Recent Advances in Anti-Cancer Drugs
- The development of reliable biomarkers to predict drug response;
- Combination approaches to overcome chemoresistance;
- Strategies for modifying the TME to enhance drug delivery and efficacy;
- Expansion of theranostic tools in nuclear medicine;
- Integration of artificial intelligence and multi-omics in drug discovery;
- Continued exploration of natural products and repurposed compounds.
Conflicts of Interest
References
- Ma, H.Y.; Das, J.; Prendergast, C.; De Jong, D.; Braumuller, B.; Paily, J.; Huang, S.; Liou, C.; Giarratana, A.; Hosseini, M.; et al. Advances in CAR T Cell Therapy for Non-Small Cell Lung Cancer. Curr. Issues Mol. Biol. 2023, 45, 9019–9038. [Google Scholar] [CrossRef]
- Min, H.Y.; Lee, H.Y. Molecular targeted therapy for anticancer treatment. Exp. Mol. Med. 2022, 54, 1670–1694. [Google Scholar] [CrossRef] [PubMed]
- Bashraheel, S.S.; Domling, A.; Goda, S.K. Update on targeted cancer therapies, single or in combination, and their fine tuning for precision medicine. Biomed. Pharmacother. 2020, 125, 110009. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, H.; Tan, L.; Siu, K.T.H.; Guan, X.Y. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct. Target. Ther. 2024, 9, 175. [Google Scholar] [CrossRef]
- Hou, J.; He, Z.; Liu, T.; Chen, D.; Wang, B.; Wen, Q.; Zheng, X. Evolution of Molecular Targeted Cancer Therapy: Mechanisms of Drug Resistance and Novel Opportunities Identified by CRISPR-Cas9 Screening. Front. Oncol. 2022, 12, 755053. [Google Scholar] [CrossRef] [PubMed]
- Victoir, B.; Croix, C.; Gouilleux, F.; Prie, G. Targeted Therapeutic Strategies for the Treatment of Cancer. Cancers 2024, 16, 461. [Google Scholar] [CrossRef] [PubMed]
- Karati, D.; Kumar, D. A Comprehensive Review on Targeted Cancer Therapy: New Face of Treatment Approach. Curr. Pharm. Des. 2023, 29, 3282–3294. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, Z.; Cheng, K.; Bi, H.; Chen, J. Small molecule-based immunomodulators for cancer therapy. Acta Pharm. Sin. B 2022, 12, 4287–4308. [Google Scholar] [CrossRef]
- Pan, P.; Huang, Y.W.; Oshima, K.; Yearsley, M.; Zhang, J.; Arnold, M.; Yu, J.; Wang, L.S. The immunomodulatory potential of natural compounds in tumor-bearing mice and humans. Crit. Rev. Food Sci. Nutr. 2019, 59, 992–1007. [Google Scholar] [CrossRef]
- Khalil, D.N.; Smith, E.L.; Brentjens, R.J.; Wolchok, J.D. The future of cancer treatment: Immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol. 2016, 13, 394. [Google Scholar] [CrossRef]
- Nuzzo, G.; Senese, G.; Gallo, C.; Albiani, F.; Romano, L.; d’Ippolito, G.; Manzo, E.; Fontana, A. Antitumor Potential of Immunomodulatory Natural Products. Mar. Drugs 2022, 20, 386. [Google Scholar] [CrossRef]
- Petroni, G.; Buque, A.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Immunomodulation by targeted anticancer agents. Cancer Cell 2021, 39, 310–345. [Google Scholar] [CrossRef]
- Karnwal, A.; Dutta, J.; Aqueel Ur, R.; Al-Tawaha, A.; Nesterova, N. Genetic landscape of cancer: Mechanisms, key genes, and therapeutic implications. Clin. Transl. Oncol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Fatima, S. Tumor Microenvironment: A Complex Landscape of Cancer Development and Drug Resistance. Cureus 2025, 17, e82090. [Google Scholar] [CrossRef]
- Jin, M.Z.; Jin, W.L. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct. Target. Ther. 2020, 5, 166. [Google Scholar] [CrossRef]
- Wang, R.; Duan, X.; Li, J.; Zhang, C.; Shen, L. Emerging Strategies of Cell and Gene Therapy Targeting Tumor Immune Microenvironment. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2025, 31, 2294–2308. [Google Scholar] [CrossRef]
- Wang, S.; Sun, F.; Huang, H.; Chen, K.; Li, Q.J.; Zhang, L.; Wang, E.; Wang, C.; Zhang, H.; Yuan, A.Q.; et al. The Landscape of Cell and Gene Therapies for Solid Tumors. Cancer Cell 2021, 39, 7–8. [Google Scholar] [CrossRef]
- Madeddu, C.; Lai, E.; Neri, M.; Sanna, E.; Gramignano, G.; Nemolato, S.; Scartozzi, M.; Giglio, S.; Maccio, A. Association Between TP53 Mutations and Platinum Resistance in a Cohort of High-Grade Serous Ovarian Cancer Patients: Novel Implications for Personalized Therapeutics. Int. J. Mol. Sci. 2025, 26, 2232. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Liu, N.; Liu, J.; Liu, Y.; Zhang, C.; Long, S.; Luo, G.; Zhang, L.; Zhang, Y. Mutant p53 drives cancer chemotherapy resistance due to loss of function on activating transcription of PUMA. Cell Cycle 2019, 18, 3442–3455. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.Y.; Chen, Q.; Yang, M.Y.; Xing, L.; Jiang, H.L. Nanoparticles targeting mutant p53 overcome chemoresistance and tumor recurrence in non-small cell lung cancer. Nat. Commun. 2024, 15, 2759. [Google Scholar] [CrossRef]
- Hu, J.; Cao, J.; Topatana, W.; Juengpanich, S.; Li, S.; Zhang, B.; Shen, J.; Cai, L.; Cai, X.; Chen, M. Targeting mutant p53 for cancer therapy: Direct and indirect strategies. J. Hematol. Oncol. 2021, 14, 157. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.B.; Li, X.J.; Liu, H.; Liu, Y.J.; Liu, X.P. Association of KRAS, NRAS, BRAF and PIK3CA gene mutations with clinicopathological features, prognosis and ring finger protein 215 expression in patients with colorectal cancer. Biomed. Rep. 2023, 19, 104. [Google Scholar] [CrossRef] [PubMed]
- Imyanitov, E.; Sokolenko, A. Mechanisms of acquired resistance of BRCA1/2-driven tumors to platinum compounds and PARP inhibitors. World J. Clin. Oncol. 2021, 12, 544–556. [Google Scholar] [CrossRef]
- Arun, B.; Couch, F.J.; Abraham, J.; Tung, N.; Fasching, P.A. BRCA-mutated breast cancer: The unmet need, challenges and therapeutic benefits of genetic testing. Br. J. Cancer 2024, 131, 1400–1414. [Google Scholar] [CrossRef]
- Isermann, T.; Sers, C.; Der, C.J.; Papke, B. KRAS inhibitors: Resistance drivers and combinatorial strategies. Trends Cancer 2025, 11, 91–116. [Google Scholar] [CrossRef]
- Maruyama, K.; Shimizu, Y.; Nomura, Y.; Oh-Hara, T.; Takahashi, Y.; Nagayama, S.; Fujita, N.; Katayama, R. Mechanisms of KRAS inhibitor resistance in KRAS-mutant colorectal cancer harboring Her2 amplification and aberrant KRAS localization. NPJ Precis. Oncol. 2025, 9, 4. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, L.; Merrien, M.; Bjorkholm, M.; Osterborg, A.; Sander, B.; Claesson, H.E.; Wright, A.P.H. Targeting Tumor Microenvironment Interactions in Chronic Lymphocytic Leukemia Using Leukotriene Inhibitors. Int. J. Mol. Sci. 2025, 26, 2209. [Google Scholar] [CrossRef]
- Poyia, F.; Neophytou, C.M.; Christodoulou, M.I.; Papageorgis, P. The Role of Tumor Microenvironment in Pancreatic Cancer Immunotherapy: Current Status and Future Perspectives. Int. J. Mol. Sci. 2024, 25, 9555. [Google Scholar] [CrossRef]
- de Visser, K.E.; Joyce, J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023, 41, 374–403. [Google Scholar] [CrossRef]
- Angeli, S.; Neophytou, C.; Kalli, M.; Stylianopoulos, T.; Mpekris, F. The mechanopathology of the tumor microenvironment: Detection techniques, molecular mechanisms and therapeutic opportunities. Front. Cell Dev. Biol. 2025, 13, 1564626. [Google Scholar] [CrossRef]
- Charalambous, A.; Mpekris, F.; Panagi, M.; Voutouri, C.; Michael, C.; Gabizon, A.A.; Stylianopoulos, T. Tumor Microenvironment Reprogramming Improves Nanomedicine-Based Chemo-Immunotherapy in Sarcomas. Mol. Cancer Ther. 2024, 23, 1555–1567. [Google Scholar] [CrossRef]
