Melanin-Concentrating Hormone (MCH): Role in Mediating Reward-Motivated and Emotional Behavior and the Behavioral Disturbances Produced by Repeated Exposure to Reward Substances
Abstract
1. Introduction
2. Role of MCH Neurons and Related Neuropeptide and Molecular Systems in Mediating Reward-Motivated Behavior
2.1. Function of MCH Neurons in the LH in the Control of Reward-Motivated and Related Emotional Behavior
2.2. Function of HCRT Peptide Neurons Closely Related to MCH Neurons in the Control of Reward-Motivated Behavior
2.3. Function of Intracellular Molecular Systems That Control Development of Peptide Neuron and Reward-Motivated Behavior
2.4. Conclusions
3. Adult Substance Exposure and Stimulation of the Peptide Neurons, Their Molecular Systems and Behavior
3.1. Adult Exposure to Rewarding Substances and Stimulatory Effects on Reward-Motivated and Emotional Behavior
3.2. Adult Exposure to Rewarding Substances and Stimulatory Effects on Endogenous Expression of MCH Neurons
3.3. Adult Exposure to Rewarding Substances and Stimulatory Effects on HCRT Neurons Closely Related to MCH Neurons
3.4. Adult Exposure and Effects on Intracellular Molecular Systems That Control Development and Function of Peptide Neurons
3.5. Conclusions
4. Prenatal Substance Exposure and Effects on Embryonic Development of MCH Neurons in Rodent Offspring
4.1. Prenatal Exposure to Rewarding Substances and Effects on MCH Neurons in Postnatal, Adolescent and Adult Offspring
4.2. Prenatal Exposure to Rewarding Substances and Effects on Development and Morphology of MCH Neurons in the Embryo
4.3. Prenatal Exposure to Rewarding Substances and Effects on the Migration and Location of MCH Neurons in the Embryo
4.4. Conclusions
5. Embryonic Substance Exposure and the Effects on HCRT Neurons in the Hypothalamus of Rodents and Zebrafish
5.1. Prenatal Exposure to Rewarding Substances and Stimulatory Effects on HCRT Like MCH Neurons in Rodent Offspring
5.2. Embryonic Exposure to Rewarding Substances and Stimulatory Effects on the Development of HCRT Neurons in Zebrafish
5.3. Embryonic Exposure to Rewarding Substances and Stimulatory Effects on the Projections of HCRT Neurons in Zebrafish
5.4. Conclusions
6. Embryonic Substance Exposure and Effects on the Molecular Systems in Peptide Neurons of Rodents and Zebrafish
6.1. Prenatal Exposure to Rewarding Substances and Effects on Transcription Factors in MCH Neurons of Rodent Offspring
6.2. Prenatal Exposure to Rewarding Substances and Effects on Growth Factors in MCH Neurons of Rodent Offspring
6.3. Prenatal Exposure to Rewarding Substances and Effects on the Chemokine System in MCH Neurons of Rodent Offspring
6.4. Embryonic Exposure to Rewarding Substances and Effect on Chemokine System in HCRT Neurons of Rodents and Zebrafish
6.5. Conclusions
7. Relation of Peptide and Molecular Systems to Reward-Motivated and Emotional Behavior in Rodents and Zebrafish
7.1. Embryonic Exposure to Rewarding Substances and Effects on Behavior in Adult and Adolescent Offspring
7.2. Embryonic Exposure to Rewarding Substances and Early Effects on Behavior in Young Preadolescent Offspring
7.3. Relation of Embryonic Substance-Induced Changes in MCH Neurons to Behavioral Disturbances in Young Rodents
7.4. Relation of Embryonic Substance-Induced Effects on HCRT Neurons to Early Behavioral Disturbances in Young Rodents
7.5. Relation of Embryonic Substance-Induced Effects on HCRT Neurons to Early Behavioral Disturbances in Young Zebrafish
7.6. Relation of Embryonic Substance-Induced Effects on Intracellular Molecular Systems to Disturbances in Behavior
7.7. Relation of Embryonic Substance-Induced Effects on DA Neurotransmission to Changes in Peptide Neurons and Behavior
7.8. Conclusions
8. Sex Differences in Effects of Rewarding Substances on the Peptide and Molecular Systems in Relation to Behavior
8.1. Sex Differences in the Expression and Functions of MCH and HCRT Neurons and Their Intracellular Molecular Systems
8.2. Sex Differences in the Effects of Substance Exposure in Adults on Reward-Motivated and Emotional Behavior
8.3. Sex Differences in the Effects of Embryonic Substance Exposure on MCH and HCRT Peptide Neurons in the Offspring
8.4. Sex Differences in the Effects of Embryonic Substance Exposure on Molecular Systems in Peptide Neurons of the Offspring
8.5. Conclusions
9. Overall Conclusions and Future Direction
Author Contributions
Funding
Conflicts of Interest
References
- Wallace, C.W.; Fordahl, S.C. Obesity and dietary fat influence dopamine neurotransmission: Exploring the convergence of metabolic state, physiological stress, and inflammation on dopaminergic control of food intake. Nutr. Res. Rev. 2022, 35, 236–251. [Google Scholar] [CrossRef] [PubMed]
- Di Chiara, G. Alcohol and dopamine. Alcohol. Health Res. World 1997, 21, 108–114. [Google Scholar] [PubMed]
- Fu, Y.; Matta, S.G.; Gao, W.; Brower, V.G.; Sharp, B.M. Systemic nicotine stimulates dopamine release in nucleus accumbens: Re-evaluation of the role of N-methyl-D-aspartate receptors in the ventral tegmental area. J. Pharmacol. Exp. Ther. 2000, 294, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.; Hopf, F.W.; Nagasaki, H.; Li, C.-Y.; Belluzzi, J.D.; Bonci, A.; Civelli, O. The melanin-concentrating hormone system modulates cocaine reward. Proc. Natl. Acad. Sci. USA 2009, 106, 6772–6777. [Google Scholar] [CrossRef]
- Diniz, G.B.; Bittencourt, J.C. The Melanin-Concentrating Hormone as an Integrative Peptide Driving Motivated Behaviors. Front. Syst. Neurosci. 2017, 11, 32. [Google Scholar] [CrossRef]
- Georgescu, D.; Sears, R.M.; Hommel, J.D.; Barrot, M.; Bolaños, C.A.; Marsh, D.J.; Bednarek, M.A.; Bibb, J.A.; Maratos-Flier, E.; Nestler, E.J.; et al. The hypothalamic neuropeptide melanin-concentrating hormone acts in the nucleus accumbens to modulate feeding behavior and forced-swim performance. J. Neurosci. 2005, 25, 2933–2940. [Google Scholar] [CrossRef]
- Rossi, M.; Beak, S.A.; Choi, S.-J.; Small, C.J.; Morgan, D.G.; Ghatei, M.A.; Smith, D.M.; Bloom, S.R. Investigation of the feeding effects of melanin concentrating hormone on food intake—Action independent of galanin and the melanocortin receptors. Brain Res. 1999, 846, 164–170. [Google Scholar] [CrossRef]
- Abbott, C.R.; Kennedy, A.R.; Wren, A.M.; Rossi, M.; Murphy, K.G.; Seal, L.J.; Todd, J.F.; Ghatei, M.A.; Small, C.J.; Bloom, S.R. Identification of hypothalamic nuclei involved in the orexigenic effect of melanin-concentrating hormone. Endocrinology 2003, 144, 3943–3949. [Google Scholar] [CrossRef]
- Payant, M.A.; Shankhatheertha, A.; Chee, M.J. Melanin-concentrating hormone promotes feeding through the lateral septum. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2025, 136, 111163. [Google Scholar] [CrossRef]
- Ludwig, D.S.; Tritos, N.A.; Mastaitis, J.W.; Kulkarni, R.; Kokkotou, E.; Elmquist, J.; Lowell, B.; Flier, J.S.; Maratos-Flier, E. Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J. Clin. Investig. 2001, 107, 379–386. [Google Scholar] [CrossRef]
- Pissios, P. Animals models of MCH function and what they can tell us about its role in energy balance. Peptides 2009, 30, 2040–2044. [Google Scholar] [CrossRef]
- Zhang, L.; Sinclair, R.; Selman, C.; Mitchell, S.; Morgan, D.; Clapham, J.C.; Speakman, J.R. Effects of a specific MCHR1 antagonist (GW803430) on energy budget and glucose metabolism in diet-induced obese mice. Obesity 2014, 22, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Shimada, M.; Tritos, N.A.; Lowell, B.B.; Flier, J.S.; Maratos-Flier, E. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 1998, 396, 670–674. [Google Scholar] [CrossRef] [PubMed]
- Domingos, A.I.; Sordillo, A.; Dietrich, M.O.; Liu, Z.-W.; Tellez, L.A.; Vaynshteyn, J.; Ferreira, J.G.; Ekstrand, M.I.; Horvath, T.L.; de Araujo, I.E.; et al. Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar. eLife 2013, 2, e01462. [Google Scholar] [CrossRef] [PubMed]
- Morganstern, I.; Chang, G.-Q.; Karatayev, O.; Leibowitz, S.F. Increased orexin and melanin-concentrating hormone expression in the perifornical lateral hypothalamus of rats prone to overconsuming a fat-rich diet. Pharmacol. Biochem. Behav. 2010, 96, 413–422. [Google Scholar] [CrossRef]
- Mul, J.D.; la Fleur, S.E.; Toonen, P.W.; Afrasiab-Middelman, A.; Binnekade, R.; Schetters, D.; Verheij, M.M.M.; Sears, R.M.; Homberg, J.R.; Schoffelmeer, A.N.M.; et al. Chronic loss of melanin-concentrating hormone affects motivational aspects of feeding in the rat. PLoS ONE 2011, 6, e19600. [Google Scholar] [CrossRef]
- Pickering, C.; Avesson, L.; Liljequist, S.; Lindblom, J.; Schiöth, H.B. The role of hypothalamic peptide gene expression in alcohol self-administration behavior. Peptides 2007, 28, 2361–2371. [Google Scholar] [CrossRef]
- Morganstern, I.; Chang, G.-Q.; Chen, Y.-W.; Barson, J.; Zhiyu, Y.; Hoebel, B.; Leibowitz, S. Role of melanin-concentrating hormone in the control of ethanol consumption: Region-specific effects revealed by expression and injection studies. Physiol. Behav. 2010, 101, 428–437. [Google Scholar] [CrossRef]
- Duncan, E.A.; Rider, T.R.; Jandacek, R.J.; Clegg, D.J.; Benoit, S.C.; Tso, P.; Woods, S.C. The regulation of alcohol intake by melanin-concentrating hormone in rats. Pharmacol. Biochem. Behav. 2006, 85, 728–735. [Google Scholar] [CrossRef]
- Cippitelli, A.; Karlsson, C.; Shaw, J.L.; Thorsell, A.; Gehlert, D.R.; Heilig, M. Suppression of alcohol self-administration and reinstatement of alcohol seeking by melanin-concentrating hormone receptor 1 (MCH1-R) antagonism in Wistar rats. Psychopharmacology 2010, 211, 367–375. [Google Scholar] [CrossRef]
- Karlsson, C.; Rehman, F.; Damdazic, R.; Atkins, A.L.; Schank, J.R.; Gehlert, D.R.; Steensland, P.; Thorsell, A.; Heilig, M. The melanin-concentrating hormone-1 receptor modulates alcohol-induced reward and DARPP-32 phosphorylation. Psychopharmacology 2016, 233, 2355–2363. [Google Scholar] [CrossRef]
- Kuebler, I.R.; Liu, Y.; Álvarez, B.S.B.; Huber, N.M.; Jolton, J.A.; Dasari, R.; Wakabayashi, K.T. Melanin-concentrating hormone receptor antagonism differentially attenuates nicotine experience-dependent locomotor behavior in female and male rats. Pharmacol. Biochem. Behav. 2023, 232, 173649. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, D.; Widjaja, J.; Guo, R.; Cai, L.; Yan, R.; Ozsoy, S.; Allocca, G.; Fang, J.; Dong, Y.; et al. An Electroencephalogram Signature of Melanin-Concentrating Hormone Neuron Activities Predicts Cocaine Seeking. Biol. Psychiatry 2024, 96, 739–751. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Li, Y.; Zhang, N.; Huang, J.; Ming, X.; Guo, R.; Hu, Y.; Ji, P.; Guo, F. Melanin-concentrating hormone promotes anxiety and intestinal dysfunction via basolateral amygdala in mice. Front. Pharmacol. 2022, 13, 906057. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.; Vaziri, S.; Wilson, C. Behavioral effects of α-MSH and MCH after central administration in the female rat. Peptides 1996, 17, 171–177. [Google Scholar] [CrossRef]
- Ye, H.; Cui, X.-Y.; Ding, H.; Cui, S.-Y.; Hu, X.; Liu, Y.-T.; Zhao, H.-L.; Zhang, Y.-H. Melanin-Concentrating Hormone (MCH) and MCH-R1 in the Locus Coeruleus May Be Involved in the Regulation of Depressive-Like Behavior. Int. J. Neuropsychopharmacol. 2018, 21, 1128–1137. [Google Scholar] [CrossRef]
- Kurban, N.; Qin, Y.; Zhao, H.-L.; Hu, X.; Chen, X.; Zhao, Y.-Y.; Peng, Y.-S.; Wang, H.-B.; Cui, S.-Y.; Zhang, Y.-H. Chronic Stress-Induced Elevation of Melanin-Concentrating Hormone in the Locus Coeruleus Inhibits Norepinephrine Production and Associated With Depression-Like Behaviors in Rats. Int. J. Neuropsychopharmacol. 2024, 27, pyad069. [Google Scholar] [CrossRef]
- Chaki, S.; Funakoshi, T.; Hirota-Okuno, S.; Nishiguchi, M.; Shimazaki, T.; Iijima, M.; Grottick, A.J.; Kanuma, K.; Omodera, K.; Sekiguchi, Y.; et al. Anxiolytic- and antidepressant-like profile of ATC0065 and ATC0175: Nonpeptidic and orally active melanin-concentrating hormone receptor 1 antagonists. J. Pharmacol. Exp. Ther. 2005, 313, 831–839. [Google Scholar] [CrossRef]
- Borowsky, B.; Durkin, M.M.; Ogozalek, K.; Marzabadi, M.R.; DeLeon, J.; Heurich, R.; Lichtblau, H.; Shaposhnik, Z.; Daniewska, I.; Blackburn, T.P.; et al. Antidepressant, anxiolytic and anorectic effects of a melanin-concentrating hormone-1 receptor antagonist. Nat. Med. 2002, 8, 825–830. [Google Scholar] [CrossRef]
- Noble, E.E.; Wang, Z.; Liu, C.M.; Davis, E.A.; Suarez, A.N.; Stein, L.M.; Tsan, L.; Terrill, S.J.; Hsu, T.M.; Jung, A.-H.; et al. Hypothalamus-hippocampus circuitry regulates impulsivity via melanin-concentrating hormone. Nat. Commun. 2019, 10, 4923. [Google Scholar] [CrossRef]
- Barson, J.R. Orexin/hypocretin and dysregulated eating: Promotion of foraging behavior. Brain Res. 2020, 1731, 145915. [Google Scholar] [CrossRef] [PubMed]
- Moorman, D.E. The hypocretin/orexin system as a target for excessive motivation in alcohol use disorders. Psychopharmacology 2018, 235, 1663–1680. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, L.H.; Hoyer, D.; de Lecea, L. Hypocretins (orexins): The ultimate translational neuropeptides. J. Intern. Med. 2022, 291, 533–556. [Google Scholar] [CrossRef]
- James, M.H.; Aston-Jones, G. Orexin reserve: A mechanistic framework for the role of orexins (hypocretins) in addiction. Biol. Psychiatry 2022, 92, 836–844. [Google Scholar] [CrossRef]
- Bayer, L.; Mairet-Coello, G.; Risold, P.-Y.; Griffond, B. Orexin/hypocretin neurons: Chemical phenotype and possible interactions with melanin-concentrating hormone neurons. Regul. Pept. 2002, 104, 33–39. [Google Scholar] [CrossRef]
- Kodani, Y.; Kawata, M.; Suga, H.; Kaneko, Y.S.; Nakashima, A.; Kameyama, T.; Saito, K.; Nagasaki, H. Characterization of Hypothalamic MCH Neuron Development in a 3D Differentiation System of Mouse Embryonic Stem Cells. eNeuro 2022, 9, ENEURO.0442-21.2022. [Google Scholar] [CrossRef]
- van den Pol, A.N.; Acuna-Goycolea, C.; Clark, K.; Ghosh, P.K. Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection. Neuron 2004, 42, 635–652. [Google Scholar] [CrossRef]
- Guan, J.-L.; Uehara, K.; Lu, S.; Wang, Q.-P.; Funahashi, H.; Sakurai, T.; Yanagizawa, M.; Shioda, S. Reciprocal synaptic relationships between orexin- and melanin-concentrating hormone-containing neurons in the rat lateral hypothalamus: A novel circuit implicated in feeding regulation. Int. J. Obes. 2002, 26, 1523–1532. [Google Scholar] [CrossRef]
- Apergis-Schoute, J.; Iordanidou, P.; Faure, C.; Jego, S.; Schöne, C.; Aitta-Aho, T.; Adamantidis, A.; Burdakov, D. Optogenetic evidence for inhibitory signaling from orexin to MCH neurons via local microcircuits. J. Neurosci. 2015, 35, 5435–5441. [Google Scholar] [CrossRef]
- Bouaouda, H.; Jha, P.K. Orexin and MCH neurons: Regulators of sleep and metabolism. Front. Neurosci. 2023, 17, 1230428. [Google Scholar] [CrossRef]
- Concetti, C.; Burdakov, D. Orexin/Hypocretin and MCH Neurons: Cognitive and Motor Roles Beyond Arousal. Front. Neurosci. 2021, 15, 639313. [Google Scholar] [CrossRef]
- Korotkova, T.M.; Sergeeva, O.A.; Eriksson, K.S.; Haas, H.L.; Brown, R.E. Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J. Neurosci. 2003, 23, 7–11. [Google Scholar] [CrossRef]
- Vittoz, N.M.; Berridge, C.W. Hypocretin/orexin selectively increases dopamine efflux within the prefrontal cortex: Involvement of the ventral tegmental area. Neuropsychopharmacology 2006, 31, 384–395. [Google Scholar] [CrossRef]
- Moorman, D.E.; James, M.H.; Kilroy, E.A.; Aston-Jones, G. Orexin/hypocretin-1 receptor antagonism reduces ethanol self-administration and reinstatement selectively in highly-motivated rats. Brain Res. 2017, 1654, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, S.; Simms, J.A.; Nielsen, C.K.; Lieske, S.P.; Bito-Onon, J.J.; Yi, H.; Hopf, F.W.; Bonci, A.; Bartlett, S.E.; Rudolph, U. The dual orexin/hypocretin receptor antagonist, almorexant, in the ventral tegmental area attenuates ethanol self-administration. PLoS ONE 2012, 7, e44726. [Google Scholar] [CrossRef] [PubMed]
- Plaza-Zabala, A.; Martín-García, E.; de Lecea, L.; Maldonado, R.; Berrendero, F. Hypocretins regulate the anxiogenic-like effects of nicotine and induce reinstatement of nicotine-seeking behavior. J. Neurosci. 2010, 30, 2300–2310. [Google Scholar] [CrossRef] [PubMed]
- LeSage, M.G.; Perry, J.L.; Kotz, C.M.; Shelley, D.; Corrigall, W.A. Nicotine self-administration in the rat: Effects of hypocretin antagonists and changes in hypocretin mRNA. Psychopharmacology 2010, 209, 203–212. [Google Scholar] [CrossRef]
- Wang, B.; You, Z.-B.; Wise, R.A. Reinstatement of cocaine seeking by hypocretin (orexin) in the ventral tegmental area: Independence from the local corticotropin-releasing factor network. Biol. Psychiatry 2009, 65, 857–862. [Google Scholar] [CrossRef]
- Pantazis, C.B.; James, M.H.; Bentzley, B.S.; Aston-Jones, G. The number of lateral hypothalamus orexin/hypocretin neurons contributes to individual differences in cocaine demand. Addict. Biol. 2020, 25, e12795. [Google Scholar] [CrossRef]
- Heydendael, W.; Sengupta, A.; Beck, S.; Bhatnagar, S. Optogenetic examination identifies a context-specific role for orexins/hypocretins in anxiety-related behavior. Physiol. Behav. 2014, 130, 182–190. [Google Scholar] [CrossRef]
- Schmeichel, B.E.; Matzeu, A.; Koebel, P.; Vendruscolo, L.F.; Sidhu, H.; Shahryari, R.; Kieffer, B.L.; Koob, G.F.; Martin-Fardon, R.; Contet, C. Knockdown of hypocretin attenuates extended access of cocaine self-administration in rats. Neuropsychopharmacology 2018, 43, 2373–2382. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.C.; Lee, C.E.; Lu, J.; Elmquist, J.K.; Hara, J.; Willie, J.T.; Beuckmann, C.T.; Chemelli, R.M.; Sakurai, T.; Yanagisawa, M.; et al. Orexin (hypocretin) neurons contain dynorphin. J. Neurosci. 2001, 21, RC168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Butelman, E.R.; Schlussman, S.D.; Ho, A.; Kreek, M.J. Effect of the endogenous kappa opioid agonist dynorphin A(1-17) on cocaine-evoked increases in striatal dopamine levels and cocaine-induced place preference in C57BL/6J mice. Psychopharmacology 2004, 172, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Spanagel, R.; Herz, A.; Shippenberg, T.S. Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc. Natl. Acad. Sci. USA 1992, 89, 2046–2050. [Google Scholar] [CrossRef]
- Tejeda, H.A.; Bonci, A. Dynorphin/kappa-opioid receptor control of dopamine dynamics: Implications for negative affective states and psychiatric disorders. Brain Res. 2019, 1713, 91–101. [Google Scholar] [CrossRef]
- Wee, S.; Koob, G.F. The role of the dynorphin-κ opioid system in the reinforcing effects of drugs of abuse. Psychopharmacology 2010, 210, 121–135. [Google Scholar] [CrossRef]
- Muschamp, J.W.; Hollander, J.A.; Thompson, J.L.; Voren, G.; Hassinger, L.C.; Onvani, S.; Kamenecka, T.M.; Borgland, S.L.; Kenny, P.J.; Carlezon, W.A. Hypocretin (orexin) facilitates reward by attenuating the antireward effects of its cotransmitter dynorphin in ventral tegmental area. Proc. Natl. Acad. Sci. USA 2014, 111, E1648–E1655. [Google Scholar] [CrossRef]
- Mohammadkhani, A.; Qiao, M.; Borgland, S.L. Distinct Neuromodulatory Effects of Endogenous Orexin and Dynorphin Corelease on Projection-Defined Ventral Tegmental Dopamine Neurons. J. Neurosci. 2024, 44, e0682242024. [Google Scholar] [CrossRef]
- Walker, B.; Valdez, G.; McLaughlin, J.; Bakalkin, G. Targeting dynorphin/kappa opioid receptor systems to treat alcohol abuse and dependence. Alcohol. 2012, 46, 359–370. [Google Scholar] [CrossRef]
- Karkhanis, A.; Holleran, K.M.; Jones, S.R. Dynorphin/Kappa Opioid Receptor Signaling in Preclinical Models of Alcohol, Drug, and Food Addiction. Int. Rev. Neurobiol. 2017, 136, 53–88. [Google Scholar]
- Anderson, R.I.; Moorman, D.E.; Becker, H.C. Contribution of Dynorphin and Orexin Neuropeptide Systems to the Motivational Effects of Alcohol. Handb. Exp. Pharmacol. 2018, 248, 473–503. [Google Scholar]
- Mickelsen, L.E.; Bolisetty, M.; Chimileski, B.R.; Fujita, A.; Beltrami, E.J.; Costanzo, J.T.; Naparstek, J.R.; Robson, P.; Jackson, A.C. Single-cell transcriptomic analysis of the lateral hypothalamic area reveals molecularly distinct populations of inhibitory and excitatory neurons. Nat. Neurosci. 2019, 22, 642–656. [Google Scholar] [CrossRef] [PubMed]
- Ong, Z.Y.; McNally, G.P. CART in energy balance and drug addiction: Current insights and mechanisms. Brain Res. 2020, 1740, 146852. [Google Scholar] [CrossRef] [PubMed]
- Concetti, C.; Peleg-Raibstein, D.; Burdakov, D. Hypothalamic MCH Neurons: From Feeding to Cognitive Control. Function 2024, 5, zqad059. [Google Scholar] [CrossRef] [PubMed]
- Dallvechia-Adams, S.; Kuhar, M.J.; Smith, Y. Cocaine- and amphetamine-regulated transcript peptide projections in the ventral midbrain: Colocalization with gamma-aminobutyric acid, melanin-concentrating hormone, dynorphin, and synaptic interactions with dopamine neurons. J. Comp. Neurol. 2002, 448, 360–372. [Google Scholar] [CrossRef]
- Jaworski, J.N.; Kimmel, H.L.; Mitrano, D.A.; Tallarida, R.J.; Kuhar, M.J. Intra-VTA CART 55-102 reduces the locomotor effect of systemic cocaine in rats: An isobolographic analysis. Neuropeptides 2007, 41, 65–72. [Google Scholar] [CrossRef]
- Kuhar, M.J.; Jaworski, J.N.; Hubert, G.W.; Philpot, K.B.; Dominguez, G. Cocaine- and amphetamine-regulated transcript peptides play a role in drug abuse and are potential therapeutic targets. AAPS J. 2005, 7, E259–E265. [Google Scholar] [CrossRef]
- James, M.J.; Charnley, J.L.; Jones, E.; Levi, E.M.; Yeoh, J.W.; Flynn, J.R.; Smith, D.W.; Dayas, C.V. Cocaine- and amphetamine-regulated transcript (CART) signaling withing the paraventricular thalamus modulates cocaine-seeking behavior. PLoS ONE 2010, 5, e12980. [Google Scholar] [CrossRef]
- Wiehager, S.; Beiderbeck, D.I.; Gruber, S.H.; El-Khoury, A.; Wamsteeker, J.; Neumann, I.D.; Petersén, Å.; Mathé, A.A. Increased levels of cocaine and amphetamine regulated transcript in two animal models of depression and anxiety. Neurobiol. Dis. 2009, 34, 375–380. [Google Scholar] [CrossRef]
- Kask, A.; Schiöth, H.B.; Mutulis, F.; Wikberg, J.E.; Rago, L. Anorexigenic cocaine- and amphetamine-regulated transcript peptide intensifies fear reactions in rats. Brain Res. 2000, 857, 283–285. [Google Scholar] [CrossRef]
- Bloem, B.; Xu, L.; Morava, É.; Faludi, G.; Palkovits, M.; Roubos, E.W.; Kozicz, T. Sex-specific differences in the dynamics of cocaine- and amphetamine-regulated transcript and nesfatin-1 expressions in the midbrain of depressed suicide victims vs. controls. Neuropharmacology 2012, 62, 297–303. [Google Scholar] [CrossRef]
- Moreno, S.; Farioli-Vecchioli, S.; Ceru, M.P. Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS. Neuroscience 2004, 123, 131–145. [Google Scholar] [CrossRef]
- Chang, G.-Q.; Karatayev, O.; Lukatskaya, O.; Leibowitz, S.F. Prenatal fat exposure and hypothalamic PPAR β/δ: Possible relationship to increased neurogenesis of orexigenic peptide neurons. Peptides 2016, 79, 16–26. [Google Scholar] [CrossRef]
- D’Angelo, B.; Benedetti, E.; Di Loreto, S.; Cristiano, L.; Laurenti, G.; Cerù, M.P.; Cimini, A. Signal transduction pathways involved in PPARβ/δ-induced neuronal differentiation. J. Cell Physiol. 2011, 226, 2170–2180. [Google Scholar] [CrossRef] [PubMed]
- Di Loreto, S.; D’Angelo, B.; D’Amico, M.; Benedetti, E.; Cristiano, L.; Cinque, B.; Cifone, M.; Cerù, M.; Festuccia, C.; Cimini, A. PPARβ agonists trigger neuronal differentiation in the human neuroblastoma cell line SH-SY5Y. J. Cell. Physiol. 2007, 211, 837–847. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, E.; D’Angelo, B.; Cristiano, L.; Di Giacomo, E.; Fanelli, F.; Moreno, S.; Cecconi, F.; Fidoamore, A.; Antonosante, A.; Falcone, R.; et al. Involvement of peroxisome proliferator-activated receptor β/δ (PPAR β/δ) in BDNF signaling during aging and in Alzheimer disease: Possible role of 4-hydroxynonenal (4-HNE). Cell Cycle 2014, 13, 1335–1344. [Google Scholar] [CrossRef] [PubMed]
- Hempel, B.; Crissman, M.; Pari, S.; Klein, B.; Bi, G.-H.; Alton, H.; Xi, Z.-X. PPARα and PPARγ are expressed in midbrain dopamine neurons and modulate dopamine- and cannabinoid-mediated behavior in mice. Mol. Psychiatry 2023, 28, 4203–4214. [Google Scholar] [CrossRef]
- Sarruf, D.A.; Yu, F.; Nguyen, H.T.; Williams, D.L.; Printz, R.L.; Niswender, K.D.; Schwartz, M.W. Expression of peroxisome proliferator-activated receptor-gamma in key neuronal subsets regulating glucose metabolism and energy homeostasis. Endocrinology 2009, 150, 707–712. [Google Scholar] [CrossRef]
- Melis, M.; Carta, S.; Fattore, L.; Tolu, S.; Yasar, S.; Goldberg, S.R.; Fratta, W.; Maskos, U.; Pistis, M. Peroxisome proliferator-activated receptors-alpha modulate dopamine cell activity through nicotinic receptors. Biol. Psychiatry 2010, 68, 256–264. [Google Scholar] [CrossRef]
- Steensland, P.; Simms, J.A.; Holgate, J.; Richards, J.K.; Bartlett, S.E. Varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, selectively decreases ethanol consumption and seeking. Proc. Natl. Acad. Sci. USA 2007, 104, 12518–12523. [Google Scholar] [CrossRef]
- Mascia, P.; Pistis, M.; Justinova, Z.; Panlilio, L.V.; Luchicchi, A.; Lecca, S.; Scherma, M.; Fratta, W.; Fadda, P.; Barnes, C.; et al. Blockade of nicotine reward and reinstatement by activation of alpha-type peroxisome proliferator-activated receptors. Biol. Psychiatry 2011, 69, 633–641. [Google Scholar] [CrossRef]
- Matheson, J.; Le Foll, B. Therapeutic Potential of Peroxisome Proliferator-Activated Receptor (PPAR) Agonists in Substance Use Disorders: A Synthesis of Preclinical and Human Evidence. Cells 2020, 9, 1196. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Sarruf, D.A.; Talukdar, S.; Sharma, S.; Li, P.; Bandyopadhyay, G.; Nalbandian, S.; Fan, W.; Gayen, J.R.; Mahata, S.K.; et al. Brain PPAR-γ promotes obesity and is required for the insulin–sensitizing effect of thiazolidinediones. Nat. Med. 2011, 17, 618–622. [Google Scholar] [CrossRef]
- Jiang, H.; Gallet, S.; Klemm, P.; Scholl, P.; Folz-Donahue, K.; Altmüller, J.; Alber, J.; Heilinger, C.; Kukat, C.; Loyens, A.; et al. MCH Neurons Regulate Permeability of the Median Eminence Barrier. Neuron 2020, 107, 306–319.e9. [Google Scholar] [CrossRef]
- Liran, M.; Rahamim, N.; Ron, D.; Barak, S. Growth Factors and Alcohol Use Disorder. Cold Spring Harb. Perspect. Med. 2020, 10, a039271. [Google Scholar] [CrossRef]
- Gómez-Pinilla, F.; Lee, J.W.-K.; Cotman, C.W. Distribution of basic fibroblast growth factor in the developing rat brain. Neuroscience 1994, 61, 911–923. [Google Scholar] [CrossRef]
- Gonzalez, A.M.; Berry, M.; Maher, P.A.; Logan, A.; Baird, A. A comprehensive analysis of the distribution of FGF-2 and FGFR1 in the rat brain. Brain Res. 1995, 701, 201–226. [Google Scholar] [CrossRef]
- Ford-Perriss, M.; Abud, H.; Murphy, M. Fibroblast growth factors in the developing central nervous system. Clin. Exp. Pharmacol. Physiol. 2001, 28, 493–503. [Google Scholar] [CrossRef]
- Dono, R.; Texido, G.; Dussel, R.; Ehmke, H.; Zeller, R. Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice. EMBO J. 1998, 17, 4213–4225. [Google Scholar] [CrossRef]
- Reuss, B.; und Halbach, O.v.B. Fibroblast growth factors and their receptors in the central nervous system. Cell Tissue Res. 2003, 313, 139–157. [Google Scholar] [CrossRef]
- Grinchii, D.; Levin-Greenwald, M.; Lezmy, N.; Gordon, T.; Paliokha, R.; Khoury, T.; Racicky, M.; Herburg, L.; Grothe, C.; Dremencov, E.; et al. FGF2 activity regulates operant alcohol self-administration and mesolimbic dopamine transmission. Drug Alcohol. Depend. 2023, 248, 109920. [Google Scholar] [CrossRef]
- Chang, G.-Q.; Yasmin, N.; Collier, A.D.; Karatayev, O.; Khalizova, N.; Onoichenco, A.; Fam, M.; Albeg, A.S.; Campbell, S.; Leibowitz, S.F. Fibroblast growth factor 2: Role in prenatal alcohol-induced stimulation of hypothalamic peptide neurons. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2022, 116, 110536. [Google Scholar] [CrossRef]
- Even-Chen, O.; Sadot-Sogrin, Y.; Shaham, O.; Barak, S. Fibroblast Growth Factor 2 in the Dorsomedial Striatum Is a Novel Positive Regulator of Alcohol Consumption. J. Neurosci. 2017, 37, 8742–8754. [Google Scholar] [CrossRef]
- Even-Chen, O.; Barak, S. Inhibition of FGF Receptor-1 Suppresses Alcohol Consumption: Role of PI3 Kinase Signaling in Dorsomedial Striatum. J. Neurosci. 2019, 39, 7947–7957. [Google Scholar] [CrossRef]
- Even-Chen, O.; Herburg, L.; Kefalakes, E.; Urshansky, N.; Grothe, C.; Barak, S. FGF2 is an endogenous regulator of alcohol reward and consumption. Addict. Biol. 2021, 27, e13115. [Google Scholar] [CrossRef]
- Turner, C.A.; Capriles, N.; Flagel, S.B.; Perez, J.A.; Clinton, S.M.; Watson, S.J.; Akil, H. Neonatal FGF2 alters cocaine self-administration in the adult rat. Pharmacol. Biochem. Behav. 2009, 92, 100–104. [Google Scholar] [CrossRef]
- Cummings, J.A.; Gowl, B.A.; Westenbroek, C.; Clinton, S.M.; Akil, H.; Becker, J.B. Effects of a selectively bred novelty-seeking phenotype on the motivation to take cocaine in male and female rats. Biol. Sex. Differ. 2011, 2, 3. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.; Huang, C.; Liu, H.; Zhang, Q.; Sun, Q.; Jia, Y.; Liu, S.; Dong, M.; Hou, M.; et al. FGF2 disruption enhances thermogenesis in brown and beige fat to protect against adiposity and hepatic steatosis. Mol. Metab. 2021, 54, 101358. [Google Scholar] [CrossRef]
- He, J.; Crews, F.T. Increased MCP-1 and microglia in various regions of the human alcoholic brain. Exp. Neurol. 2008, 210, 349–358. [Google Scholar] [CrossRef]
- Qin, L.; He, J.; Hanes, R.N.; Pluzarev, O.; Hong, J.-S.; Crews, F.T. Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. J. Neuroinflammation 2008, 5, 10. [Google Scholar] [CrossRef]
- Crews, F.; Zou, J.; Qin, L. Induction of innate immune genes in brain create the neurobiology of addiction. Brain Behav. Immun. 2011, 25, S4–S12. [Google Scholar] [CrossRef]
- Araos, P.; Pedraz, M.; Serrano, A.; Lucena, M.; Barrios, V.; García-Marchena, N.; Campos-Cloute, R.; Ruiz, J.J.; Romero, P.; Suárez, J.; et al. Plasma profile of pro-inflammatory cytokines and chemokines in cocaine users under outpatient treatment: Influence of cocaine symptom severity and psychiatric co-morbidity. Addict. Biol. 2015, 20, 756–772. [Google Scholar] [CrossRef]
- Ahearn, O.C.; Watson, M.N.; Rawls, S.M. Chemokines, cytokines and substance use disorders. Drug Alcohol. Depend. 2021, 220, 108511. [Google Scholar] [CrossRef]
- Namba, M.D.; Leyrer-Jackson, J.M.; Nagy, E.K.; Olive, M.F.; Neisewander, J.L. Neuroimmune Mechanisms as Novel Treatment Targets for Substance Use Disorders and Associated Comorbidities. Front. Neurosci. 2021, 15, 650785. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, K.; Manza, P.; Chapman, M.; Nawal, N.; Biesecker, E.; McPherson, K.; Dennis, E.; Johnson, A.; Volkow, N.D.; Joseph, P.V. Inflammatory Markers in Substance Use and Mood Disorders: A Neuroimaging Perspective. Front. Psychiatry 2022, 13, 863734. [Google Scholar] [CrossRef] [PubMed]
- Ziogas, D.C.; Karagiannis, A.K.; Geiger, B.M.; Gras-Miralles, B.; Najarian, R.; Reizes, O.; Fitzpatrick, L.R.; Kokkotou, E. Inflammation-induced functional connectivity of melanin-concentrating hormone and IL-10. Peptides 2014, 55, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Banisadr, G.; Gosselin, R.-D.; Mechighel, P.; Kitabgi, P.; Rostène, W.; Parsadaniantz, S.M. Highly regionalized neuronal expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) in rat brain: Evidence for its colocalization with neurotransmitters and neuropeptides. J. Comp. Neurol. 2005, 489, 275–292. [Google Scholar] [CrossRef]
- Chang, G.-Q.; Karatayev, O.; Leibowitz, S. Prenatal exposure to ethanol stimulates hypothalamic CCR2 chemokine receptor system: Possible relation to increased density of orexigenic peptide neurons and ethanol drinking in adolescent offspring. Neuroscience 2015, 310, 163–175. [Google Scholar] [CrossRef]
- Chang, G.Q.; Karatayev, O.; Boorgu, D.S.S.K.; Leibowitz, S.F. CCL2/CCR2 Chemokine System in Embryonic Hypothalamus: Involvement in Sexually Dimorphic Stimulatory Effects of Prenatal Ethanol Exposure on Peptide-Expressing Neurons. Neuroscience 2020, 442, 329, Erratum in Neuroscience 2020, 424, 155–171. [Google Scholar] [CrossRef]
- Chang, G.Q.; Karatayev, O.; Halkina, V.; Edelstien, J.; Ramirez, E.; Leibowitz, S.F. Hypothalamic CCL2/CCR2 Chemokine System: Role in Sexually Dimorphic Effects of Maternal Ethanol Exposure on Melanin-Concentrating Hormone and Behavior in Adolescent Offspring. J Neurosci 2018, 38, 9072–9090. [Google Scholar] [CrossRef]
- Chang, G.Q.; Collier, A.D.; Karatayev, O.; Gulati, G.; Boorgu, D.S.S.K.; Leibowitz, S.F. Moderate Prenatal Ethanol Exposure Stimulates CXCL12/CXCR4 Chemokine System in Radial Glia Progenitor Cells in Hypothalamic Neuroepithelium and Peptide Neurons in Lateral Hypothalamus of the Embryo and Postnatal Offspring. Alcohol. Clin. Exp. Res. 2020, 44, 866–879. [Google Scholar] [CrossRef] [PubMed]
- Cerri, C.; Genovesi, S.; Allegra, M.; Pistillo, F.; Püntener, U.; Guglielmotti, A.; Perry, V.H.; Bozzi, Y.; Caleo, M. The Chemokine CCL2 Mediates the Seizure-enhancing Effects of Systemic Inflammation. J. Neurosci. 2016, 36, 3777–3788. [Google Scholar] [CrossRef] [PubMed]
- Xie, R.-G.; Gao, Y.-J.; Park, C.-K.; Lu, N.; Luo, C.; Wang, W.-T.; Wu, S.-X.; Ji, R.-R. Spinal CCL2 Promotes Central Sensitization, Long-Term Potentiation, and Inflammatory Pain via CCR2: Further Insights into Molecular, Synaptic, and Cellular Mechanisms. Neurosci. Bull. 2018, 34, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Sheets, K.G.; Knott, E.J.; Regan, C.E., Jr.; Tuo, J.; Chan, C.-C.; Gordon, W.C.; Bazan, N.G. Cellular and 3D optical coherence tomography assessment during the initiation and progression of retinal degeneration in the Ccl2/Cx3cr1-deficient mouse. Exp. Eye Res. 2011, 93, 636–648. [Google Scholar] [CrossRef]
- Edman, L.C.; Mira, H.; Arenas, E. The β-chemokines CCL2 and CCL7 are two novel differentiation factors for midbrain dopaminergic precursors and neurons. Exp. Cell Res. 2008, 314, 2123–2130. [Google Scholar] [CrossRef]
- Poon, K.; Ho, H.T.; Barson, J.R.; Leibowitz, S.F. Stimulatory role of the chemokine CCL2 in the migration and peptide expression of embryonic hypothalamic neurons. J. Neurochem. 2014, 131, 509–520. [Google Scholar] [CrossRef]
- Yasmin, N.; Collier, A.D.; Abdulai, A.R.; Karatayev, O.; Yu, B.; Fam, M.; Leibowitz, S.F. Role of Chemokine Cxcl12a in Mediating the Stimulatory Effects of Ethanol on Embryonic Development of Subpopulations of Hypocretin/Orexin Neurons and Their Projections. Cells 2023, 12, 1399. [Google Scholar] [CrossRef]
- Chang, G.Q.; Karatayev, O.; Boorgu, D.; Leibowitz, S.F. Third ventricular injection of CCL2 in rat embryo stimulates CCL2/CCR2 neuroimmune system in neuroepithelial radial glia progenitor cells: Relation to sexually dimorphic, stimulatory effects on peptide neurons in lateral hypothalamus. Neuroscience 2020, 443, 188–205. [Google Scholar] [CrossRef]
- Banisadr, G.; Gosselin, R.-D.; Mechighel, P.; Rostène, W.; Kitabgi, P.; Parsadaniantz, S.M. Constitutive neuronal expression of CCR2 chemokine receptor and its colocalization with neurotransmitters in normal rat brain: Functional effect of MCP-1/CCL2 on calcium mobilization in primary cultured neurons. J. Comp. Neurol. 2005, 492, 178–192. [Google Scholar] [CrossRef]
- Guyon, A. CXCL12 chemokine and its receptors as major players in the interactions between immune and nervous systems. Front. Cell. Neurosci. 2014, 8, 65. [Google Scholar] [CrossRef]
- Blednov, Y.A.; Bergeson, S.E.; Walker, D.; Ferreira, V.M.; Kuziel, W.A.; Harris, R.A. Perturbation of chemokine networks by gene deletion alters the reinforcing actions of ethanol. Behav. Brain Res. 2005, 165, 110–125. [Google Scholar] [CrossRef]
- June, H.L.; Liu, J.; Warnock, K.T.; Bell, K.A.; Balan, I.; Bollino, D.; Puche, A.; Aurelian, L. CRF-amplified neuronal TLR4/MCP-1 signaling regulates alcohol self-administration. Neuropsychopharmacology 2015, 40, 1549–1559. [Google Scholar] [CrossRef]
- Valenta, J.P.; Gonzales, R.A. Chronic Intracerebroventricular Infusion of Monocyte Chemoattractant Protein-1 Leads to a Persistent Increase in Sweetened Ethanol Consumption During Operant Self-Administration But Does Not Influence Sucrose Consumption in Long-Evans Rats. Alcohol. Clin. Exp. Res. 2016, 40, 187–195. [Google Scholar] [CrossRef]
- Weisberg, S.P.; Hunter, D.; Huber, R.; Lemieux, J.; Slaymaker, S.; Vaddi, K.; Charo, I.; Leibel, R.L.; Ferrante, A.W., Jr. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Investig. 2006, 116, 115–124. [Google Scholar] [CrossRef]
- Trocello, J.M.; Rostene, W.; Melik-Parsadaniantz, S.; Godefroy, D.; Roze, E.; Kitabgi, P.; Kuziel, W.A.; Chalon, S.; Caboche, J.; Apartis, E. Implication of CCR2 chemokine receptor in cocaine-induced sensitization. J. Mol. Neurosci. 2011, 44, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Hu, W.-C.; Xian, H.; Shi, Y.-X.; Liu, Y.-Y.; Ma, S.-B.; Pan, K.-Q.; Wu, S.-X.; Xu, L.-Y.; Luo, C.; et al. CCL2 Potentiates Inflammation Pain and Related Anxiety-Like Behavior Through NMDA Signaling in Anterior Cingulate Cortex. Mol. Neurobiol. 2024, 61, 4976–4991. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Arroyo, I.; Flores-Ramos, M.; Mancilla-Herrera, I.; Cruz, F.M.C.; Hernández-Ruiz, J.; Diaz, G.P.; Labonne, B.F.; Meza-Rodríguez, M.d.P.; Gelman, P.L. Chemokine profile in women with moderate to severe anxiety and depression during pregnancy. BMC Pregnancy Childbirth 2021, 21, 807. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.L.; Niemi, E.C.; Wang, S.H.; Lee, C.C.; Bingham, D.; Zhang, J.; Cozen, M.L.; Charo, I.; Huang, E.J.; Liu, J.; et al. CCR2 deficiency impairs macrophage infiltration and improves cognitive function after traumatic brain injury. J. Neurotrauma 2014, 31, 1677–1688. [Google Scholar] [CrossRef]
- Collier, A.D.; Yasmin, N.; Karatayev, O.; Abdulai, A.R.; Yu, B.; Khalizova, N.; Fam, M.; Leibowitz, S.F. Neuronal chemokine concentration gradients mediate effects of embryonic ethanol exposure on ectopic hypocretin/orexin neurons and behavior in zebrafish. Sci. Rep. 2023, 13, 1447. [Google Scholar] [CrossRef]
- Collier, A.D.; Khalizova, N.; Chang, G.; Min, S.; Campbell, S.; Gulati, G.; Leibowitz, S.F. Involvement of Cxcl12a/Cxcr4b Chemokine System in Mediating the Stimulatory Effect of Embryonic Ethanol Exposure on Neuronal Density in Zebrafish Hypothalamus. Alcohol. Clin. Exp. Res. 2020, 44, 2519–2535. [Google Scholar] [CrossRef]
- Guyon, A.; Banisadr, G.; Rovère, C.; Cervantes, A.; Kitabgi, P.; Melik-Parsadaniantz, S.; Nahon, J.-L. Complex effects of stromal cell-derived factor-1 alpha on melanin-concentrating hormone neuron excitability. Eur. J. Neurosci. 2005, 21, 701–710. [Google Scholar] [CrossRef]
- Trettel, F.; Di Castro, M.A.; Limatola, C. Chemokines: Key Molecules that Orchestrate Communication among Neurons, Microglia and Astrocytes to Preserve Brain Function. Neuroscience 2019, 439, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.E.S.; Goodkey, K.; Footz, T.; Voronova, A. Regulation of CNS precursor function by neuronal chemokines. Neurosci. Lett. 2020, 715, 134533. [Google Scholar] [CrossRef] [PubMed]
- Poon, K.; Barson, J.R.; Ho, H.T.; Leibowitz, S.F. Relationship of the Chemokine, CXCL12, to Effects of Dietary Fat on Feeding-Related Behaviors and Hypothalamic Neuropeptide Systems. Front. Behav. Neurosci. 2016, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Poon, K.; Barson, J.R.; Shi, H.; Chang, G.Q.; Leibowitz, S.F. Involvement of the CXCL12 System in the Stimulatory Effects of Prenatal Exposure to High-Fat Diet on Hypothalamic Orexigenic Peptides and Behavior in Offspring. Front. Behav. Neurosci. 2017, 11, 91. [Google Scholar] [CrossRef]
- Skrzydelski, D.; Guyon, A.; Daugé, V.; Rovère, C.; Apartis, E.; Kitabgi, P.; Nahon, J.L.; Rostène, W.; Parsadaniantz, S.M. The chemokine stromal cell-derived factor-1/CXCL12 activates the nigrostriatal dopamine system. J. Neurochem. 2007, 102, 1175–1183. [Google Scholar] [CrossRef]
- Kim, J.; Connelly, K.L.; Unterwald, E.M.; Rawls, S.M. Chemokines and cocaine: CXCR4 receptor antagonist AMD3100 attenuates cocaine place preference and locomotor stimulation in rats. Brain Behav. Immun. 2017, 62, 30–34. [Google Scholar] [CrossRef]
- Ambrée, O.; Klassen, I.; Förster, I.; Arolt, V.; Scheu, S.; Alferink, J. Reduced locomotor activity and exploratory behavior in CC chemokine receptor 4 deficient mice. Behav. Brain Res. 2016, 314, 87–95. [Google Scholar] [CrossRef]
- Paus, T. Mapping brain maturation and cognitive development during adolescence. Trends Cogn. Sci. 2005, 9, 60–68. [Google Scholar] [CrossRef]
- Spear, L. The adolescent brain and age-related behavioral manifestations. Neurosci. Biobehav. Rev. 2000, 24, 417–463. [Google Scholar] [CrossRef]
- Hanson, K.L.; Medina, K.L.; Nagel, B.J.; Spadoni, A.D.; Gorlick, A.; Tapert, S.F. Hippocampal volumes in adolescents with and without a family history of alcoholism. Am. J. Drug Alcohol. Abus. 2010, 36, 161–167. [Google Scholar] [CrossRef]
- Tapert, S.F.; Granholm, E.; Leedy, N.G.; Brown, S.A. Substance use and withdrawal: Neuropsychological functioning over 8 years in youth. J. Int. Neuropsychol. Soc. 2002, 8, 873–883. [Google Scholar] [CrossRef] [PubMed]
- Lisdahl, K.M.; Gilbart, E.R.; Wright, N.E.; Shollenbarger, S. Dare to delay? The impacts of adolescent alcohol and marijuana use onset on cognition, brain structure, and function. Front. Psychiatry 2013, 4, 53. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, E.K.C.; Wolkowicz, N.R.; De Aquino, J.P.; MacLean, R.R.; Sofuoglu, M. Cocaine Use Disorder (CUD): Current Clinical Perspectives. Subst. Abus. Rehabil. 2022, 13, 25–46. [Google Scholar] [CrossRef] [PubMed]
- Jedema, H.P.; Song, X.; Aizenstein, H.J.; Bonner, A.R.; Stein, E.A.; Yang, Y.; Bradberry, C.W. Long-Term Cocaine Self-administration Produces Structural Brain Changes That Correlate With Altered Cognition. Biol. Psychiatry 2021, 89, 376–385. [Google Scholar] [CrossRef]
- Bonomo, Y.A.; Bowes, G.; Coffey, C.; Carlin, J.B.; Patton, G.C. Teenage drinking and the onset of alcohol dependence: A cohort study over seven years. Addiction 2004, 99, 1520–1528. [Google Scholar] [CrossRef]
- Rockville, M. NSDUH Series H-46. HHS Publ. No. (SMA) 2013, 13, 4795. [Google Scholar]
- Hajdusianek, W.; Zorawik, A.; Waliszewska-Prosol, M.; Poręba, R.; Gac, P. Tobacco and Nervous System Development and Function—New Findings 2015–2020. Brain Sci. 2021, 11, 797. [Google Scholar] [CrossRef]
- Karatayev, O.; Collier, A.D.; Targoff, S.R.; Leibowitz, S.F. Neurological Disorders Induced by Drug Use: Effects of Adolescent and Embryonic Drug Exposure on Behavioral Neurodevelopment. Int. J. Mol. Sci. 2024, 25, 8341. [Google Scholar] [CrossRef]
- Valentin-Escalera, J.; Leclerc, M.; Calon, F. High-Fat Diets in Animal Models of Alzheimer’s Disease: How Can Eating Too Much Fat Increase Alzheimer’s Disease Risk? J. Alzheimers Dis. 2024, 97, 977–1005. [Google Scholar] [CrossRef]
- Swinburn, B.A.; Walter, L.; Ricketts, H.; Whitlock, G.; Law, B.; Norton, R.; Jackson, R.; MacMahon, S. The determinants of fat intake in a multi-ethnic New Zealand population. Int. J. Epidemiol. 1998, 27, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Stickley, A.; Koyanagi, A.; Koposov, R.; McKee, M.; Murphy, A.; Ruchkin, V. Binge drinking and eating problems in Russian adolescents. Alcohol. Clin. Exp. Res. 2015, 39, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.L.; Norhaizan, M.E. Effect of High-Fat Diets on Oxidative Stress, Cellular Inflammatory Response and Cognitive Function. Nutrients 2019, 11, 2579. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.C.; Sakharkar, A.J.; Tang, L.; Zhang, H. Potential role of adolescent alcohol exposure-induced amygdaloid histone modifications in anxiety and alcohol intake during adulthood. Neurobiol. Dis. 2015, 82, 607–619. [Google Scholar] [CrossRef]
- Gass, J.T.; Glen, W.B.; McGonigal, J.T.; Trantham-Davidson, H.; Lopez, M.F.; Randall, P.K.; Yaxley, R.; Floresco, S.B.; Chandler, L.J. Adolescent alcohol exposure reduces behavioral flexibility, promotes disinhibition, and increases resistance to extinction of ethanol self-administration in adulthood. Neuropsychopharmacology 2014, 39, 2570–2583. [Google Scholar] [CrossRef]
- Carneiro, L.M.; Diógenes, J.P.L.; Vasconcelos, S.M.; Aragão, G.F.; Noronha, E.C.; Gomes, P.B.; Viana, G.S. Behavioral and neurochemical effects on rat offspring after prenatal exposure to ethanol. Neurotoxicol. Teratol. 2005, 27, 585–592. [Google Scholar] [CrossRef]
- Hudson, R.; Green, M.; Wright, D.J.; Renard, J.; Jobson, C.E.; Jung, T.; Rushlow, W.; Laviolette, S.R. Adolescent nicotine induces depressive and anxiogenic effects through ERK 1-2 and Akt-GSK-3 pathways and neuronal dysregulation in the nucleus accumbens. Addict. Biol. 2021, 26, e12891. [Google Scholar] [CrossRef]
- Colyer-Patel, K.; Kuhns, L.; Weidema, A.; Lesscher, H.; Cousijn, J. Age-dependent effects of tobacco smoke and nicotine on cognition and the brain: A systematic review of the human and animal literature comparing adolescents and adults. Neurosci. Biobehav. Rev. 2023, 146, 105038. [Google Scholar] [CrossRef]
- Ren, M.; Lotfipour, S. Nicotine gateway effects on adolescent substance use. West. J. Emerg. Med. 2019, 20, 696–709. [Google Scholar] [CrossRef]
- Lárraga, A.; Belluzzi, J.D.; Leslie, F.M. Nicotine increases alcohol intake in adolescent male rats. Front. Behav. Neurosci. 2017, 11, 25. [Google Scholar] [CrossRef]
- Reed, S.C.; Izenwasser, S. Nicotine produces long-term increases in cocaine reinforcement in adolescent but not adult rats. Brain Res. 2017, 1654, 165–170. [Google Scholar] [CrossRef]
- Thomas, A.M.; Ostroumov, A.; Kimmey, B.A.; Taormina, M.B.; Holden, W.M.; Kim, K.; Brown-Mangum, T.; Dani, J.A. Adolescent nicotine exposure alters GABAA receptor signaling in the ventral tegmental area and increases adult ethanol self-administration. Cell Rep. 2018, 23, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Caffino, L.; Mottarlini, F.; Zita, G.; Gawliński, D.; Gawlińska, K.; Wydra, K.; Przegaliński, E.; Fumagalli, F. The effects of cocaine exposure in adolescence: Behavioural effects and neuroplastic mechanisms in experimental models. Br. J. Pharmacol. 2022, 179, 4233–4253. [Google Scholar] [CrossRef] [PubMed]
- Regan, S.L.; Williams, M.T.; Vorhees, C.V. Review of rodent models of attention deficit hyperactivity disorder. Neurosci. Biobehav. Rev. 2022, 132, 621–637. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Gandía, M.C.; Ledesma, J.C.; Aracil-Fernández, A.; Navarrete, F.; Montagud-Romero, S.; Aguilar, M.A.; Manzanares, J.; Miñarro, J.; Rodríguez-Arias, M. The rewarding effects of ethanol are modulated by binge eating of a high-fat diet during adolescence. Neuropharmacology 2017, 121, 219–230. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Q.; Kalavagunta, P.K.; Huang, Q.; Lv, W.; An, X.; Chen, H.; Wang, T.; Heriniaina, R.M.; Qiao, T.; et al. Normal diet Vs High fat diet—A comparative study: Behavioral and neuroimmunological changes in adolescent male mice. Metab. Brain Dis. 2018, 33, 177–190. [Google Scholar] [CrossRef]
- Carrillo, C.A.; Leibowitz, S.F.; Karatayev, O.; Hoebel, B.G. A high-fat meal or injection of lipids stimulates ethanol intake. Alcohol. 2004, 34, 197–202. [Google Scholar] [CrossRef]
- Henderson, B.J.; Richardson, M.R.; Cooper, S.Y. A high-fat diet has sex-specific effects on nicotine vapor self-administration in mice. Drug Alcohol. Depend. 2022, 241, 109694. [Google Scholar] [CrossRef]
- Wang, W.; Yang, J.; Xu, J.; Yu, H.; Wang, R.; Ho, R.; Ho, C.; Pan, F. Effect of high-fet diet and chronic mild stress on depression-like behaviors and levels of inflammatory cytokines in the hippocampus and prefrontal cortex of rats. Neuroscience. 2022, 480, 178–193. [Google Scholar] [CrossRef]
- Huang, H.; Acuna-Goycolea, C.; Li, Y.; Cheng, H.M.; Obrietan, K.; Pol, A.N.v.D. Cannabinoids excite hypothalamic melanin-concentrating hormone but inhibit hypocretin/orexin neurons: Implications for cannabinoid actions on food intake and cognitive arousal. J. Neurosci. 2007, 27, 4870–4881. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, R.; Chen, B.; Rahman, T.; Cai, L.; Li, Y.; Dong, Y.; Tseng, G.C.; Fang, J.; Seney, M.L.; et al. Cocaine-induced neural adaptations in the lateral hypothalamic melanin-concentrating hormone neurons and the role in regulating rapid eye movement sleep after withdrawal. Mol. Psychiatry 2021, 26, 3152–3168. [Google Scholar] [CrossRef]
- Linehan, V.; Fang, L.Z.; Parsons, M.P.; Hirasawa, M. High-fat diet induces time-dependent synaptic plasticity of the lateral hypothalamus. Mol. Metab. 2020, 36, 100977. [Google Scholar] [CrossRef]
- Morganstern, I.; Chang, G.; Barson, J.R.; Ye, Z.; Karatayev, O.; Leibowitz, S.F. Differential effects of acute and chronic ethanol exposure on orexin expression in the perifornical lateral hypothalamus. Alcohol. Clin. Exp. Res. 2010, 34, 886–896. [Google Scholar] [CrossRef] [PubMed]
- Wortley, K.E.; Chang, G.Q.; Davydova, Z.; Leibowitz, S.F. Peptides that regulate food intake—Orexin gene expression is increased during states of hypertriglyceridemia. Am. J. Physiol-Reg. I 2003, 284, R1454–R1465. [Google Scholar]
- Gaysinskaya, V.; Karatayev, O.; Chang, G.-Q.; Leibowitz, S. Increased caloric intake after a high-fat preload: Relation to circulating triglycerides and orexigenic peptides. Physiol. Behav. 2007, 91, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Park, E.S.; Yi, S.J.; Kim, J.S.; Lee, H.S.; Lee, I.S.; Seong, J.K.; Jin, H.K.; Yoon, Y.S. Changes in orexin-A and neuropeptide Y expression in the hypothalamus of the fasted and high-fat diet fed rats. J. Veter- Sci. 2004, 5, 295–302. [Google Scholar] [CrossRef]
- Salinas, A.; Wilde, J.D.; Maldve, R.E. Ethanol enhancement of cocaine- and amphetamine-regulated transcript mRNA and peptide expression in the nucleus accumbens. J. Neurochem. 2006, 97, 408–415. [Google Scholar] [CrossRef]
- Walker, L.C.; Hand, L.J.; Letherby, B.; Huckstep, K.L.; Campbell, E.J.; Lawrence, A.J. Cocaine and amphetamine regulated transcript (CART) signalling in the central nucleus of the amygdala modulates stress-induced alcohol seeking. Neuropsychopharmacology 2020, 46, 325–333. [Google Scholar] [CrossRef]
- Karkhanis, A.N.; Al-Hasani, R. Dynorphin and its role in alcohol use disorder. Brain Res. 2021, 1735, 146742. [Google Scholar] [CrossRef]
- Hadjiconstantinou, M.; Neff, N.H. Nicotine and endogenous opioids: Neurochemical and pharmacological evidence. Neuropharmacology 2011, 60, 1209–1220. [Google Scholar] [CrossRef]
- Hurd, Y.L.; Svensson, P.; Pontén, M. The role of dopamine, dynorphin, and CART systems in the ventral striatum and amygdala in cocaine abuse. Ann. N. Y. Acad. Sci. 1999, 877, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Ugur, M.; Kaya, E.; Gozen, O.; Koylu, E.O.; Kanit, L.; Keser, A.; Balkan, B. Chronic nicotine-induced changes in gene expression of delta and kappa-opioid receptors and their endogenous ligands in the mesocorticolimbic system of the rat. Synapse 2017, 71, e21985. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Colombo, G.; Gessa, G.L.; Kreek, M.J. Effects of voluntary alcohol drinking on corticotropin-releasing factor and preprodynorphin mRNA levels in the central amygdala of Sardinian alcohol-preferring rats. Neurosci. Lett. 2013, 554, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Fragale, J.E.; James, M.H.; Aston-Jones, G. Intermittent self-administration of fentanyl induces a multifaceted addiction state associated with persistent changes in the orexin system. Addict. Biol. 2021, 26, e12946. [Google Scholar] [CrossRef]
- James, M.H.; Stopper, C.M.; Zimmer, B.A.; Koll, N.E.; Bowrey, H.E.; Aston-Jones, G. Increased number and activity of lateral subpopulation of hypothalamic orexin/hypocretin neurons underlies the expression of an addicted state in rats. Biol. Psychiatry 2019, 85, 925–935. [Google Scholar] [CrossRef]
- Sun, H.; Xiong, W.; Arrick, D.M.; Mayhan, W.G. Low-dose alcohol consumption protects against transient focal cerebral ischemia in mice: Possible role of PPARγ. PLoS ONE 2012, 7, e41716. [Google Scholar] [CrossRef]
- Yu, J.H.; Song, S.J.; Kim, A.; Choi, Y.; Seok, J.W.; Kim, H.J.; Lee, Y.J.; Lee, K.S.; Kim, J.-W. Suppression of PPARγ-mediated monoacylglycerol O-acyltransferase 1 expression ameliorates alcoholic hepatic steatosis. Sci. Rep. 2016, 6, 29352. [Google Scholar] [CrossRef]
- Li, F.; Zhu, Y.; Hu, H.; Cheng, J.; Sun, X.; Zhang, Z.; Hu, H.; Proestos, C. Low-Dose Alcohol Improves Lipid Metabolism through Store-Operated Ca+ Channel-Induced PPAR Expression in Obese Mice. J. Food Biochem. 2023, 2023, 627116. [Google Scholar] [CrossRef]
- Brami-Cherrier, K.; Lewis, R.G.; Cervantes, M.; Liu, Y.; Tognini, P.; Baldi, P.; Sassone-Corsi, P.; Borrelli, E. Cocaine-mediated circadian reprogramming in the striatum through dopamine D2R and PPARγ activation. Nat. Commun. 2020, 11, 4448. [Google Scholar] [CrossRef]
- Lehrmann, E.; Oyler, J.; Vawter, M.P.; Hyde, T.M.; Kolachana, B.; Kleinman, J.E.; Huestis, M.A.; Becker, K.G.; Freed, W.J. Transcriptional profiling in the human prefrontal cortex: Evidence for two activational states associated with cocaine abuse. Pharmacogenomics J. 2003, 3, 27–40. [Google Scholar] [CrossRef]
- Mudò, G.; Belluardo, N.; Mauro, A.; Fuxe, K. Acute intermittent nicotine treatment induces fibroblast growth factor-2 in the subventricular zone of the adult rat brain and enhances neuronal precursor cell proliferation. Neuroscience 2007, 145, 470–483. [Google Scholar] [CrossRef]
- Giannotti, G.; Caffino, L.; Malpighi, C.; Melfi, S.; Racagni, G.; Fumagalli, F. A single exposure to cocaine during development elicits regionally-selective changes in basal basic Fibroblast Growth Factor (FGF-2) gene expression and alters the trophic response to a second injection. Psychopharmacology 2015, 232, 713–719. [Google Scholar] [CrossRef]
- Mychasiuk, R.; Hehar, H.; Ma, I.; Esser, M.J. Dietary intake alters behavioral recovery and gene expression profiles in the brain of juvenile rats that have experienced a concussion. Front. Behav. Neurosci. 2015, 9, 17. [Google Scholar] [CrossRef]
- Giannotti, G.; Caffino, L.; Calabrese, F.; Racagni, G.; Fumagalli, F. Dynamic modulation of basic Fibroblast Growth Factor (FGF-2) expression in the rat brain following repeated exposure to cocaine during adolescence. Psychopharmacology 2013, 225, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Colmenero, J.; Bataller, R.; Sancho-Bru, P.; Bellot, P.; Miquel, R.; Moreno, M.; Jares, P.; Bosch, J.; Arroyo, V.; Caballeria, J.; et al. Hepatic expression of candidate genes in patients with alcoholic hepatitis: Correlation with disease severity. Gastroenterology 2007, 132, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Fisheer, N.C.; Neil, D.A.; Adams, D.H. Serum concentrations and peripheral secretion of the beta chemokines monocyte chemoattractant protein 1 and macrophage inflammatory protein 1 alpha in alcoholic liver disease. Gut 1999, 45, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Umhau, J.C.; Schwandt, M.; Solomon, M.G.; Yuan, P.; Nugent, A.; Zarate, C.A.; Drevets, W.C.; Hall, S.D.; George, D.T.; Heilig, M. Cerebrospinal fluid monocyte chemoattractant protein-1 in alcoholics: Support for a neuroinflammatory model of chronic alcoholism. Alcohol. Clin. Exp. Res. 2014, 38, 1301–1306. [Google Scholar] [CrossRef]
- Kane, C.J.M.; Phelan, K.D.; Douglas, J.C.; Wagoner, G.; Johnson, J.W.; Xu, J.; Phelan, P.S.; Drew, P.D. Effects of ethanol on immune response in the brain: Region-specific changes in adolescent versus adult mice. Alcohol. Clin. Exp. Res. 2014, 38, 384–391. [Google Scholar] [CrossRef]
- Pascual, M.; Balino, P.; Aragon, C.M.; Guerri, C. Cytokines and chemokines as biomarkers of ethanol-induced neuroinflammation and anxiety-related behavior: Role of TLR4 and TLR2. Neuropharmacology 2015, 89, 352–359. [Google Scholar] [CrossRef]
- Drew, P.D.; Johnson, J.W.; Douglas, J.C.; Phelan, K.D.; Kane, C.J.M. Pioglitazone blocks ethanol induction of microglial activation and immune responses in the hippocampus, cerebellum, and cerebral cortex in a mouse model of fetal alcohol spectrum disorders. Alcohol. Clin. Exp. Res. 2015, 39, 445–454. [Google Scholar] [CrossRef]
- Wang, S.; Xu, M.; Li, F.; Wang, X.; Bower, K.A.; Frank, J.A.; Lu, Y.; Chen, G.; Zhang, Z.; Ke, Z.; et al. Ethanol promotes mammary tumor growth and angiogenesis: The involvement of chemoattractant factor MCP-1. Breast Cancer Res. Treat. 2012, 133, 1037–1048. [Google Scholar] [CrossRef] [PubMed]
- Bradford, S.T.; Stamatovic, S.M.; Dondeti, R.S.; Keep, R.F.; Andjelkovic, A.V. Nicotine aggravates the brain postischemic inflammatory response. Am. J. Physiol. Circ. Physiol. 2011, 300, H1518–H1529. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Looney, D.; Taub, D.; Chang, S.L.; Way, D.; Witte, M.H.; Graves, M.C.; Fiala, M. Cocaine opens the blood-brain barrier to HIV-1 invasion. J. Neurovirology 1998, 4, 619–626. [Google Scholar] [CrossRef]
- Dhillon, N.K.; Peng, F.; Bokhari, S.; Callen, S.; Shin, S.-H.; Zhu, X.; Kim, K.-J.; Buch, S.J. Cocaine-mediated alteration in tight junction protein expression and modulation of CCL2/CCR2 axis across the blood-brain barrier: Implications for HIV-dementia. J. Neuroimmune Pharmacol. 2008, 3, 52–56. [Google Scholar] [CrossRef]
- Nayak, S.U.; Cicalese, S.; Tallarida, C.; Oliver, C.F.; Rawls, S.M. Chemokine CCR5 and cocaine interactions in the brain: Cocaine enhances mesolimbic CCR5 mRNA levels and produces place preference and locomotor activation that are reduced by a CCR5 antagonist. Brain Behav. Immun. 2020, 83, 288–292. [Google Scholar] [CrossRef]
- Liu, T.; Guo, Z.; Song, X.; Liu, L.; Dong, W.; Wang, S.; Xu, M.; Yang, C.; Wang, B.; Cao, H. High-fat diet-induced dysbiosis mediates MCP-1/CCR2 axis-dependent M2 macrophage polarization and promotes intestinal adenoma-adenocarcinoma sequence. J. Cell Mol. Med. 2020, 24, 2648–2662. [Google Scholar] [CrossRef]
- Gil-Bernabe, P.; Boveda-Ruiz, D.; D’Alessandro-Gabazza, C.; Toda, M.; Miyake, Y.; Mifuji-Moroka, R.; Iwasa, M.; Morser, J.; Gabazza, E.C.; Takei, Y. Atherosclerosis amelioration by moderate alcohol consumption is associated with increased circulating levels of stromal cell-derived factor-1. Circ. J. 2011, 75, 2269–2279. [Google Scholar] [CrossRef]
- Fenton, J.I.; Nuñez, N.P.; Yakar, S.; Perkins, S.N.; Hord, N.G.; Hursting, S.D. Diet-induced adiposity alters the serum profile of inflammation in C57BL/6N mice as measured by antibody array. Diabetes Obes. Metab. 2009, 11, 343–354. [Google Scholar] [CrossRef]
- Poon, K. Behavioral feeding circuit: Dietary fat-induced effects of inflammatory mediator in the hypothalamus. Front. Endocrinology. 2020, 11, 591559. [Google Scholar] [CrossRef]
- Chang, G.Q.; Gaysinskaya, V.; Karatayev, O.; Leibowitz, S.F. Maternal high-fat diet and fetal programming: Increased proliferation of hypothalamic peptide-producing neurons that increase risk for overeating and obesity. J. Neurosci. 2008, 28, 12107–12119. [Google Scholar] [CrossRef]
- Chang, G.-Q.; Karatayev, O.; Leibowitz, S.F. Prenatal exposure to nicotine stimulates neurogenesis of orexigenic peptide-expressing neurons in hypothalamus and amygdala. J. Neurosci. 2013, 33, 13600–13611. [Google Scholar] [CrossRef]
- Risold, P.Y.; Croizier, S.; Legagneux, K.; Brischoux, F.; Fellmann, D.; Griffond, B. The development of the MCH system. Peptides 2009, 30, 1969–1972. [Google Scholar] [CrossRef] [PubMed]
- Brischoux, F.; Fellmann, D.; Risold, P.Y. Ontogenetic development of the diencephalic MCH neurons: A hypothalamic ‘MCH area’ hypothesis. Eur. J. Neurosci. 2001, 13, 1733–1744. [Google Scholar] [CrossRef] [PubMed]
- Steininger, T.L.; Kilduff, T.S.; Behan, M.; Benca, R.M.; Landry, C.F. Comparison of hypocretin/orexin and melanin-concentrating hormone neurons and axonal projections in the embryonic and postnatal rat brain. J. Chem. Neuroanat. 2004, 27, 165–181. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.W. Effect of prenatal exposure to ethanol on development of cerebral cortex: 1. neuronal generation. Alcohol 1988, 12, 440–449. [Google Scholar] [CrossRef]
- Chang, G.-Q.; Karatayev, O.; Boorgu, D.S.S.K.; Leibowitz, S.F. CCL2/CCR2 system in neuroepithelial radial glia progenitor cells: Involvement in stimulatory, sexually dimorphic effects of maternal ethanol on embryonic development of hypothalamic peptide neurons. J. Neuroinflammation 2020, 17, 207. [Google Scholar] [CrossRef]
- Bedont, J.L.; Newman, E.A.; Blackshaw, S. Patterning, specification, and differentiation in the developing hypothalamus. Wiley Interdiscip. Rev. Dev. Biol. 2015, 4, 445–468. [Google Scholar] [CrossRef]
- Collier, A.D.; Yasmin, N.; Chang, G.; Karatayev, O.; Khalizova, N.; Fam, M.; Abdulai, A.R.; Yu, B.; Leibowitz, S.F. Embryonic ethanol exposure induces ectopic Hcrt and MCH neurons outside hypothalamus in rats and zebrafish: Role in ethanol-induced behavioural disturbances. Addict. Biol. 2022, 27, e13238. [Google Scholar] [CrossRef]
- Muhammad, A.; Mychasiuk, R.; Nakahashi, A.; Hossain, S.R.; Gibb, R.; Kolb, B. Prenatal nicotine exposure alters neuroanatomical organization of the developing brain. Synapse 2012, 66, 950–954. [Google Scholar] [CrossRef]
- Mychasiuk, R.; Muhammad, A.; Carroll, C.; Kolb, B. Does prenatal nicotine exposure alter the brain’s response to nicotine in adolescence? A neuroanatomical analysis. Eur. J. Neurosci. 2013, 38, 2491–2503. [Google Scholar] [CrossRef]
- Lu, R.; Liu, X.; Long, H.; Ma, L. Effects of prenatal cocaine and heroin exposure on neuronal dendrite morphogenesis and spatial recognition memory in mice. Neurosci. Lett. 2012, 522, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Stanwood, G.D.; Levitt, P. Prenatal exposure to cocaine produces unique developmental and long-term adaptive changes in dopamine D1 receptor activity and subcellular distribution. J. Neurosci. 2007, 27, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Hatanaka, Y.; Wada, K.; Kabuta, T. Maternal high-fat diet leads to persistent synaptic instability in mouse offspring via oxidative stress during lactation. Neurochem. Int. 2016, 97, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Janthakhin, Y.; Rincel, M.; Costa, A.-M.; Darnaudery, M.; Ferreira, G. Maternal high-fat diet leads to hippocampal and amygdala dendritic remodeling in adult male offspring. Psychoneuroendocrinology 2017, 83, 49–57. [Google Scholar] [CrossRef]
- Zhu, Y.; Matsumoto, T.; Nagasawa, T.; Mackay, F.; Murakami, F. Chemokine Signaling Controls Integrity of Radial Glial Scaffold in Developing Spinal Cord and Consequential Proper Position of Boundary Cap Cells. J. Neurosci. 2015, 35, 9211–9224. [Google Scholar] [CrossRef]
- Aronne, M.; Guadagnoli, T.; Fontanet, P.; Evrard, S.; Brusco, A. Effects of prenatal ethanol exposure on rat brain radial glia and neuroblast migration. Exp. Neurol. 2011, 229, 364–371. [Google Scholar] [CrossRef]
- Cuntz, H.; Bird, A.D.; Mittag, M.; Beining, M.; Schneider, M.; Mediavilla, L.; Hoffmann, F.Z.; Deller, T.; Jedlicka, P. A general principle of dendritic constancy: A neuron’s size- and shape-invariant excitability. Neuron 2021, 109, 3647–3662.e3647. [Google Scholar] [CrossRef]
- Chevassus-au-Louis, N.; Represa, A. The right neuron at the wrong place: Biology of heterotopic neurons in cortical neuronal migration disorders, with special reference to associated pathologies. Cell. Mol. Life Sci. 1999, 55, 1206–1215. [Google Scholar] [CrossRef]
- Wozniak, J.R.; Riley, E.P.; Charness, M.E. Clinical presentation, diagnosis, and management of fetal alcohol spectrum disorder. Lancet Neurol. 2019, 18, 760–770. [Google Scholar] [CrossRef]
- Liu, F.; Tao, X.; Pang, G.; Wu, D.; Hu, Y.; Xue, S.; Liu, J.; Li, B.; Zhou, L.; Liu, Q.; et al. Maternal Nicotine Exposure During Gestation and Lactation Period Affects Behavior and Hippocampal Neurogenesis in Mouse Offspring. Front. Pharmacol. 2019, 10, 1569. [Google Scholar] [CrossRef]
- Baraban, S.C.; Wenzel, H.J.; Castro, P.A.; Schwartzkroin, P.A. Hippocampal dysplasia in rats exposed to cocaine in utero. Brain Res. Dev. Brain Res. 1999, 117, 213–217. [Google Scholar] [CrossRef]
- Morgan, A.J.; Harrod, S.B.; Lacy, R.T.; Stanley, E.M.; Fadel, J.R. Intravenous prenatal nicotine exposure increases orexin expression in the lateral hypothalamus and orexin innervation of the ventral tegmental area in adult male rats. Drug Alcohol. Depend. 2013, 132, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Dandekar, M.P.; Bharne, A.P.; Borkar, P.D.; Subhedar, N.K.; Kokare, D.M. Maternal ethanol exposure reshapes CART system in the rat brain: Correlation with development of anxiety, depression and memory deficits. Neuroscience 2019, 406, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Kim, J.; Kwon, Y.H. Long-Term Effects of Maternal Fat Consumption on the Brain Transcriptome of Obesogenic Diet-Fed Young Adult Mice Offspring. J. Nutr. 2024, 154, 1532–1539. [Google Scholar] [CrossRef]
- Lovely, C.B.; Fernandes, Y.; Eberhart, J.K. Fishing for Fetal Alcohol Spectrum Disorders: Zebrafish as a Model for Ethanol Teratogenesis. Zebrafish 2016, 13, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Kirla, K.T.; Erhart, C.; Groh, K.J.; Stadnicka-Michalak, J.; Eggen, R.I.L.; Schirmer, K.; Kraemer, T. Zebrafish early life stages as alternative model to study? designer drugs?: Concordance with mammals in response to opioids. Toxicol. Appl. Pharm. 2021, 419, 115483. [Google Scholar] [CrossRef]
- Collier, A.D.; Yasmin, N.; Khalizova, N.; Campbell, S.; Onoichenco, A.; Fam, M.; Albeg, A.S.; Leibowitz, S.F. Sexually dimorphic and asymmetric effects of embryonic ethanol exposure on hypocretin/orexin neurons as related to behavioral changes in zebrafish. Sci. Rep. 2021, 11, 16078. [Google Scholar] [CrossRef]
- Collier, A.D.; Halkina, V.; Min, S.S.; Roberts, M.Y.; Campbell, S.D.; Camidge, K.; Leibowitz, S.F. Embryonic Ethanol Exposure Affects the Early Development, Migration, and Location of Hypocretin/Orexin Neurons in Zebrafish. Alcohol. Clin. Exp. Res. 2019, 43, 1702–1713. [Google Scholar] [CrossRef]
- Yasmin, N.; Collier, A.D.; Karatayev, O.; Abdulai, A.R.; Yu, B.; Fam, M.; Khalizova, N.; Leibowitz, S.F. Subpopulations of hypocretin/orexin neurons differ in measures of their cell proliferation, dynorphin co-expression, projections, and response to embryonic ethanol exposure. Sci. Rep. 2023, 13, 8448. [Google Scholar] [CrossRef]
- Coffey, C.M.; Solleveld, P.A.; Fang, J.; Roberts, A.K.; Hong, S.-K.; Dawid, I.B.; Laverriere, C.E.; Glasgow, E.; Hwang, S.-P.L. Novel oxytocin gene expression in the hindbrain is induced by alcohol exposure: Transgenic zebrafish enable visualization of sensitive neurons. PLoS ONE 2013, 8, e53991. [Google Scholar] [CrossRef]
- Buckley, D.M.; Sidik, A.; Kar, R.D.; Eberhart, J.K. