Osteoclast Differentiation and Bone Resorption via Akt/MAPK/NF-κB Pathway and αvβ3 Integrin-Dependent Signaling. International Journal of Molecular Sciences. 2025; 26(17):8613. https://doi.org/10.3390/ijms26178613
Chicago/Turabian StyleCheon, Yoon-Hee, Sung Chul Kwak, Chong Hyuk Chung, Chang Hoon Lee, Myeung Su Lee, and Ju-Young Kim. 2025. "Swiprosin-1 Negatively Regulates Osteoclast Differentiation and Bone Resorption via Akt/MAPK/NF-κB Pathway and αvβ3 Integrin-Dependent Signaling" International Journal of Molecular Sciences 26, no. 17: 8613. https://doi.org/10.3390/ijms26178613
APA StyleCheon, Y.-H., Kwak, S. C., Chung, C. H., Lee, C. H., Lee, M. S., & Kim, J.-Y. (2025). Swiprosin-1 Negatively Regulates Osteoclast Differentiation and Bone Resorption via Akt/MAPK/NF-κB Pathway and αvβ3 Integrin-Dependent Signaling. International Journal of Molecular Sciences, 26(17), 8613. https://doi.org/10.3390/ijms26178613