- Gunther, A.; Zalewski, P.; Sip, S.; Ruszkowski, P.; Bednarczyk-Cwynar, B. Oleanolic Acid Dimers with Potential Application in Medicine-Design, Synthesis, Physico-Chemical Characteristics, Cytotoxic and Antioxidant Activity. Int. J. Mol. Sci. 2024, 25, 6989. [Google Scholar] [CrossRef]
- Fabijanska, M.; Rybarczyk-Pirek, A.J.; Dominikowska, J.; Stryjska, K.; Zyro, D.; Markowicz-Piasecka, M.; Szynkowska-Jozwik, M.I.; Ochocki, J.; Sikora, J. Silver Complexes of Miconazole and Metronidazole: Potential Candidates for Melanoma Treatment. Int. J. Mol. Sci. 2024, 25, 5081. [Google Scholar] [CrossRef]
- Xia, Y.; Sun, M.; Huang, H.; Jin, W.L. Drug repurposing for cancer therapy. Signal Transduct. Target. Ther. 2024, 9, 92. [Google Scholar] [CrossRef]
- Haddad, N.; Gamaethige, S.M.; Wehida, N.; Elbediwy, A. Drug Repurposing: Exploring Potential Anti-Cancer Strategies by Targeting Cancer Signalling Pathways. Biology 2024, 13, 386. [Google Scholar] [CrossRef]
- Dash, R.; Yadav, M.; Biswal, J.; Samanta, S.; Sharma, T.; Mohapatra, S. Drug repurposing a compelling cancer strategy with bottomless opportunities: Recent advancements in computational methods and molecular mechanisms. Indian J. Pharmacol. 2023, 55, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Watabe, T.; Kaneda-Nakashima, K.; Kadonaga, Y.; Ooe, K.; Sampunta, T.; Hirose, N.; Yin, X.; Haba, H.; Kon, Y.; Toyoshima, A.; et al. Preclinical Evaluation of Biodistribution and Toxicity of [(211)At]PSMA-5 in Mice and Primates for the Targeted Alpha Therapy against Prostate Cancer. Int. J. Mol. Sci. 2024, 25, 5667. [Google Scholar] [CrossRef] [PubMed]
- De Vincentis, G.; Gerritsen, W.; Gschwend, J.E.; Hacker, M.; Lewington, V.; O’Sullivan, J.M.; Oya, M.; Pacilio, M.; Parker, C.; Shore, N.; et al. Advances in targeted alpha therapy for prostate cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019, 30, 1728–1739. [Google Scholar] [CrossRef]
- Chuang, P.K.; Chang, K.F.; Chang, C.H.; Chen, T.Y.; Wu, Y.J.; Lin, H.R.; Wu, C.J.; Wu, C.C.; Ho, Y.C.; Lin, C.C.; et al. Comprehensive Bioinformatics Analysis of Glycosylation-Related Genes and Potential Therapeutic Targets in Colorectal Cancer. Int. J. Mol. Sci. 2025, 26, 1648. [Google Scholar] [CrossRef]
- Silva, A.; Cerqueira, M.C.; Rosa, B.; Sobral, C.; Pinto-Ribeiro, F.; Costa, M.F.; Baltazar, F.; Afonso, J. Prognostic Value of Monocarboxylate Transporter 1 Overexpression in Cancer: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 5141. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Zhang, K.; Yi, S.; Wang, L.; Wang, X.; Li, M.; Liang, S.; Wang, Y.; Zeng, Y. Multi-omics profiling combined with molecular docking reveals immune-inflammatory proteins as potential drug targets in colorectal cancer. Biochem. Biophys. Res. Commun. 2024, 739, 150598. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.J.; Hwa, C.; Lee, G.H.; Park, J.M.; An, J.Y. Integrative Multi-Omics Approaches in Cancer Research: From Biological Networks to Clinical Subtypes. Mol. Cells 2021, 44, 433–443. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neophytou, C.M. Recent Advances in Anti-Cancer Drugs. Int. J. Mol. Sci. 2025, 26, 8446. https://doi.org/10.3390/ijms26178446
Neophytou CM. Recent Advances in Anti-Cancer Drugs. International Journal of Molecular Sciences. 2025; 26(17):8446. https://doi.org/10.3390/ijms26178446
Chicago/Turabian StyleNeophytou, Christiana M. 2025. "Recent Advances in Anti-Cancer Drugs" International Journal of Molecular Sciences 26, no. 17: 8446. https://doi.org/10.3390/ijms26178446
APA StyleNeophytou, C. M. (2025). Recent Advances in Anti-Cancer Drugs. International Journal of Molecular Sciences, 26(17), 8446. https://doi.org/10.3390/ijms26178446