Nebulized Bacterioruberin/Astaxanthin-Loaded Nanovesicles: Antitumoral Activity and Beyond
Abstract
1. Introduction
2. Results
2.1. Extraction and Characterization of Archaeolipids
2.2. Structural Characterization of TA-nanoARC and nanoARC
2.3. Antioxidant Activity
2.4. Stability Storage
2.5. Stability to Nebulization
2.6. Cytotoxicity over Nebulized A549 and mTHP-1
2.7. Intracellular ROS in A549 and mTHP-1
2.8. Effect on Mitochondrial Membrane Potential and Lysosomes of A549 Cells
2.9. Response of mTHP-1 to Conditioned Media of A549 Cells
2.9.1. Immunomodulation of mTHP-1
2.9.2. Pro-Inflammatory Cytokines from mTHP-1
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Growth of Archaeas and Lipid Extraction
4.3. Electrospray Ionization Mass Spectrometry (ESI-MS)
4.4. Preparation of Nanovesicles
4.5. Characterization of Nanovesicles
4.6. Antioxidant Activity
4.6.1. DPPH Assay
4.6.2. ABTS Assay
4.7. Storage Stability
4.8. Stability upon Nebulization Process
4.9. Cell Lines and Culture Conditions
4.10. Cell Viability
4.11. Effect on Lysosomes
4.12. Effect on Mitochondrial Membrane Potential
4.13. Intracellular Anti-Reactive Oxygen Species Activity
4.14. Immunomodulation of mTHP-1 Cells by A549 Cell-Conditioned Media
4.15. Determination of Pro-Inflammatory Cytokines in Human Macrophages
4.16. Statistical Analyses
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herbst, R.S.; Morgensztern, D.; Boshoff, C. The Biology and Management of Non-Small Cell Lung Cancer. Nature 2018, 553, 446–454. [Google Scholar] [CrossRef]
- Treatment Options for Non Small Cell Lung Cancer (NSCLC)|Lung Cancer|Cancer Research UK. Available online: https://www.cancerresearchuk.org/about-cancer/lung-cancer/treatment/non-small-cell-lung-cancer (accessed on 27 June 2025).
- NSCLC Treatment|NSCLC Treatment Options|American Cancer Society. Available online: https://www.cancer.org/cancer/types/lung-cancer/treating-non-small-cell.html (accessed on 27 June 2025).
- Postmus, P.E.; Kerr, K.M.; Oudkerk, M.; Senan, S.; Waller, D.A.; Vansteenkiste, J.; Escriu, C.; Peters, S. Early and Locally Advanced Non-Small-Cell Lung Cancer (NSCLC): ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2017, 28, iv1–iv21. [Google Scholar] [CrossRef]
- Kyle, A.H.; Huxham, L.A.; Yeoman, D.M.; Minchinton, A.I. Limited Tissue Penetration of Taxanes: A Mechanism for Resistance in Solid Tumors. Clin. Cancer Res. 2007, 13, 2804–2810. [Google Scholar] [CrossRef]
- Zipprick, J.; Demir, E.; Krynska, H.; Köprülüoğlu, S.; Strauß, K.; Skribek, M.; Hutyra-gram Ötvös, R.; Gad, A.K.B.; Dobra, K. Ex-Vivo Drug-Sensitivity Testing to Predict Clinical Response in Non-Small Cell Lung Cancer and Pleural Mesothelioma: A Systematic Review and Narrative Synthesis. Cancers 2025, 17, 986. [Google Scholar] [CrossRef]
- Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J.; Wu, Y.L.; Paz-Ares, L. Lung Cancer: Current Therapies and New Targeted Treatments. Lancet 2017, 389, 299–311. [Google Scholar] [CrossRef]
- Ghanem, R.; Youf, R.; Haute, T.; Buin, X.; Riool, M.; Pourchez, J.; Montier, T. The (Re)Emergence of Aerosol Delivery: Treatment of Pulmonary Diseases and Its Clinical Challenges. J. Control. Release 2025, 379, 421–439. [Google Scholar] [CrossRef]
- Luo, M.X.; Hua, S.; Shang, Q.Y. Application of Nanotechnology in Drug Delivery Systems for Respiratory Diseases (Review). Mol. Med. Rep. 2021, 23. [Google Scholar] [CrossRef]
- Liu, D.; Long, M.; Gao, L.; Chen, Y.; Li, F.; Shi, Y.; Gu, N. Nanomedicines Targeting Respiratory Injuries for Pulmonary Disease Management. Adv. Funct. Mater. 2022, 32, 2112258. [Google Scholar] [CrossRef]
- Taghavizadeh Yazdi, M.E.; Qayoomian, M.; Beigoli, S.; Boskabady, M.H. Recent Advances in Nanoparticle Applications in Respiratory Disorders: A Review. Front. Pharmacol. 2023, 14, 1059343. [Google Scholar] [CrossRef] [PubMed]
- Amikacin Liposome (Inhalation Route)—Mayo Clinic. Available online: https://www.mayoclinic.org/drugs-supplements/amikacin-liposome-inhalation-route/description/drg-20444070 (accessed on 14 July 2025).
- ARIKAYCE® (Amikacin Liposome Inhalation Suspension)|Official Patient Site. Available online: https://www.arikayce.com/ (accessed on 14 July 2025).
- Arikayce Liposomal|European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/arikayce-liposomal (accessed on 14 July 2025).
- Insmed Announces FDA Approval of ARIKAYCE®, the First and Only Therapy Specifically Indicated for the Treatment of Mycobacterium Avium Complex (MAC) Lung Disease in Adult Patients with Limited or No Alternative Treatment Options. Available online: https://investor.insmed.com/2018-09-28-Insmed-Announces-FDA-Approval-of-ARIKAYCE-R-amikacin-liposome-inhalation-suspension-the-First-and-Only-Therapy-Specifically-Indicated-for-the-Treatment-of-Mycobacterium-Avium-Complex-MAC-Lung-Disease-in-Adult-Patients-with-Limited-or-No-Alterna (accessed on 14 July 2025).
- EC Grants Authorization for ARIKAYCE Liposomal Nebulizer Dispersion for NTM Lung Infections|American Pharmaceutical Review—The Review of American Pharmaceutical Business & Technology. Available online: https://www.americanpharmaceuticalreview.com/1315-News/569913-EC-Grants-Authorization-for-ARIKAYCE-Liposomal-Nebulizer-Dispersion-for-NTM-Lung-Infections/ (accessed on 14 July 2025).
- Study Details|Study to Evaluate ALIS (Amikacin Liposome Inhalation Suspension) in Participants With Nontuberculous Mycobacterial Lung Infection Caused by Mycobacterium Avium Complex|ClinicalTrials.Gov. Available online: https://www.clinicaltrials.gov/study/NCT04677569 (accessed on 14 July 2025).
- Pardhi, D.M.; Şen Karaman, D.; Timonen, J.; Wu, W.; Zhang, Q.; Satija, S.; Mehta, M.; Charbe, N.; McCarron, P.A.; Tambuwala, M.; et al. Anti-Bacterial Activity of Inorganic Nanomaterials and Their Antimicrobial Peptide Conjugates against Resistant and Non-Resistant Pathogens. Int. J. Pharm. 2020, 586, 119531. [Google Scholar] [CrossRef] [PubMed]
- Swiezewska, E.; Danikiewicz, W. Polyisoprenoids: Structure, Biosynthesis and Function. Prog. Lipid Res. 2005, 44, 235–258. [Google Scholar] [CrossRef] [PubMed]
- Baeza-Morales, A.; Medina-García, M.; Martínez-Peinado, P.; Pascual-García, S.; Pujalte-Satorre, C.; López-Jaén, A.B.; Martínez-Espinosa, R.M.; Sempere-Ortells, J.M. The Antitumour Mechanisms of Carotenoids: A Comprehensive Review. Antioxidants 2024, 13, 1060. [Google Scholar] [CrossRef]
- Altube, M.J.; Selzer, S.M.; De Farias, M.A.; Portugal, R.V.; Morilla, M.J.; Romero, E.L. Surviving Nebulization-Induced Stress: Dexamethasone in PH-Sensitive Archaeosomes. Nanomedicine 2016, 11, 2103–2117. [Google Scholar] [CrossRef]
- Higa, L.H.; Arnal, L.; Vermeulen, M.; Perez, A.P.; Schilrreff, P.; Mundiña-Weilenmann, C.; Yantorno, O.; Vela, M.E.; Morilla, M.J.; Romero, E.L. Ultradeformable Archaeosomes for Needle Free Nanovaccination with Leishmania Braziliensis Antigens. PLoS ONE 2016, 11, e0150185. [Google Scholar] [CrossRef]
- Jiblaoui, A.; Barbeau, J.; Vivès, T.; Cormier, P.; Glippa, V.; Cosson, B.; Benvegnu, T. Folate-Conjugated Stealth Archaeosomes for the Targeted Delivery of Novel Antitumoral Peptides. RSC Adv. 2016, 6, 75234–75241. [Google Scholar] [CrossRef]
- Barbeau, J.; Cammas-Marion, S.; Auvray, P.; Benvegnu, T. Preparation and Characterization of Stealth Archaeosomes Based on a Synthetic PEGylated Archaeal Tetraether Lipid. J. Drug Deliv. 2011, 2011, 1–11. [Google Scholar] [CrossRef]
- Morilla, M.J.; Ghosal, K.; Romero, E.L. More Than Pigments: The Potential of Astaxanthin and Bacterioruberin-Based Nanomedicines. Pharmaceutics 2023, 15, 1828. [Google Scholar] [CrossRef]
- Sprott, G.D.; Tolson, D.L.; Patel, G.B. Archaeosomes as Novel Antigen Delivery Systems. FEMS Microbiol. Lett. 1997, 154, 17–22. [Google Scholar] [CrossRef]
- Patel, G.B.; Sprott, G.D. Archaeobacterial Ether Lipid Liposomes (Archaeosomes) as Novel Vaccine and Drug Delivery Systems. Crit. Rev. Biotechnol. 1999, 19, 317–357. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.A.; Venegas, B.; Cooke, P.H.; English, V.; Chong, P.L.G. Bipolar Tetraether Archaeosomes Exhibit Unusual Stability against Autoclaving as Studied by Dynamic Light Scattering and Electron Microscopy. Chem. Phys. Lipids 2009, 159, 95–103. [Google Scholar] [CrossRef]
- Global Carotenoids Markets Size and Industry Analysis 2029. Available online: https://www.bccresearch.com/market-research/food-and-beverage/the-global-market-for-carotenoids.html (accessed on 27 June 2025).
- Beltrán, J.; Wurtzel, E.T. Carotenoids: Resources, Knowledge, and Emerging Tools to Advance Apocarotenoid Research. Plant Sci. 2025, 350, 112298. [Google Scholar] [CrossRef]
- Gebregziabher, B.S.; Gebremeskel, H.; Debesa, B.; Ayalneh, D.; Mitiku, T.; Wendwessen, T.; Habtemariam, E.; Nur, S.; Getachew, T. Carotenoids: Dietary Sources, Health Functions, Biofortification, Marketing Trend and Affecting Factors—A Review. J. Agric. Food Res. 2023, 14, 100834. [Google Scholar] [CrossRef]
- Giani, M.; Pire, C.; Martínez-Espinosa, R.M. Bacterioruberin: Biosynthesis, Antioxidant Activity, and Therapeutic Applications in Cancer and Immune Pathologies. Mar. Drugs 2024, 22, 167. [Google Scholar] [CrossRef]
- Mussagy, C.U.; Caicedo-Paz, A.V.; Farias, F.O.; de Souza Mesquita, L.M.; Giuffrida, D.; Dufossé, L. Microbial Bacterioruberin: The New C50 Carotenoid Player in Food Industries. Food Microbiol. 2024, 124. [Google Scholar] [CrossRef]
- Romero, E.L.; Morilla, M.J. Ether Lipids from Archaeas in Nano-Drug Delivery and Vaccination. Int. J. Pharm. 2023, 634. [Google Scholar] [CrossRef]
- Govindaswamy, B.; Stephen, K.N.; Keerthana, S.; Perumal, S.; Thirumurugan, M. Recent Advances on Therapeutic Mechanism and Potential of Flavonoids and Carotenoids: A Focus on Alzheimer’s and Parkinson’s Disease. Bioact. Ingredients Healthc. Ind. 2025, 2, 75–107. [Google Scholar] [CrossRef]
- Hou, J.; Cui, H.L. In Vitro Antioxidant, Antihemolytic, and Anticancer Activity of the Carotenoids from Halophilic Archaea. Curr. Microbiol. 2018, 75, 266–271. [Google Scholar] [CrossRef]
- Hegazy, G.E.; Abu-Serie, M.M.; Abo-Elela, G.M.; Ghozlan, H.; Sabry, S.A.; Soliman, N.A.; Abdel-Fattah, Y.R. In Vitro Dual (Anticancer and Antiviral) Activity of the Carotenoids Produced by Haloalkaliphilic Archaeon Natrialba sp. M6. Sci. Reports 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Abbes, M.; Baati, H.; Guermazi, S.; Messina, C.; Santulli, A.; Gharsallah, N.; Ammar, E. Biological Properties of Carotenoids Extracted from Halobacterium Halobium Isolated from a Tunisian Solar Saltern. BMC Complement. Altern. Med. 2013, 13, 255. [Google Scholar] [CrossRef] [PubMed]
- Higa, L.H.; Schilrreff, P.; Briski, A.M.; Jerez, H.E.; de Farias, M.A.; Villares Portugal, R.; Romero, E.L.; Morilla, M.J. Bacterioruberin from Haloarchaea plus Dexamethasone in Ultra-Small Macrophage-Targeted Nanoparticles as Potential Intestinal Repairing Agent. Colloids Surf. B Biointerfaces 2020, 191, 110961. [Google Scholar] [CrossRef] [PubMed]
- Simioni, Y.R.; Perez, N.S.; Barbosa, L.R.S.; Perez, A.P.; Schilrreff, P.; Romero, E.L.; Morilla, M.J. Enhancing the Anti-Psoriatic Activity of Vitamin D3 Employing Nanostructured Archaeolipid Carriers. J. Drug Deliv. Sci. Technol. 2022, 73, 103455. [Google Scholar] [CrossRef]
- Caimi, A.T.; Yasynska, O.; Rivas Rojas, P.C.; Romero, E.L.; Morilla, M.J. Improved Stability and Biological Activity of Bacterioruberin in Nanovesicles. J. Drug Deliv. Sci. Technol. 2022, 77, 103896. [Google Scholar] [CrossRef]
- Charó, N.; Jerez, H.; Tatti, S.; Romero, E.L.; Schattner, M. The Anti-Inflammatory Effect of Nanoarchaeosomes on Human Endothelial Cells. Pharmaceutics 2022, 14, 736. [Google Scholar] [CrossRef]
- Stabile, S.G.G.; Perez, N.; Jerez, H.E.; Simioni, Y.R.; Butassi, E.; Mizrahi, M.D.; Nobile, M.L.; Perez, A.P.; Morilla, M.J.; Higa, L.H.; et al. Nebulized Hybrid Nanoarchaeosomes: Anti-Inflammatory Activity, Anti-Microbial Activity and Cytotoxicity on A549 Cells. Int. J. Mol. Sci. 2025, 26, 392. [Google Scholar] [CrossRef] [PubMed]
- Kates: Isoprenoids and Polar Lipids of Extreme Halophiles—Google Académico. Available online: https://scholar.google.com/scholar_lookup?&title=Isoprenoids%20and%20polar%20lipids%20of%20extreme%20halophiles&pages=35-54&publication_year=1995&author=Kates%2CM&author=Kushwaha%2CSC (accessed on 14 July 2025).
- Parra, F.L.; Caimi, A.T.; Altube, M.J.; Cargnelutti, D.E.; Vermeulen, M.E.; de Farias, M.A.; Portugal, R.V.; Morilla, M.J.; Romero, E.L. Make It Simple: (SR-A1+TLR7) Macrophage Targeted NANOarchaeosomes. Front. Bioeng. Biotechnol. 2018, 6, 163. [Google Scholar] [CrossRef]
- Britton, G.; Liaaen-Jensen, S.; Pfander, H. (Eds.) Carotenoids. Vol. 1B: Spectroscopy; Birkhauser Verlag: Boston, MA, USA, 1995; 360p, Available online: https://www.scirp.org/reference/referencespapers?referenceid=582860 (accessed on 14 July 2025).
- Naziri, D.; Hamidi, M.; Hassanzadeh, S.; Tarhriz, V.; Zanjani, B.M.; Nazemyieh, H.; Hejazi, M.A.; Hejazi, M.S. Analysis of Carotenoid Production by Halorubrum Sp. TBZ126; an Extremely Halophilic Archeon from Urmia Lake. Adv. Pharm. Bull. 2013, 4, 61. [Google Scholar] [CrossRef]
- Bale, N.J.; Sorokin, D.Y.; Hopmans, E.C.; Koenen, M.; Irene Rijpstra, W.C.; Villanueva, L.; Wienk, H.; Sinninghe Damsté, J.S. New Insights into the Polar Lipid Composition of Extremely Halo(Alkali)Philic Euryarchaea from Hypersaline Lakes. Front. Microbiol. 2019, 10, 438245. [Google Scholar] [CrossRef]
- Gonzalez, R.O.; Higa, L.H.; Cutrullis, R.A.; Bilen, M.; Morelli, I.; Roncaglia, D.I.; Corral, R.S.; Morilla, M.J.; Petray, P.B.; Romero, E.L. Archaeosomes Made of Halorubrum Tebenquichense Total Polar Lipids: A New Source of Adjuvancy. BMC Biotechnol. 2009, 9, 71. [Google Scholar] [CrossRef]
- Lopalco, P.; Lobasso, S.; Babudri, F.; Corcelli, A. Osmotic Shock Stimulates de Novo Synthesis of Two Cardiolipins in an Extreme Halophilic Archaeon. J. Lipid Res. 2004, 45, 194–201. [Google Scholar] [CrossRef]
- Todorović, B.; Grujić, V.J.; Krajnc, A.U.; Kranvogl, R.; Ambrožič-Dolinšek, J. Identification and Content of Astaxanthin and Its Esters from Microalgae Haematococcus Pluvialis by HPLC-DAD and LC-QTOF-MS after Extraction with Various Solvents. Plants 2021, 10, 2413. [Google Scholar] [CrossRef] [PubMed]
- Vaz, B.M.C.; Kholany, M.; Pinto, D.C.G.A.; Macário, I.P.E.; Veloso, T.; Caetano, T.; Pereira, J.L.; Coutinho, J.A.P.; Ventura, S.P.M. Recovery of Bacterioruberin and Proteins Using Aqueous Solutions of Surface-Active Compounds. RSC Adv. 2022, 12, 30278–30286. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.C.; Su, W.P.; Sun, Z.S.; Zhang, Z.X.; Li, P.Y.; Zhang, B.; Sui, L.Y. Optimization of Extraction Procedure and Antioxidant Activity of C50 Carotenoids from Halorubrum Sp. HRM-150. Process Biochem. 2023, 130, 577–583. [Google Scholar] [CrossRef]
- Lindenberg, F.; Sichel, F.; Lechevrel, M.; Respaud, R.; Saint-Lorant, G. Evaluation of Lung Cell Toxicity of Surfactants for Inhalation Route. J. Toxicol. Risk Assess. 2019, 5, 022. [Google Scholar] [CrossRef]
- Al-Hallak, M.H.D.K.; Azarmi, S.; Sun, C.; Lai, P.; Prenner, E.J.; Roa, W.H.; Löbenberg, R. Pulmonary Toxicity of Polysorbate-80-Coated Inhalable Nanoparticles; In Vitro and in Vivo Evaluation. AAPS J. 2010, 12, 294–299. [Google Scholar] [CrossRef]
- He, X.; Li, C.; Wu, X.; Yang, G. Docetaxel Inhibits the Proliferation of Non-Small-Cell Lung Cancer Cells via Upregulation of MicroRNA-7 Expression. Int. J. Clin. Exp. Pathol. 2015, 8, 9072. [Google Scholar]
- Sarin, N.; Engel, F.; Kalayda, G.V.; Mannewitz, M.; Cinatl, J.; Rothweiler, F.; Michaelis, M.; Saafan, H.; Ritter, C.A.; Jaehde, U.; et al. Cisplatin Resistance in Non-Small Cell Lung Cancer Cells Is Associated with an Abrogation of Cisplatin-Induced G2/M Cell Cycle Arrest. PLoS ONE 2017, 12, e0181081. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.C.; Li, C.G.; Wang, Y.F.; Xu, L.H.; He, X.H.; Zeng, Q.Z.; Zeng, C.Y.; Mai, F.Y.; Hu, B.; Ouyang, D.Y. Chemotherapeutic Paclitaxel and Cisplatin Differentially Induce Pyroptosis in A549 Lung Cancer Cells via Caspase-3/GSDME Activation. Apoptosis 2019, 24, 312–325. [Google Scholar] [CrossRef]
- Jiang, L.; Li, X.; Liu, L.; Zhang, Q. Thiolated Chitosan-Modified PLA-PCL-TPGS Nanoparticles for Oral Chemotherapy of Lung Cancer. Nanoscale Res. Lett. 2013, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Astaxanthin|C40H52O4|CID 5281224—PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Astaxanthin (accessed on 14 July 2025).
- Maia, L.F.; De Oliveira, V.E.; Edwards, H.G.M.; De Oliveira, L.F.C. The Diversity of Linear Conjugated Polyenes and Colours in Nature: Raman Spectroscopy as a Diagnostic Tool. ChemPhysChem 2021, 22, 231–249. [Google Scholar] [CrossRef] [PubMed]
- Noby, N.; Khattab, S.N.; Soliman, N.A. Sustainable Production of Bacterioruberin Carotenoid and Its Derivatives from Arthrobacter Agilis NP20 on Whey-Based Medium: Optimization and Product Characterization. Bioresour. Bioprocess. 2023, 10, 1–14. [Google Scholar] [CrossRef]
- Yang, Y.; Yatsunami, R.; Ando, A.; Miyoko, N.; Fukui, T.; Takaichi, S.; Nakamura, S. Complete Biosynthetic Pathway of the C50 Carotenoid Bacterioruberin from Lycopene in the Extremely Halophilic Archaeon Haloarcula Japonica. J. Bacteriol. 2015, 197, 1614–1623. [Google Scholar] [CrossRef] [PubMed]
- Li-Blatter, X.; Nervi, P.; Seelig, A. Detergents as Intrinsic P-Glycoprotein Substrates and Inhibitors. Biochim. Biophys. Acta—Biomembr. 2009, 1788, 2335–2344. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S. Measurement of Nanoparticle-Induced Mitochondrial Membrane Potential Alterations. Methods Mol. Biol. 2019, 1894, 123–131. [Google Scholar] [CrossRef]
- Stern, S.T.; Adiseshaiah, P.P.; Crist, R.M. Autophagy and Lysosomal Dysfunction as Emerging Mechanisms of Nanomaterial Toxicity. Part. Fibre Toxicol. 2012, 9, 1–17. [Google Scholar] [CrossRef]
- Jerez, H.E.; Altube, M.J.; Gándola, Y.B.; González, L.; González, M.C.; Morilla, M.J.; Romero, E.L. Macrophage Apoptosis Using Alendronate in Targeted Nanoarchaeosomes. Eur. J. Pharm. Biopharm. 2021, 160, 42–54. [Google Scholar] [CrossRef]
- PrabhuDas, M.R.; Baldwin, C.L.; Bollyky, P.L.; Bowdish, D.M.E.; Drickamer, K.; Febbraio, M.; Herz, J.; Kobzik, L.; Krieger, M.; Loike, J.; et al. A Consensus Definitive Classification of Scavenger Receptors and Their Roles in Health and Disease. J. Immunol. 2017, 198, 3775–3789. [Google Scholar] [CrossRef]
- Hughes, D.A.; Fraser, I.P.; Gordon, S. Murine Macrophage Scavenger Receptor: In Vivo Expression and Function as Receptor for Macrophage Adhesion in Lymphoid and Non-lymphoid Organs. Eur. J. Immunol. 1995, 25, 466–473. [Google Scholar] [CrossRef]
- Ingersoll, M.A.; Spanbroek, R.; Lottaz, C.; Gautier, E.L.; Frankenberger, M.; Hoffmann, R.; Lang, R.; Haniffa, M.; Collin, M.; Tacke, F.; et al. Comparison of Gene Expression Profiles between Human and Mouse Monocyte Subsets. Blood 2010, 115, e10–e19. [Google Scholar] [CrossRef]
- Becker, M.; Cotena, A.; Gordon, S.; Platt, N. Expression of the Class A Macrophage Scavenger Receptor on Specific Subpopulations of Murine Dendritic Cells Limits Their Endotoxin Response. Eur. J. Immunol. 2006, 36, 950–960. [Google Scholar] [CrossRef]
- Nakano, N.; Fukuhara-Takaki, K.; Jono, T.; Nakajou, K.; Eto, N.; Horiuchi, S.; Takeya, M.; Nagai, R. Association of Advanced Glycation End Products with A549 Cells, a Human Pulmonary Epithelial Cell Line, Is Mediated by a Receptor Distinct from the Scavenger Receptor Family and RAGE. J. Biochem. 2006, 139, 821–829. [Google Scholar] [CrossRef] [PubMed]
- Chikte, S.; Panchal, N.; Warnes, G. Use of LysoTracker Dyes: A Flow Cytometric Study of Autophagy. Cytom. Part A 2014, 85, 169–178. [Google Scholar] [CrossRef]
- Deus, C.M.; Yambire, K.F.; Oliveira, P.J.; Raimundo, N. Mitochondria–Lysosome Crosstalk: From Physiology to Neurodegeneration. Trends Mol. Med. 2020, 26, 71–88. [Google Scholar] [CrossRef]
- Wang, F.; Gómez-Sintes, R.; Boya, P. Lysosomal Membrane Permeabilization and Cell Death. Traffic 2018, 19, 918–931. [Google Scholar] [CrossRef]
- Ndolo, R.A.; Jacobs, D.T.; Forrest, M.L.; Krise, J.P. Intracellular Distribution-Based Anticancer Drug Targeting: Exploiting a Lysosomal Acidification Defect Associated with Cancer Cells. Mol. Cell. Pharmacol. 2010, 2, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Jaishy, B.; Abel, E.D. Lipids, Lysosomes, and Autophagy. J. Lipid Res. 2016, 57, 1619–1635. [Google Scholar] [CrossRef] [PubMed]
- Morrison, C. Immuno-Oncologists Eye up Macrophage Targets. Nat. Rev. Drug Discov. 2016, 15, 373–374. [Google Scholar] [CrossRef] [PubMed]
- Heideveld, E.; Horcas-Lopez, M.; Lopez-Yrigoyen, M.; Forrester, L.M.; Cassetta, L.; Pollard, J.W. Methods for Macrophage Differentiation and in Vitro Generation of Human Tumor Associated-like Macrophages. Methods Enzymol. 2020, 632, 113–131. [Google Scholar] [CrossRef]
- Franklin, R.A.; Liao, W.; Sarkar, A.; Kim, M.V.; Bivona, M.R.; Liu, K.; Pamer, E.G.; Li, M.O. The Cellular and Molecular Origin of Tumor-Associated Macrophages. Science 2014, 344, 921–925. [Google Scholar] [CrossRef]
- Huang, Z.; Xiao, Z.; Yu, L.; Liu, J.; Yang, Y.; Ouyang, W. Tumor-Associated Macrophages in Non-Small-Cell Lung Cancer: From Treatment Resistance Mechanisms to Therapeutic Targets. Crit. Rev. Oncol. Hematol. 2024, 196, 104284. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Chen, Z.; Luo, J.; Guo, W.; Sun, L.; Lin, L. Targeting M2-like Tumor-Associated Macrophages Is a Potential Therapeutic Approach to Overcome Antitumor Drug Resistance. npj Precis. Oncol. 2024, 8, 1–19. [Google Scholar] [CrossRef]
- Chen, S.T.; Park, M.D.; Del Valle, D.M.; Buckup, M.; Tabachnikova, A.; Thompson, R.C.; Simons, N.W.; Mouskas, K.; Lee, B.; Geanon, D.; et al. A Shift in Lung Macrophage Composition Is Associated with COVID-19 Severity and Recovery. Sci. Transl. Med. 2022, 14, 5168. [Google Scholar] [CrossRef]
- Jenkins, R.H.; Hughes, S.T.O.; Figueras, A.C.; Jones, S.A. Unravelling the Broader Complexity of IL-6 Involvement in Health and Disease. Cytokine 2021, 148. [Google Scholar] [CrossRef]
- Fisher, D.T.; Appenheimer, M.M.; Evans, S.S. The Two Faces of IL-6 in the Tumor Microenvironment. Semin. Immunol. 2014, 26, 38–47. [Google Scholar] [CrossRef]
- Beyranvand Nejad, E.; Labrie, C.; Van Elsas, M.J.; Kleinovink, J.W.; Mittrücker, H.W.; Franken, K.L.M.C.; Heink, S.; Korn, T.; Arens, R.; Van Hall, T.; et al. IL-6 Signaling in Macrophages Is Required for Immunotherapy-Driven Regression of Tumors. J. Immunother. Cancer 2021, 9. [Google Scholar] [CrossRef]
- Perez-Penco, M.; Byrdal, M.; Lara de la Torre, L.; Ballester, M.; Khan, S.; Siersbæk, M.; Lecoq, I.; Madsen, C.O.; Kjeldsen, J.W.; Svane, I.M.; et al. The Antitumor Activity of TGFβ-Specific T Cells Is Dependent on IL-6 Signaling. Cell. Mol. Immunol. 2025, 22, 111–126. [Google Scholar] [CrossRef]
- Ihara, K.; Watanabe, S.; Tamura, T. Haloarcula Argentinensis Sp. Nov. and Haloarcula Mukohataei Sp. Nov., Two New Extremely Halophilic Archaea Collected in Argentina. Int. J. Syst. Bacteriol. 1997, 47, 73–77. [Google Scholar] [CrossRef]
- Böttcher, C.J.F.; Van gent, C.M.; Pries, C. A Rapid and Sensitive Sub-Micro Phosphorus Determination. Anal. Chim. Acta 1961, 24, 203–204. [Google Scholar] [CrossRef]
- Britton, G.; Liaaen-Jensen, S.; Pfander, H. Introduction and Guidelines on the Use of the Handbook. Carotenoids 2004, 1–33. [Google Scholar] [CrossRef]
- Alcaina-Hernando, M.; Malvacio, I.; Ferraboschi, I.; Huck-Iriart, C.; Bianchera, A.; Sala, S.; Pedersen, J.S.; Ferrer-Tasies, L.; Pescina, S.; Sissa, C.; et al. A New Plant-Based Drug Delivery Platform Based on Alkyl Polyglucosides and β-Sitosterol Nanovesicles for Topical Delivery. Appl. Mater. Today 2024, 41, 102467. [Google Scholar] [CrossRef]
- Pedersen, J.S. Analysis of Small-Angle Scattering Data from Colloids and Polymer Solutions: Modeling and Least-Squares Fitting. Adv. Colloid Interface Sci. 1997, 70, 171–210. [Google Scholar] [CrossRef]
- Seijas-Da Silva, Á.; Oestreicher, V.; Huck-Iriart, C.; Mizrahi, M.; Hunt, D.; Ferrari, V.; Abellán, G. Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution. Batter. Supercaps 2024, 7, e202400335. [Google Scholar] [CrossRef]
- Jiménez-Escrig, A.; Jiménez-Jiménez, I.; Sánchez-Moreno, C.; Saura-Calixto, F. Evaluation of Free Radical Scavenging of Dietary Carotenoids by the Stable Radical 2,2-Diphenyl-1-Picrylhydrazyl. J. Sci. Food Agric. 2000, 80, 1686–1690. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Altube, M.J.; Caputo, E.N.; Rivero, M.N.; Gutiérrez, M.L.; Romero, E.L. Photodynamic Therapy with Nebulized Nanocurcumin on A549 Cells, Model Vessels, Macrophages and Beyond. Pharmaceutics 2022, 14, 2637. [Google Scholar] [CrossRef] [PubMed]
Formulation | Z Average (nm ± SD) | Pdi ± SD | ζ Potential (mV ± SD) | BR/PL (µg/mg ± SD) | FA | GP |
---|---|---|---|---|---|---|
TA-nanoARC | 300.3 ± 84.2 | 0.59 ± 0.12 | −20 ± 3.7 | 4.4 ± 1.8 | 0.18 ± 0.01 * | −0.11 ± 0.01 ** |
nanoARC | 233.3 ± 65.0 | 0.61 ± 0.10 | −24 ± 1.4 | - | 0.16 ± 0.01 | −0.35 ± 0.04 |
Formulation | Core (nm ± SD) | Hydrophilic Layer (nm ± SD) | Bilayer Thickness (nm ± SD) |
---|---|---|---|
TA-nanoARC | 24.0 ± 2.0 | 14.0 ± 1.0 | 52.0 ± 4.0 |
nanoARC | 25.4 ± 0.2 | 12.9 ± 0.2 | 51.2 ± 0.6 |
Formulation | TA-nanoARC | nanoARC | ||
---|---|---|---|---|
Treatment | BN | AN | BN | AN |
Phospholipid recovery (%) | 83.3 ± 6.6 | 86.2 ± 3.3 | ||
Z average (nm ± SD) | 254 ± 61 | 283 ± 122 | 306 ± 14 | 376 ± 83 |
Pdi ± SD | 0.346 ± 0.121 | 0.827 ± 0.258 | 0.794 ± 0.299 | 0.434 ± 0.219 |
ζ Potential (mV ± SD) | −20.8 ± 4.0 | −22.0 ± 4.6 | −24.0 ± 4.0 | −23.9 ± 4.6 |
Cells | Formulation | IC50 (µg/mL PL—µg/mL BR) |
---|---|---|
A549 | TA-nanoARC | 33.8–0.15 |
nanoARC | 49.6–0.0 | |
mTHP-1 | TA-nanoARC | 64.7–0.3 |
nanoARC | >50.0 |
Formulation | Stretching OH | CH3 Antisymmetric Stretching (2956 cm−1) | CH2 Antisymmetric Stretching (2924 cm−1) | CH2 Symmetric Stretching (2854 cm−1) | C=C Stretching Region (1600–1750) | C–O–C Eter Stretching Region: ~1100 | Antisymmetric Stretching Vibration νas (PO2 1220–1225 cm−1 | C=O Stretching Vibrations |
---|---|---|---|---|---|---|---|---|
TA-nanoARC | - | 2951 | 2922 | 2855 | 1055 | 1225 | ||
nanoARC | - | 2951 (70.4) | 2924 (62.2) | 2853 (68) | 1061 | 1225 | ||
TA | 3294 | 2951 (69.8) | 2920 (58.1) | 2851 (71) | 1097, 1049 | 1225 | ||
NA | broad 3391 | 2953 | 2922 | 2853 | 1057 | - | ||
Tween80 | broad strong 3377 | asymmetric C–O–C 1082 | - | 1739 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González Epelboim, V.R.D.; Lamas, D.G.; Huck-Iriart, C.; Caputo, E.N.; Altube, M.J.; Jerez, H.E.; Simioni, Y.R.; Ghosal, K.; Morilla, M.J.; Higa, L.H.; et al. Nebulized Bacterioruberin/Astaxanthin-Loaded Nanovesicles: Antitumoral Activity and Beyond. Int. J. Mol. Sci. 2025, 26, 8607. https://doi.org/10.3390/ijms26178607
González Epelboim VRD, Lamas DG, Huck-Iriart C, Caputo EN, Altube MJ, Jerez HE, Simioni YR, Ghosal K, Morilla MJ, Higa LH, et al. Nebulized Bacterioruberin/Astaxanthin-Loaded Nanovesicles: Antitumoral Activity and Beyond. International Journal of Molecular Sciences. 2025; 26(17):8607. https://doi.org/10.3390/ijms26178607
Chicago/Turabian StyleGonzález Epelboim, Victoria Rebeca Dana, Diego G. Lamas, Cristián Huck-Iriart, Ezequiel Nicolas Caputo, Maria Julia Altube, Horacio Emanuel Jerez, Yamila Roxana Simioni, Kajal Ghosal, Maria Jose Morilla, Leticia Herminia Higa, and et al. 2025. "Nebulized Bacterioruberin/Astaxanthin-Loaded Nanovesicles: Antitumoral Activity and Beyond" International Journal of Molecular Sciences 26, no. 17: 8607. https://doi.org/10.3390/ijms26178607
APA StyleGonzález Epelboim, V. R. D., Lamas, D. G., Huck-Iriart, C., Caputo, E. N., Altube, M. J., Jerez, H. E., Simioni, Y. R., Ghosal, K., Morilla, M. J., Higa, L. H., & Romero, E. L. (2025). Nebulized Bacterioruberin/Astaxanthin-Loaded Nanovesicles: Antitumoral Activity and Beyond. International Journal of Molecular Sciences, 26(17), 8607. https://doi.org/10.3390/ijms26178607