Seed Amplification Assay for α-Synuclein: Diagnostic Applications in Synucleinopathies
Abstract
1. Introduction
2. Results
2.1. Populations at Risk of Developing a Synucleinopathy
2.2. Parkinson’s Disease
2.2.1. Cerebrospinal Fluid
2.2.2. Other Biological Specimens
2.3. Dementia with Lewy Bodies
2.4. Studies Investigating Multiple Synucleinopathies
2.4.1. Cerebrospinal Fluid
2.4.2. Other Biological Tissues
3. Discussion
4. Materials and Methods
4.1. Search Strategy
4.2. Study Selection and Categorization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
a-syn | alpha-synuclein |
AD | Alzheimer’s disease |
AUC | area under the curve |
CBD | corticobasal degeneration |
CNS | central nervous system |
CSF | cerebrospinal fluid |
DAT-SPECT | dopamine transporter single-photon emission computed tomography |
DLB | dementia with Lewy bodies |
ELISA | Enzyme-linked Immunosorbent Assay |
FDG-PET | fluorodeoxyglucose—positron emission tomography |
F60 | fluorescence intensity at the endpoint of the amplification assay |
Fmax | maximum fluorescence |
Fmin | minimum fluorescence |
GA | gradient of amplification |
GBA1 | beta-glucocerebrosidase |
H&Y | Hoehn and Yahr scale |
iRBD | idiopathic rapid eye movement sleep behavior disorder |
LRRK2 | leucine-rich repeat kinase 2 |
MDS-UPDRS III | Movement Disorders Society Unified Parkinson’s Disease Rating Scale Part III |
MoCA | Montreal Cognitive Assessment |
MSA | multiple system atrophy |
NE | neuronal exosomes |
PAR | protein aggregation rate |
PD | Parkinson’s disease |
PDD | Parkinson’s disease dementia |
PSP | progressive supranuclear palsy |
RT-QuIC | real-time quaking-induced conversion |
SAA | seed amplification assay |
SD50 | tissue concentrations of seeding units giving 50% positive replicate reactions |
SNAP25 | synaptosomal-associated protein 25 kDa |
SNCA | gene coding α-synuclein |
T50 | time-to-50% maximum fluorescence |
TTT | time-to-threshold |
VAMP2 | vesicle-associated membrane protein 2 |
References
- Elbaz, A.; Carcaillon, L.; Kab, S.; Moisan, F. Epidemiology of Parkinson’s Disease. Rev. Neurol. 2016, 172, 14–26. [Google Scholar] [CrossRef]
- Freitas, M.; Hess, C.; Fox, S. Motor Complications of Dopaminergic Medications in Parkinson’s Disease. Semin. Neurol. 2017, 37, 147–157. [Google Scholar] [CrossRef]
- Rodger, A.T.; ALNasser, M.; Carter, W.G. Are Therapies That Target α-Synuclein Effective at Halting Parkinson’s Disease Progression? A Systematic Review. Int. J. Mol. Sci. 2023, 24, 11022. [Google Scholar] [CrossRef]
- McKeith, I.G.; Boeve, B.F.; Dickson, D.W.; Halliday, G.; Taylor, J.-P.; Weintraub, D.; Aarsland, D.; Galvin, J.; Attems, J.; Ballard, C.G.; et al. Diagnosis and Management of Dementia with Lewy Bodies. Neurology 2017, 89, 88–100. [Google Scholar] [CrossRef]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS Clinical Diagnostic Criteria for Parkinson’s Disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Hansen, D.; Ling, H.; Lashley, T.; Foley, J.A.; Strand, C.; Eid, T.M.; Holton, J.L.; Warner, T.T. Novel Clinicopathological Characteristics Differentiate Dementia with Lewy Bodies from Parkinson’s Disease Dementia. Neuropathol. Appl. Neurobiol. 2021, 47, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Koga, S.; Aoki, N.; Uitti, R.J.; van Gerpen, J.A.; Cheshire, W.P.; Josephs, K.A.; Wszolek, Z.K.; Langston, J.W.; Dickson, D.W. When DLB, PD, and PSP Masquerade as MSA. Neurology 2015, 85, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Wenning, G.K.; Stankovic, I.; Vignatelli, L.; Fanciulli, A.; Calandra-Buonaura, G.; Seppi, K.; Palma, J.; Meissner, W.G.; Krismer, F.; Berg, D.; et al. The Movement Disorder Society Criteria for the Diagnosis of Multiple System Atrophy. Mov. Disord. 2022, 37, 1131–1148. [Google Scholar] [CrossRef]
- Anestis, E.; Eccles, F.J.R.; Fletcher, I.; Simpson, J. Neurologists’ Lived Experiences of Communicating the Diagnosis of a Motor Neurodegenerative Condition: An Interpretative Phenomenological Analysis. BMC Neurol. 2023, 23, 178. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R.; Andrews, J.S.; Beach, T.G.; Buracchio, T.; Dunn, B.; Graf, A.; Hansson, O.; Ho, C.; Jagust, W.; McDade, E.; et al. Revised Criteria for Diagnosis and Staging of Alzheimer’s Disease: Alzheimer’s Association Workgroup. Alzheimer’s Dement. 2024, 20, 5143–5169. [Google Scholar] [CrossRef]
- Simon, C.; Soga, T.; Okano, H.J.; Parhar, I. α-Synuclein-Mediated Neurodegeneration in Dementia with Lewy Bodies: The Pathobiology of a Paradox. Cell Biosci. 2021, 11, 196. [Google Scholar] [CrossRef]
- Jellinger, K.A. Multiple System Atrophy: An Oligodendroglioneural Synucleinopathy1. J. Alzheimer’s Dis. 2018, 62, 1141–1179. [Google Scholar] [CrossRef]
- Simuni, T.; Chahine, L.M.; Poston, K.; Brumm, M.; Buracchio, T.; Campbell, M.; Chowdhury, S.; Coffey, C.; Concha-Marambio, L.; Dam, T.; et al. A Biological Definition of Neuronal α-Synuclein Disease: Towards an Integrated Staging System for Research. Lancet Neurol. 2024, 23, 178–190. [Google Scholar] [CrossRef]
- Braak, H.; Del Tredici, K.; Rüb, U.; de Vos, R.A.I.; Jansen Steur, E.N.H.; Braak, E. Staging of Brain Pathology Related to Sporadic Parkinson’s Disease. Neurobiol. Aging 2003, 24, 197–211. [Google Scholar] [CrossRef]
- Giannakis, A.; Sioka, C.; Kloufetou, E.; Konitsiotis, S. Cognitive Impairment in Parkinson’s Disease and Other Parkinsonian Syndromes. J. Neural. Transm. 2025, 132, 341–355. [Google Scholar] [CrossRef] [PubMed]
- Carlson, G.A.; Prusiner, S.B. How an Infection of Sheep Revealed Prion Mechanisms in Alzheimer’s Disease and Other Neurodegenerative Disorders. Int. J. Mol. Sci. 2021, 22, 4861. [Google Scholar] [CrossRef] [PubMed]
- Bernis, M.E.; Babila, J.T.; Breid, S.; Wüsten, K.A.; Wüllner, U.; Tamgüney, G. Prion-like Propagation of Human Brain-Derived Alpha-Synuclein in Transgenic Mice Expressing Human Wild-Type Alpha-Synuclein. Acta Neuropathol. Commun. 2015, 3, 75. [Google Scholar] [CrossRef] [PubMed]
- Fairfoul, G.; McGuire, L.I.; Pal, S.; Ironside, J.W.; Neumann, J.; Christie, S.; Joachim, C.; Esiri, M.; Evetts, S.G.; Rolinski, M.; et al. Alpha-synuclein RT-Qu IC in the CSF of Patients with Alpha-synucleinopathies. Ann. Clin. Transl. Neurol. 2016, 3, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Jung, B.C.; Lim, Y.-J.; Bae, E.-J.; Lee, J.S.; Choi, M.S.; Lee, M.K.; Lee, H.-J.; Kim, Y.S.; Lee, S.-J. Amplification of Distinct α-Synuclein Fibril Conformers through Protein Misfolding Cyclic Amplification. Exp. Mol. Med. 2017, 49, e314. [Google Scholar] [CrossRef]
- Concha-Marambio, L.; Farris, C.M.; Holguin, B.; Ma, Y.; Seibyl, J.; Russo, M.J.; Kang, U.J.; Hutten, S.J.; Merchant, K.; Shahnawaz, M.; et al. Seed Amplification Assay to Diagnose Early Parkinson’s and Predict Dopaminergic Deficit Progression. Mov. Disord. 2021, 36, 2444–2446. [Google Scholar] [CrossRef]
- Espay, A.J.; Lees, A.J.; Cardoso, F.; Frucht, S.J.; Erskine, D.; Sandoval, I.M.; Bernal-Conde, L.D.; Sturchio, A.; Imarisio, A.; Hoffmann, C.; et al. The α-Synuclein Seed Amplification Assay: Interpreting a Test of Parkinson’s Pathology. Park. Relat. Disord. 2025, 131, 107256. [Google Scholar] [CrossRef]
- Mohammad, M.E.; Vizcarra, J.A.; Garcia, X.; Patel, S.; Margolius, A.; Yu, X.X.; Fernandez, H.H. Impact of Behavioral Side Effects on the Management of Parkinson Patients Treated with Dopamine Agonists. Clin. Park. Relat. Disord. 2021, 4, 100091. [Google Scholar] [CrossRef]
- Kluge, A.; Schaeffer, E.; Bunk, J.; Sommerauer, M.; Röttgen, S.; Schulte, C.; Roeben, B.; von Thaler, A.; Welzel, J.; Lucius, R.; et al. Detecting Misfolded A-Synuclein in Blood Years before the Diagnosis of Parkinson’s Disease. Mov. Disord. 2024, 39, 1289–1299. [Google Scholar] [CrossRef] [PubMed]
- Concha-Marambio, L.; Weber, S.; Farris, C.M.; Dakna, M.; Lang, E.; Wicke, T.; Ma, Y.; Starke, M.; Ebentheuer, J.; Sixel-Döring, F.; et al. Accurate Detection of α-Synuclein Seeds in Cerebrospinal Fluid from Isolated Rapid Eye Movement Sleep Behavior Disorder and Patients with Parkinson’s Disease in the DeNovo Parkinson (DeNoPa) Cohort. Mov. Disord. 2023, 38, 567–578. [Google Scholar] [CrossRef]
- Kluge, A.; Borsche, M.; Streubel-Gallasch, L.; Gül, T.; Schaake, S.; Balck, A.; Prasuhn, J.; Campbell, P.; Morris, H.R.; Schapira, A.H.; et al. A-Synuclein Pathology in PRKN-Linked Parkinson’s Disease: New Insights from a Blood-Based Seed Amplification Assay. Ann. Neurol. 2024, 95, 1173–1177. [Google Scholar] [CrossRef]
- Brown, E.G.; Chahine, L.M.; Siderowf, A.; Gochanour, C.; Kurth, R.; Marshall, M.J.; Caspell-Garcia, C.; Brumm, M.C.; Stanley, C.E.; Korell, M.; et al. Staged Screening Identifies People with Biomarkers Related to Neuronal Alpha-Synuclein Disease. Ann. Neurol. 2025, 97, 730–740. [Google Scholar] [CrossRef]
- Yan, S.; Jiang, C.; Janzen, A.; Barber, T.R.; Seger, A.; Sommerauer, M.; Davis, J.J.; Marek, K.; Hu, M.T.; Oertel, W.H.; et al. Neuronally Derived Extracellular Vesicle α-Synuclein as a Serum Biomarker for Individuals at Risk of Developing Parkinson Disease. JAMA Neurol. 2024, 81, 59. [Google Scholar] [CrossRef]
- Siderowf, A.; Concha-Marambio, L.; Lafontant, D.-E.; Farris, C.M.; Ma, Y.; Urenia, P.A.; Nguyen, H.; Alcalay, R.N.; Chahine, L.M.; Foroud, T.; et al. Assessment of Heterogeneity among Participants in the Parkinson’s Progression Markers Initiative Cohort Using α-Synuclein Seed Amplification: A Cross-Sectional Study. Lancet Neurol. 2023, 22, 407–417. [Google Scholar] [CrossRef]
- LoPiccolo, M.K.; Wang, Z.; Eshed, G.M.; Fierro, L.; Stauffer, C.; Wang, K.; Zhang, J.; Tatsuoka, C.; Balwani, M.; Zou, W.; et al. Skin A-Synuclein Seeding Activity in Patients with Type 1 Gaucher Disease. Mov. Disord. 2024, 39, 2087–2091. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, A.; Mammana, A.; Hall, S.; Stomrud, E.; Zenesini, C.; Rossi, M.; Janelidze, S.; Ticca, A.; Palmqvist, S.; Magliocchetti, F.; et al. Alpha-Synuclein Seed Amplification Assay Longitudinal Outcomes in Lewy Body Disease Spectrum. Brain 2025, 148, 2038–2048. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, D.G.; Shifflett, B.; Farris, C.M.; Ma, Y.; Galasko, D.; Edland, S.D.; Mollenhauer, B.; Brumm, M.C.; Poston, K.L.; Marek, K.; et al. α-Synuclein Seed Amplification Assay Amplification Parameters and the Risk of Progression in Prodromal Parkinson Disease. Neurology 2025, 104, e210279. [Google Scholar] [CrossRef]
- Coughlin, D.G.; Hurtig, H.I.; Irwin, D.J. Pathological Influences on Clinical Heterogeneity in Lewy Body Diseases. Mov. Disord. 2020, 35, 5–19. [Google Scholar] [CrossRef]
- Palmqvist, S.; Rossi, M.; Hall, S.; Quadalti, C.; Mattsson-Carlgren, N.; Dellavalle, S.; Tideman, P.; Pereira, J.B.; Nilsson, M.H.; Mammana, A.; et al. Cognitive Effects of Lewy Body Pathology in Clinically Unimpaired Individuals. Nat. Med. 2023, 29, 1971–1978. [Google Scholar] [CrossRef] [PubMed]
- Quadalti, C.; Palmqvist, S.; Hall, S.; Rossi, M.; Mammana, A.; Janelidze, S.; Dellavalle, S.; Mattsson-Carlgren, N.; Baiardi, S.; Stomrud, E.; et al. Clinical Effects of Lewy Body Pathology in Cognitively Impaired Individuals. Nat. Med. 2023, 29, 1964–1970. [Google Scholar] [CrossRef]
- Goldstein, D.S.; Alam, P.; Sullivan, P.; Holmes, C.; Gelsomino, J.; Hughson, A.G.; Caughey, B. Elevated Cerebrospinal Fluid A-Synuclein Seeding Activity Predicts Central Lewy Body Diseases. Mov. Disord. Clin. Pract. 2025, 12, 659–663. [Google Scholar] [CrossRef] [PubMed]
- Marek, K.; Russell, D.S.; Concha-Marambio, L.; Choi, S.H.; Jennings, D.; Brumm, M.C.; Coffey, C.S.; Brown, E.; Seibyl, J.; Stern, M.; et al. Evidence for Alpha-Synuclein Aggregation in Older Individuals with Hyposmia: A Cross-Sectional Study. EBioMedicine 2025, 112, 105567. [Google Scholar] [CrossRef]
- Shahnawaz, M.; Tokuda, T.; Waragai, M.; Mendez, N.; Ishii, R.; Trenkwalder, C.; Mollenhauer, B.; Soto, C. Development of a Biochemical Diagnosis of Parkinson Disease by Detection of α-Synuclein Misfolded Aggregates in Cerebrospinal Fluid. JAMA Neurol. 2017, 74, 163. [Google Scholar] [CrossRef] [PubMed]
- Bhumkar, A.; Magnan, C.; Lau, D.; Jun, E.S.W.; Dzamko, N.; Gambin, Y.; Sierecki, E. Single-Molecule Counting Coupled to Rapid Amplification Enables Detection of A-Synuclein Aggregates in Cerebrospinal Fluid of Parkinson’s Disease Patients. Angew. Chem. Int. Ed. 2021, 60, 11874–11883. [Google Scholar] [CrossRef]
- Orrù, C.D.; Ma, T.C.; Hughson, A.G.; Groveman, B.R.; Srivastava, A.; Galasko, D.; Angers, R.; Downey, P.; Crawford, K.; Hutten, S.J.; et al. A Rapid A-synuclein Seed Assay of Parkinson’s Disease CSF Panel Shows High Diagnostic Accuracy. Ann. Clin. Transl. Neurol. 2021, 8, 374–384. [Google Scholar] [CrossRef]
- Russo, M.J.; Orru, C.D.; Concha-Marambio, L.; Giaisi, S.; Groveman, B.R.; Farris, C.M.; Holguin, B.; Hughson, A.G.; LaFontant, D.-E.; Caspell-Garcia, C.; et al. High Diagnostic Performance of Independent Alpha-Synuclein Seed Amplification Assays for Detection of Early Parkinson’s Disease. Acta Neuropathol. Commun. 2021, 9, 179. [Google Scholar] [CrossRef]
- Oftedal, L.; Maple-Grødem, J.; Tysnes, O.-B.; Alves, G.; Lange, J. Seed Amplification Assay as a Diagnostic Tool in Newly-Diagnosed Parkinson’s Disease. J. Park. Dis. 2023, 13, 841–844. [Google Scholar] [CrossRef]
- Majbour, N.; Aasly, J.; Abdi, I.; Ghanem, S.; Erskine, D.; van de Berg, W.; El-Agnaf, O. Disease-Associated α-Synuclein Aggregates as Biomarkers of Parkinson Disease Clinical Stage. Neurology 2022, 99, e2417–e2427. [Google Scholar] [CrossRef] [PubMed]
- Middleton, J.S.; Hovren, H.L.; Kha, N.; Medina, M.J.; MacLeod, K.R.; Concha-Marambio, L.; Jensen, K.J. Seed Amplification Assay Results Illustrate Discrepancy in Parkinson’s Disease Clinical Diagnostic Accuracy and Error Rates. J. Neurol. 2023, 270, 5813–5818. [Google Scholar] [CrossRef]
- Bellomo, G.; Paciotti, S.; Concha-Marambio, L.; Rizzo, D.; Wojdaƚa, A.L.; Chiasserini, D.; Gatticchi, L.; Cerofolini, L.; Giuntini, S.; De Luca, C.M.G.; et al. Cerebrospinal Fluid Lipoproteins Inhibit α-Synuclein Aggregation by Interacting with Oligomeric Species in Seed Amplification Assays. Mol. Neurodegener. 2023, 18, 20. [Google Scholar] [CrossRef]
- Gaetani, L.; Bellomo, G.; Chiasserini, D.; De Rocker, C.; Goossens, J.; Paolini Paoletti, F.; Vanmechelen, E.; Parnetti, L. Influence of Co-Pathology on CSF and Plasma Synaptic Markers SNAP25 and VAMP2 in Alzheimer’s Disease and Parkinson’s Disease. Alzheimers Res. Ther. 2025, 17, 115. [Google Scholar] [CrossRef]
- Eijsvogel, P.; Misra, P.; Concha-Marambio, L.; Boyd, J.D.; Ding, S.; Fedor, L.; Hsieh, Y.-T.; Sun, Y.S.; Vroom, M.M.; Farris, C.M.; et al. Target Engagement and Immunogenicity of an Active Immunotherapeutic Targeting Pathological α-Synuclein: A Phase 1 Placebo-Controlled Trial. Nat. Med. 2024, 30, 2631–2640. [Google Scholar] [CrossRef]
- Grillo, P.; Concha-Marambio, L.; Pisani, A.; Riboldi, G.M.; Kang, U.J. Association between the Amplification Parameters of the A-Synuclein Seed Amplification Assay and Clinical and Genetic Subtypes of Parkinson’s Disease. Mov. Disord. 2025, 40, 305–314. [Google Scholar] [CrossRef]
- Bräuer, S.; Schniewind, I.; Dinter, E.; Falkenburger, B.H. Recursive Seed Amplification Detects Distinct α-Synuclein Strains in Cerebrospinal Fluid of Patients with Parkinson’s Disease. Acta Neuropathol. Commun. 2025, 13, 13. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, E.; Kluge, A.; Schulte, C.; Deuschle, C.; Bunk, J.; Welzel, J.; Maetzler, W.; Berg, D. Association of Misfolded α-Synuclein Derived from Neuronal Exosomes in Blood with Parkinson’s Disease Diagnosis and Duration. J. Park. Dis. 2024, 14, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Daida, K.; Shimonaka, S.; Shiba-Fukushima, K.; Ogata, J.; Yoshino, H.; Okuzumi, A.; Hatano, T.; Motoi, Y.; Hirunagi, T.; Katsuno, M.; et al. α-Synuclein V15A Variant in Familial Parkinson’s Disease Exhibits a Weaker Lipid-Binding Property. Mov. Disord. 2022, 37, 2075–2085. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gilliland, T.; Kim, H.J.; Gerasimenko, M.; Sajewski, K.; Camacho, M.V.; Bebek, G.; Chen, S.G.; Gunzler, S.A.; Kong, Q. A Minimally Invasive Biomarker for Sensitive and Accurate Diagnosis of Parkinson’s Disease. Acta Neuropathol. Commun. 2024, 12, 167. [Google Scholar] [CrossRef] [PubMed]
- Chahine, L.M.; Beach, T.G.; Adler, C.H.; Hepker, M.; Kanthasamy, A.; Appel, S.; Pritzkow, S.; Pinho, M.; Mosovsky, S.; Serrano, G.E.; et al. Central and Peripheral A-synuclein in Parkinson Disease Detected by Seed Amplification Assay. Ann. Clin. Transl. Neurol. 2023, 10, 696–705. [Google Scholar] [CrossRef]
- Vascellari, S.; Orrù, C.D.; Groveman, B.R.; Parveen, S.; Fenu, G.; Pisano, G.; Piga, G.; Serra, G.; Oppo, V.; Murgia, D.; et al. α-Synuclein Seeding Activity in Duodenum Biopsies from Parkinson’s Disease Patients. PLoS Pathog. 2023, 19, e1011456. [Google Scholar] [CrossRef]
- Fenyi, A.; Leclair-Visonneau, L.; Clairembault, T.; Coron, E.; Neunlist, M.; Melki, R.; Derkinderen, P.; Bousset, L. Detection of Alpha-Synuclein Aggregates in Gastrointestinal Biopsies by Protein Misfolding Cyclic Amplification. Neurobiol. Dis. 2019, 129, 38–43. [Google Scholar] [CrossRef]
- Emmi, A.; Mammana, A.; Sandre, M.; Baiardi, S.; Weis, L.; Rossi, M.; Magliocchetti, F.; Savarino, E.; Russo, F.P.; Porzionato, A.; et al. Alpha-synuclein RT-QuIC Assay in Gastroduodenal and Skin Biopsies of Parkinson Disease Patients. Ann. Clin. Transl. Neurol. 2025, 12, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Shin, C.; Han, J.-Y.; Kim, S.-I.; Park, S.-H.; Yang, H.-K.; Lee, H.-J.; Kong, S.-H.; Suh, Y.-S.; Kim, H.-J.; Choi, Y.P.; et al. In Vivo and Autopsy Validation of Alpha-Synuclein Seeding Activity Using RT-QuIC Assay in the Gastrointestinal Tract of Patients with Parkinson’s Disease. Park. Relat. Disord. 2022, 103, 23–28. [Google Scholar] [CrossRef]
- Mao, H.; Kuang, Y.; Feng, D.; Chen, X.; Lu, L.; Xia, W.; Gan, T.; Huang, W.; Guo, W.; Yi, H.; et al. Ultrasensitive Detection of Aggregated α-Synuclein Using Quiescent Seed Amplification Assay for the Diagnosis of Parkinson’s Disease. Transl. Neurodegener. 2024, 13, 35. [Google Scholar] [CrossRef]
- Agliardi, C.; Guerini, F.; Meloni, M.; Clerici, M. Alpha-Synuclein as a Biomarker in Parkinson’s Disease: Focus on Neural Derived Extracelluar Vesicles. Neural. Regen. Res. 2022, 17, 1503. [Google Scholar] [CrossRef]
- Cerri, S.; Ghezzi, C.; Sampieri, M.; Siani, F.; Avenali, M.; Dornini, G.; Zangaglia, R.; Minafra, B.; Blandini, F. The Exosomal/Total α-Synuclein Ratio in Plasma Is Associated With Glucocerebrosidase Activity and Correlates With Measures of Disease Severity in PD Patients. Front. Cell. Neurosci. 2018, 12, 125. [Google Scholar] [CrossRef]
- Chang, C.-W.; Yang, S.-Y.; Yang, C.-C.; Chang, C.-W.; Wu, Y.-R. Plasma and Serum Alpha-Synuclein as a Biomarker of Diagnosis in Patients With Parkinson’s Disease. Front. Neurol. 2020, 10, 1388. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, K.A.; Korczyn, A.D. Are Dementia with Lewy Bodies and Parkinson’s Disease Dementia the Same Disease? BMC Med. 2018, 16, 34. [Google Scholar] [CrossRef] [PubMed]
- Bentivenga, G.M.; Mammana, A.; Baiardi, S.; Rossi, M.; Ticca, A.; Magliocchetti, F.; Mastrangelo, A.; Poleggi, A.; Ladogana, A.; Capellari, S.; et al. Performance of a Seed Amplification Assay for Misfolded Alpha-Synuclein in Cerebrospinal Fluid and Brain Tissue in Relation to Lewy Body Disease Stage and Pathology Burden. Acta Neuropathol. 2024, 147, 18. [Google Scholar] [CrossRef]
- Braak, H.; Ghebremedhin, E.; Rüb, U.; Bratzke, H.; Del Tredici, K. Stages in the Development of Parkinson’s Disease-Related Pathology. Cell Tissue Res. 2004, 318, 121–134. [Google Scholar] [CrossRef]
- Samudra, N.; Fischer, D.L.; Lenio, S.; Lario Lago, A.; Ljubenkov, P.A.; Rojas, J.C.; Seeley, W.W.; Spina, S.; Staffaroni, A.M.; Tablante, J.; et al. Clinicopathological Correlation of Cerebrospinal Fluid Alpha-synuclein Seed Amplification Assay in a Behavioral Neurology Autopsy Cohort. Alzheimer’s Dement. 2024, 20, 3334–3341. [Google Scholar] [CrossRef]
- Coughlin, D.G.; MacLeod, K.R.; Middleton, J.S.; Bozoki, A.C.; Galvin, J.E.; Irwin, D.J.; Lippa, C.F.; Litvan, I.; Lopez, O.L.; Berman, S.; et al. Association of CSF α-Synuclein Seeding Amplification Assay Results With Clinical Features of Possible and Probable Dementia With Lewy Bodies. Neurology 2024, 103, e209656. [Google Scholar] [CrossRef]
- Koss, D.J.; Todd, O.; Menon, H.; Anderson, Z.; Yang, T.; Findlay, L.; Graham, B.; Palmowski, P.; Porter, A.; Morrice, N.; et al. A Reciprocal Relationship between Markers of Genomic DNA Damage and Alpha-Synuclein Pathology in Dementia with Lewy Bodies. Mol. Neurodegener. 2025, 20, 34. [Google Scholar] [CrossRef] [PubMed]
- Kon, T.; Lee, S.; Martinez-Valbuena, I.; Yoshida, K.; Tanikawa, S.; Lang, A.E.; Kovacs, G.G. Molecular Behavior of α-Synuclein Is Associated with Membrane Transport, Lipid Metabolism, and Ubiquitin–Proteasome Pathways in Lewy Body Disease. Int. J. Mol. Sci. 2024, 25, 2676. [Google Scholar] [CrossRef]
- Groveman, B.R.; Orrù, C.D.; Hughson, A.G.; Raymond, L.D.; Zanusso, G.; Ghetti, B.; Campbell, K.J.; Safar, J.; Galasko, D.; Caughey, B. Rapid and Ultra-Sensitive Quantitation of Disease-Associated α-Synuclein Seeds in Brain and Cerebrospinal Fluid by ASyn RT-QuIC. Acta Neuropathol. Commun. 2018, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.R.; Coughlin, D.G.; Brumbach, B.H.; Smirnov, D.S.; Concha-Marambio, L.; Farris, C.M.; Ma, Y.; Kim, Y.; Wilson, E.N.; Kaye, J.A.; et al. A-Synuclein Seed Amplification in CSF and Brain from Patients with Different Brain Distributions of Pathological A-Synuclein in the Context of Co-Pathology and Non-LBD Diagnoses. Ann. Neurol. 2022, 92, 650–662. [Google Scholar] [CrossRef]
- Bräuer, S.; Rossi, M.; Sajapin, J.; Henle, T.; Gasser, T.; Parchi, P.; Brockmann, K.; Falkenburger, B.H. Kinetic Parameters of Alpha-Synuclein Seed Amplification Assay Correlate with Cognitive Impairment in Patients with Lewy Body Disorders. Acta Neuropathol. Commun. 2023, 11, 162. [Google Scholar] [CrossRef]
- Fernandes Gomes, B.; Farris, C.M.; Ma, Y.; Concha-Marambio, L.; Lebovitz, R.; Nellgård, B.; Dalla, K.; Constantinescu, J.; Constantinescu, R.; Gobom, J.; et al. α-Synuclein Seed Amplification Assay as a Diagnostic Tool for Parkinsonian Disorders. Park. Relat. Disord. 2023, 117, 105807. [Google Scholar] [CrossRef]
- Wiseman, J.A.; Turner, C.P.; Faull, R.L.M.; Halliday, G.M.; Dieriks, B.V. Refining α-Synuclein Seed Amplification Assays to Distinguish Parkinson’s Disease from Multiple System Atrophy. Transl. Neurodegener. 2025, 14, 7. [Google Scholar] [CrossRef]
- Ma, Y.; Farris, C.M.; Weber, S.; Schade, S.; Nguyen, H.; Pérez-Soriano, A.; Giraldo, D.M.; Fernández, M.; Soto, M.; Cámara, A.; et al. Sensitivity and Specificity of a Seed Amplification Assay for Diagnosis of Multiple System Atrophy: A Multicentre Cohort Study. Lancet Neurol. 2024, 23, 1225–1237. [Google Scholar] [CrossRef]
- Al-Lahham, R.; Corkins, M.E.; Ishtikhar, M.; Rabadia, P.; Ramirez, S.; Banerjee, V.; Shahnawaz, M. Intracellular Inclusions Induced by Patient-Derived and Amplified α-Synuclein Aggregates Are Morphologically Indistinguishable. Cells 2025, 14, 684. [Google Scholar] [CrossRef]
- Plastini, M.J.; Abdelnour, C.; Young, C.B.; Wilson, E.N.; Shahid-Besanti, M.; Lamoureux, J.; Andreasson, K.I.; Kerchner, G.A.; Montine, T.J.; Henderson, V.W.; et al. Multiple Biomarkers Improve Diagnostic Accuracy across Lewy Body and Alzheimer’s Disease Spectra. Ann. Clin. Transl. Neurol. 2024, 11, 1197–1210. [Google Scholar] [CrossRef] [PubMed]
- Giannakis, A.; Konitsiotis, S. A New Paradigm for Neurodegenerative Diseases Classification: A Clinical Perspective. J. Clin. Neurosci. 2025, 134, 111099. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, D.; Xie, S.X.; Liang, M.; Williams, A.; Peterson, C.; Weintraub, D.; McMillan, C.T.; Wolk, D.A.; Akhtar, R.S.; Hurtig, H.I.; et al. Cognitive and Pathological Influences of Tau Pathology in Lewy Body Disorders. Ann. Neurol. 2019, 85, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Yoshinaga, S.; Yamanaka, T.; Miyazaki, H.; Okuzumi, A.; Hiyama, A.; Murayama, S.; Nukina, N. Preserved Proteinase K-Resistant Core after Amplification of Alpha-Synuclein Aggregates: Implication to Disease-Related Structural Study. Biochem. Biophys. Res. Commun. 2020, 522, 655–661. [Google Scholar] [CrossRef]
- Martinez-Valbuena, I.; Visanji, N.P.; Kim, A.; Lau, H.H.C.; So, R.W.L.; Alshimemeri, S.; Gao, A.; Seidman, M.A.; Luquin, M.R.; Watts, J.C.; et al. Alpha-Synuclein Seeding Shows a Wide Heterogeneity in Multiple System Atrophy. Transl. Neurodegener. 2022, 11, 7. [Google Scholar] [CrossRef]
- Kim, A.; Martinez-Valbuena, I.; Li, J.; Lang, A.E.; Kovacs, G.G. Disease-Specific α-Synuclein Seeding in Lewy Body Disease and Multiple System Atrophy Are Preserved in Formaldehyde-Fixed Paraffin-Embedded Human Brain. Biomolecules 2023, 13, 936. [Google Scholar] [CrossRef]
- Fenyi, A.; Duyckaerts, C.; Bousset, L.; Braak, H.; Del Tredici, K.; Melki, R. Seeding Propensity and Characteristics of Pathogenic ASyn Assemblies in Formalin-Fixed Human Tissue from the Enteric Nervous System, Olfactory Bulb, and Brainstem in Cases Staged for Parkinson’s Disease. Cells 2021, 10, 139. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, Z.; Cai, H.; Kou, W.; Yang, C.; Li, S.; Zhang, N.; Feng, T. Detection of A-Synuclein in Oral Mucosa by Seed Amplification Assay in Synucleinopathies and Isolated REM Sleep Behavior Disorder. Mov. Disord. 2024, 39, 1300–1309. [Google Scholar] [CrossRef]
- Luan, M.; Sun, Y.; Chen, J.; Jiang, Y.; Li, F.; Wei, L.; Sun, W.; Ma, J.; Song, L.; Liu, J.; et al. Diagnostic Value of Salivary Real-Time Quaking-Induced Conversion in Parkinson’s Disease and Multiple System Atrophy. Mov. Disord. 2022, 37, 1059–1063. [Google Scholar] [CrossRef] [PubMed]
- Luan, M.; Wei, L.; Sun, Y.; Chen, J.; Jiang, Y.; Wu, W.; Li, F.; Sun, W.; Zhu, L.; Wang, Z.; et al. Combining Salivary α-Synuclein Seeding Activity and MiRNA-29a to Distinguish Parkinson’s Disease and Multiple System Atrophy. Park. Relat. Disord. 2024, 127, 107088. [Google Scholar] [CrossRef]
- Jiang, C.; Hopfner, F.; Katsikoudi, A.; Hein, R.; Catli, C.; Evetts, S.; Huang, Y.; Wang, H.; Ryder, J.W.; Kuhlenbaeumer, G.; et al. Serum Neuronal Exosomes Predict and Differentiate Parkinson’s Disease from Atypical Parkinsonism. J. Neurol. Neurosurg. Psychiatry 2020, 91, 720–729. [Google Scholar] [CrossRef]
- Sorrentino, Z.A.; Giasson, B.I. The Emerging Role of α-Synuclein Truncation in Aggregation and Disease. J. Biol. Chem. 2020, 295, 10224–10244. [Google Scholar] [CrossRef]
- Donadio, V.; Incensi, A.; Leta, V.; Giannoccaro, M.P.; Scaglione, C.; Martinelli, P.; Capellari, S.; Avoni, P.; Baruzzi, A.; Liguori, R. Skin Nerve α-Synuclein Deposits. Neurology 2014, 82, 1362–1369. [Google Scholar] [CrossRef]
- Brockmann, K.; Lerche, S.; Baiardi, S.; Rossi, M.; Wurster, I.; Quadalti, C.; Roeben, B.; Mammana, A.; Zimmermann, M.; Hauser, A.; et al. CSF α-Synuclein Seed Amplification Kinetic Profiles Are Associated with Cognitive Decline in Parkinson’s Disease. NPJ Park. Dis. 2024, 10, 24. [Google Scholar] [CrossRef]
- Kuang, Y.; Mao, H.; Dai, W.; Gan, T.; Lin, H.; Li, J.; Yang, X.; Xu, P. Enhanced Serum-Based Seed Amplification Assay for Detecting Propagative α-Synuclein Seeds in Parkinson’s Disease. Transl. Neurodegener. 2025, 14, 24. [Google Scholar] [CrossRef] [PubMed]
- Soto, C. α-Synuclein Seed Amplification Technology for Parkinson’s Disease and Related Synucleinopathies. Trends Biotechnol. 2024, 42, 829–841. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Y.; Mao, H.; Gan, T.; Guo, W.; Dai, W.; Huang, W.; Wu, Z.; Li, H.; Huang, X.; Yang, X.; et al. A Skin-Specific α-Synuclein Seeding Amplification Assay for Diagnosing Parkinson’s Disease. NPJ Park. Dis. 2024, 10, 129. [Google Scholar] [CrossRef]
- Lashuel, H.A.; Surmeier, D.J.; Simuni, T.; Merchant, K.; Caughey, B.; Soto, C.; Fares, M.-B.; Heym, R.G.; Melki, R. Alpha-Synuclein Seed Amplification Assays: Data Sharing, Standardization Needed for Clinical Use. Sci. Adv. 2025, 11, eadt7195. [Google Scholar] [CrossRef] [PubMed]
- Roemer, S.N.; Dehsarvi, A.; Steward, A.; Dewenter, A.; Pescoller, J.; Wagner, F.; Levin, J.; Brendel, M.; Höglinger, G.; Franzmeier, N. Alpha Synuclein Co-pathology Is Associated with Faster Ab-related Tau Accumulation in Alzheimer’s Disease. Alzheimer’s Dement. 2024, 20, e093961. [Google Scholar] [CrossRef]
- Heikkinen, S.; Katisko, K.; Haapasalo, A.; Portaankorva, A.; Hartikainen, P.; Solje, E. Overlap in the Diagnostic Criteria of Frontotemporal Dementia Syndromes with Parkinsonism. J. Alzheimer’s Dis. 2025, 104, 374–381. [Google Scholar] [CrossRef]
- Vaughan, D.P.; Fumi, R.; Theilmann Jensen, M.; Hodgson, M.; Georgiades, T.; Wu, L.; Lux, D.; Obrocki, R.; Lamoureux, J.; Ansorge, O.; et al. Evaluation of Cerebrospinal Fluid α-Synuclein Seed Amplification Assay in Progressive Supranuclear Palsy and Corticobasal Syndrome. Mov. Disord. 2024, 39, 2285–2291. [Google Scholar] [CrossRef]
- Smith, R.; Hovren, H.; Bowser, R.; Bakkar, N.; Garruto, R.; Ludolph, A.; Ravits, J.; Gaertner, L.; Murphy, D.; Lebovitz, R. Misfolded alpha-synuclein in Amyotrophic Lateral Sclerosis: Implications for Diagnosis and Treatment. Eur. J. Neurol. 2024, 31, e16206. [Google Scholar] [CrossRef]
- Jonaitis, E.M.; MacLeod, K.; Lamoureux, J.; Jeffers, B.; Studer, R.L.; Middleton, J.; Wilson, R.E.; Chin, N.A.; Okonkwo, O.C.; Bendlin, B.B.; et al. Misfolded A-synuclein Co-occurrence with Alzheimer’s Disease Proteinopathy. Alzheimer’s Dement. 2025, 21, e70205. [Google Scholar] [CrossRef]
- Pichet Binette, A.; Mammana, A.; Wisse, L.; Rossi, M.; Strandberg, O.; Smith, R.; Mattsson-Carlgren, N.; Janelidze, S.; Palmqvist, S.; Ticca, A.; et al. Associations between Misfolded Alpha-synuclein Aggregates and Alzheimer’s Disease Pathology in Vivo. Alzheimer’s Dement. 2024, 20, 7624–7634. [Google Scholar] [CrossRef]
- Tosun, D.; Hausle, Z.; Iwaki, H.; Thropp, P.; Lamoureux, J.; Lee, E.B.; MacLeod, K.; McEvoy, S.; Nalls, M.; Perrin, R.J.; et al. A Cross-sectional Study of A-synuclein Seed Amplification Assay in Alzheimer’s Disease Neuroimaging Initiative: Prevalence and Associations with Alzheimer’s Disease Biomarkers and Cognitive Function. Alzheimer’s Dement. 2024, 20, 5114–5131. [Google Scholar] [CrossRef]
- Qiang, Q.; Skudder-Hill, L.; Toyota, T.; Huang, Z.; Wei, W.; Adachi, H. CSF α-Synuclein Aggregation Is Associated with APOE Ε4 and Progressive Cognitive Decline in Alzheimer’s Disease. Neurobiol. Aging 2025, 150, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Franzmeier, N.; Roemer-Cassiano, S.N.; Bernhardt, A.M.; Dehsarvi, A.; Dewenter, A.; Steward, A.; Biel, D.; Frontzkowski, L.; Zhu, Z.; Gnörich, J.; et al. Alpha Synuclein Co-Pathology Is Associated with Accelerated Amyloid-Driven Tau Accumulation in Alzheimer’s Disease. Mol. Neurodegener. 2025, 20, 31. [Google Scholar] [CrossRef]
- Coulthard, E.J.; Love, S. A Broader View of Dementia: Multiple Co-Pathologies Are the Norm. Brain 2018, 141, 1894–1897. [Google Scholar] [CrossRef]
- Robinson, J.L.; Lee, E.B.; Xie, S.X.; Rennert, L.; Suh, E.; Bredenberg, C.; Caswell, C.; Van Deerlin, V.M.; Yan, N.; Yousef, A.; et al. Neurodegenerative Disease Concomitant Proteinopathies Are Prevalent, Age-Related and APOE4-Associated. Brain 2018, 141, 2181–2193. [Google Scholar] [CrossRef] [PubMed]
- Giannakis, A.; Konitsiotis, S.; Sioka, C. A Narrative Review of Serum Biomarkers in Progressive Supranuclear Palsy, Corticobasal Syndrome, and Related Disorders. J. Neural. Transm. 2025. [Google Scholar] [CrossRef]
- Giannakis, A.; Konitsiotis, S.; Sioka, C. Differentiating Progressive Supranuclear Palsy and Corticobasal Syndrome: Insights from Cerebrospinal Fluid Biomarkers—A Narrative Review. Medicina 2025, 61, 701. [Google Scholar] [CrossRef]
- Jellinger, K.A. Neuropathology of Sporadic Parkinson’s Disease: Evaluation and Changes of Concepts. Mov. Disord. 2012, 27, 8–30. [Google Scholar] [CrossRef]
- Vaquer-Alicea, J.; Diamond, M.I. Propagation of Protein Aggregation in Neurodegenerative Diseases. Annu. Rev. Biochem. 2019, 88, 785–810. [Google Scholar] [CrossRef] [PubMed]
- Sano, K.; Atarashi, R.; Satoh, K.; Ishibashi, D.; Nakagaki, T.; Iwasaki, Y.; Yoshida, M.; Murayama, S.; Mishima, K.; Nishida, N. Prion-Like Seeding of Misfolded α-Synuclein in the Brains of Dementia with Lewy Body Patients in RT-QUIC. Mol. Neurobiol. 2017, 55, 3916–3930. [Google Scholar] [CrossRef] [PubMed]
- Brettschneider, J.; Del Tredici, K.; Toledo, J.B.; Robinson, J.L.; Irwin, D.J.; Grossman, M.; Suh, E.; Van Deerlin, V.M.; Wood, E.M.; Baek, Y.; et al. Stages of PTDP-43 Pathology in Amyotrophic Lateral Sclerosis. Ann. Neurol. 2013, 74, 20–38. [Google Scholar] [CrossRef]
- Rissardo, J.P.; Fornari Caprara, A.L. Alpha-Synuclein Seed Amplification Assays in Parkinson’s Disease: A Systematic Review and Network Meta-Analysis. Clin. Pract. 2025, 15, 107. [Google Scholar] [CrossRef]
- Zhao, Y.; Luan, M.; Liu, J.; Wang, Q.; Deng, J.; Wang, Z.; Sun, Y.; Li, K. Skin α-Synuclein Assays in Diagnosing Parkinson’s Disease: A Systematic Review and Meta-Analysis. J. Neurol. 2025, 272, 326. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, S.; Yang, C.; Yu, Z.; Jiang, Y.; Feng, T. Comparison of Biospecimens for A-synuclein Seed Amplification Assays in Parkinson’s Disease: A Systematic Review and Network Meta-analysis. Eur. J. Neurol. 2023, 30, 3949–3967. [Google Scholar] [CrossRef]
- Iftikhar, I.H.; AlShimemeri, S.; Rabah, H.; Rao, S.T.; BaHammam, A.S. Alpha-synuclein Pathology in Isolated Rapid Eye Movement Sleep Behaviour Disorder: A meta-analysis. J. Sleep. Res. 2024, 33, e14204. [Google Scholar] [CrossRef]
- Kluge, A.; Iranzo, A. Biofluid Detection of Pathological α -Synuclein in the Prodromal Phase of Synucleinopathies. J. Park. Dis. 2024, 14, S323–S331. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, J.; Chen, X.; Wang, S.; Zhang, C.; Hu, J.; Guo, D.; Liu, X. Real-Time Quaking-Induced Conversion Assay Is Accurate for Lewy Body Diseases: A Meta-Analysis. Neurol. Sci. 2022, 43, 4125–4132. [Google Scholar] [CrossRef] [PubMed]
- Grossauer, A.; Hemicker, G.; Krismer, F.; Peball, M.; Djamshidian, A.; Poewe, W.; Seppi, K.; Heim, B. A-Synuclein Seed Amplification Assays in the Diagnosis of Synucleinopathies Using Cerebrospinal Fluid—A Systematic Review and Meta-Analysis. Mov Disord Clin. Pract. 2023, 10, 737–747. [Google Scholar] [CrossRef] [PubMed]
Study | PD Patient Numbers | Additional Parameters Tested | Main Findings | Study Notes |
---|---|---|---|---|
Shahnawaz et al., 2017 [37] | 76 | Fmax 5, TTT 6, T50 7, AUC 8 | -88.5% sensitivity and 96.9% specificity for PD patients compared to other neurological disorders -negative correlation between T50 and H&Y 9 for the PD group | -relatively large sample size -cohort study -absence of autopsy-confirmed cases |
Bhumkar et al., 2021 [38] | 8 | - | -75% positivity for PD patients compared to HC | -small sample size -absence of autopsy-confirmed cases |
Orrù et al., 2021 [39] | 108 | Fmax, TTT, T50, AUC | 97% positivity for PD patients and AUC 0.95 compared to HC 10 | -relatively large sample size -retrospective study -absence of autopsy-confirmed cases |
Russo et al., 2021 [40] | 30 | Fmax, TTT, AUC | 86–96% sensitivity and 93–100% specificity for PD compared to parkinsonian patients with normal DAT-SPECT 11 and HC | -small sample size -cohort study -absence of autopsy-confirmed cases |
Oftedal et al., 2023 [41] | 121 | - | 82.6% sensitivity and 88.2% specificity for PD compared to HC | -relatively large sample size -cohort study -absence of autopsy-confirmed cases |
Majbour et al., 2022 [42] | 111 | Fmax, T50, AUC, α-syn oligomer-specific ELISA 12 | -SAA product quantification with oligomeric ELISA 100% sensitivity and specificity for PD patients against HC -positive correlation between α-syn oligomer levels and H&Y and MDS-UPDRS III 13 for PD patients | -relatively large sample size for PD patients -cohort study -29 autopsy-confirmed cases |
Middleton et al., 2023 [43] | 96 | - | -83.9% diagnostic accuracy for PD patients compared to HC using only clinical diagnosis -93.6% diagnostic accuracy for PD patients compared to HC combining clinical diagnosis with confirmatory DAT- SPECT | -relatively large sample size -retrospective cohort study -absence autopsy-confirmed cases |
Bellomo et al., 2023 [44] | 4 | Fmax, T50, Fmin 14 | -strong inhibition of α-syn aggregation by apolipoproteins ApoA1 and ApoE compared to HC -observation of α-syn–apolipoprotein complexes -correlations between ApoA1 and ApoE levels and SAA kinetic parameters compared to HC | -small sample size -absence of autopsy-confirmed cases |
Gaetani et al., 2025 [45] | 47 | - | -no difference in SNAP25 15 levels in serum and CSF, and VAMP2 16 levels in CSF, in AD patients with α-syn SAA positivity compared to AD patients with α-syn SAA negativity -higher SNAP25 levels in CSF and serum in PD patients positive for AD 17 pathology compared to PD patients negative for AD pathology | -relatively large sample size -retrospective cohort study -absence of autopsy-confirmed cases |
Eijsvogel et al., 2024 [46] | 20 | Fmax | reduction in CSF α-syn seeds in PD treatment group compared to PD control group | -small sample size -randomized controlled trial -absence of autopsy-confirmed cases |
Grillo et al., 2025 [47] | 547 | Fmax, TTT, T50, AUC, RFU 18, RFU/hours | -77% positivity for LRRK2 19 patients, 92.3% for GBA1 20 PD, 93.8% for sporadic PD -longer T50 and TTT, smaller AUC for LRRK2 compared to GBA1 and sporadic PD -shorter T50 and larger AUC for sporadic PD patients with dysautonomia compared to those without | -relatively large sample size -cohort study -absence of autopsy-confirmed cases -absence of HC |
Bräuer et al., 2025 [48] | 34 | Fmax, TTT, AUC, RFU, time to 2 positive replicates, cultured cell transfection with SAA products | two types of α-syn aggregates, based on kinetic profiles and cell seeding capacities for PD patients | -small sample size -cross sectional study -absence of autopsy-confirmed cases |
Study | Tissue Examined | PD Patient Numbers | Additional Parameters Tested | Main Findings | Study Notes |
---|---|---|---|---|---|
Schaeffer et al., 2024 [49] | Blood | 80 | Fmax 5, TTT 6, T50 7, AUC 8, F60 9 | -98.8% sensitivity for PD patients compared to HC 10 -lower F60 with longer disease duration compared to shorter disease duration for PD patients | -relatively large sample size for the PD group -cross-sectional study -absence of autopsy-confirmed cases |
Kluge et al., 2024 [25] | Blood | 22 | - | -61.5% of PRKN mutation carriers positive for α-syn SAA compared to HC | -small sample size -cross-sectional study -absence of autopsy-confirmed cases |
Daida et al., 2024 [50] | Blood | 875 | - | -greater SAA activity for V15A-derived α-syn fibrils compared to wild-type α-syn | -large sample size, but only two families with the V15A variant -cross-sectional study -absence of autopsy-confirmed cases |
Wang et al., 2024 [51] | Blood, saliva | 187 (82 blood only, 48 blood and saliva, 57 saliva only) | - | -80.5% sensitivity, 90.5% specificity, 0.90 accuracy for PD patients compared to HC in the serum -74.7% sensitivity, 97.9% specificity, 0.90 accuracy for PD patients compared to HC in the saliva -95.8% sensitivity, 96.1% specificity, 0.98 accuracy for PD patients compared to HC with serum and saliva combined | -relatively large sample size for the PD group -prospective study -absence of autopsy-confirmed cases |
Chahine et al., 2023 [52] | Saliva, CSF | 59 | Fmax, T50, AUC | -92.6% sensitivity and 90.5% specificity for PD patients compared to HC in the CSF -73.2% sensitivity and 78.6% specificity for PD patients compared to HC in the saliva -65.8% positivity of PD patients compared to HC for α-syn SAA in both CSF and saliva | -relatively large sample size for the PD group -cohort study -absence of autopsy-confirmed cases |
Vascellari et al., 2023 [53] | Duodenum biopsies | 23 | SD50 11 | 95.7% sensitivity and 100% specificity for PD patients compared to HC in duodenum biopsies | -small sample size -all PD patients in advanced stage -cross-sectional study -absence of autopsy-confirmed cases |
Fenyi et al., 2019 [54] | Antrum, sigmoid colon or rectum biopsies | 18 | TTT | -55.6% sensitivity and 100% specificity for PD patients compared to HC in gastrointestinal biopsies -70% of positive results in sigmoid colon biopsies for patients compared to HC | -small sample size -cross-sectional study -absence of autopsy-confirmed cases |
Emmi et al., 2025 [55] | Gastric, duodenum, and skin biopsies | 22 | Fmax, TTT | -87.7% accuracy in skin, 67.4% in duodenum, 80.0% in gastric biopsies for PD patients compared to HC -81.8% sensitivity in skin, 88.9% in gastric, 58.8% in duodenal biopsies in advanced PD patients compared to HC | -small sample size -cohort study -absence of autopsy-confirmed cases |
Shin et al., 2022 [56] | Upper and lower gastrointestinal tract | 20 | RFU | 10% positivity of gastric biopsies from PD patients compared to none in HC | -small sample size -retrospective study -only 6 cases were autopsy-confirmed |
Mao et al., 2025 [57] | Skin, brain | 214 (skin), 14 (brain) | TTT, quiescent SAA | 90.2% sensitivity and 91.4% specificity in the skin samples for PD patients compared to non-PD cases and HC | -relatively large sample size for PD patients -retrospective study -only 20 cases were autopsy-confirmed |
Type of Synucleinopathy and Patient Numbers (n) | Additional Parameters Tested | Main Findings | Study Notes | |
---|---|---|---|---|
Groveman et al., 2018 [68] | PD 4 (12), DLB 5 (17) | - | 93% sensitivity, 100% specificity for PD and DLB patients compared to non-synucleinopathic neurodegenerative diseases | -small sample size for all study groups -prospective study -pathological confirmation in some cases (specific pathology undefined) |
Arnold et al., 2022 [69] | PD (4), DLB (9) | Fmax 6, TTT 7, T50 8, RFU 9 | -97.8% sensitivity, 98.1% specificity for limbic and/or neocortical synuclein pathology compared to non-synucleinopathic pathologies -14.3% sensitivity for amygdale-predominant α-syn pathology compared to non-synucleinopathic pathologies | -small sample size for PD and DLB study groups -retrospective study -all cases where pathologically confirmed |
Bräuer et al., 2023 [70] | PD (28), DLB (47) | Fmax, TTT, RFU, AUC 10, TT1 11, TT2 12 | -consistent kinetic parameters between the two laboratories in 98% of patients -negative correlation between TTT and TT2 and MoCA 13 score for both PD and DLB | -small sample size for PD study group, relatively large for DLB -cross-sectional study -absence of pathological confirmation |
Fernandes Gomes et al., 2023 [71] | PD (55), MSA 14 (27) | Fmax, Fmin 15, RFU | -100% sensitivity for PD compared to HC 16, 92.6% positivity for MSA compared to HC -7% specificity for PD compared to MSA, 70.8% to HC, 71% to CBD 17, and 75% to PSP 18 compared to HC | -small sample size for all study groups -retrospective study -absence of pathological confirmation |
Wiseman et al., 2025 [72] | PD (10), MSA (10) | Fmax, Fmin, Fmaxr 19 TTT, 1/TTT, AUC, PAR 20, GA 21, core protofilament size | -higher Fmax, PAR, GA, and core protofilament size in brain tissues of MSA compared to PD patients -higher PAR in PD CSF samples compared to brain tissue | -small sample size for all study groups -retrospective study -all cases where pathologically confirmed |
Ma et al., 2024 [73] | PD (109), DLB (15), MSA (111) | Fmax, RFU | -three patterns of α-syn SAA fluorescence: high in Lewy body diseases, intermediate in MSA, PSP, and CBD, below-threshold in negative cases -95% sensitivity and specificity for PD compared to negative cases -84–91% sensitivity, 68–87% specificity for MSA among different cohorts compared to negative cases | -relatively large sample size for PD and MSA, small for DLB -retrospective study -all cases where pathologically confirmed |
Al-Lahham et al., 2025 [74] | DLB (3), MSA (3) | Fmax | -distinct α-syn SAA kinetics between DLB and MSA | -small sample size for all study groups -retrospective study -all cases where pathologically confirmed |
Plastini et al., 2024 [75] | PD, PDD 22 and DLB (150) | RFU | -89.3% sensitivity, 93.3% specificity, and 91.3% accuracy for PD, PDD, and DLB patients compared to AD 23 -12% positivity in AD cases | -relatively large sample size, but synucleinopathies were not discriminated -retrospective study -only two cases were autopsy-confirmed |
Type of Synucleinopathy and Patient Numbers (n) | Tissue Examined | Additional Parameters Tested | Main Findings | Study Notes | |
---|---|---|---|---|---|
Yoshinaga et al., 2020 [78] | DLB 4 (5), MSA 5 (5) | Brain | - | α-syn aggregates structural properties could differentiate DLB from MSA | -small sample size for all study groups -retrospective study -all cases where pathologically confirmed |
Martinez-Valbuena et al., 2022 [79] | PD 6 (15), MSA (15) | Brain | - | MSA categorization to high, intermediate, and low seeders compared to PD, PSP 7, and HC 8 | -small sample size for all study groups -retrospective study -all cases where pathologically confirmed |
Kim et al., 2023 [80] | DLB (6), MSA (2) | Brain | - | disease-specific seeding activity with a streamlined protein extraction protocol in DLB and MSA compared to HC | -small sample size for all study groups -retrospective study -all cases where pathologically confirmed |
Fenyi et al., 2021 [81] | PD (12), DLB (8) | Brain, enteric nervous system | TTT 9 | Shorter TTT in patients over 80 years of age compared to other age groups | --small sample size for all study groups -retrospective study -all cases where pathologically confirmed |
Zheng et al., 2023 [82] | PD (107), MSA (99) | Oral mucosa | - | -67.3% sensitivity, 90.3% specificity for PD patients compared to HC -53.5% positivity in MSA patients compared to HC | -relatively large study groups -cross-sectional study -absence of pathologically confirmed cases |
Luan et al., 2022 [83] | PD (75), MSA (18) | Saliva | TTT | -76.0% sensitivity, 94.4% specificity for PD compared to HC -61.1% sensitivity for MSA compared to HC -shorter TTT for PD compared to MSA | -small sample size for MSA -cross-sectional study -absence of pathologically confirmed cases |
Luan et al., 2024 [84] | PD (101), MSA (32) | Saliva | TTT | 70.30% sensitivity for PD compared to HC, 56.25% for MSA compared to HC, 92.45% specificity for HC | -relatively large study groups -cross-sectional study -absence of pathologically confirmed cases |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannakis, A.; Pechlivani, L.; Sioka, C.; Alexiou, G.; Konitsiotis, S.; Kyritsis, A. Seed Amplification Assay for α-Synuclein: Diagnostic Applications in Synucleinopathies. Int. J. Mol. Sci. 2025, 26, 7817. https://doi.org/10.3390/ijms26167817
Giannakis A, Pechlivani L, Sioka C, Alexiou G, Konitsiotis S, Kyritsis A. Seed Amplification Assay for α-Synuclein: Diagnostic Applications in Synucleinopathies. International Journal of Molecular Sciences. 2025; 26(16):7817. https://doi.org/10.3390/ijms26167817
Chicago/Turabian StyleGiannakis, Alexandros, Louisa Pechlivani, Chrissa Sioka, George Alexiou, Spiridon Konitsiotis, and Athanasios Kyritsis. 2025. "Seed Amplification Assay for α-Synuclein: Diagnostic Applications in Synucleinopathies" International Journal of Molecular Sciences 26, no. 16: 7817. https://doi.org/10.3390/ijms26167817
APA StyleGiannakis, A., Pechlivani, L., Sioka, C., Alexiou, G., Konitsiotis, S., & Kyritsis, A. (2025). Seed Amplification Assay for α-Synuclein: Diagnostic Applications in Synucleinopathies. International Journal of Molecular Sciences, 26(16), 7817. https://doi.org/10.3390/ijms26167817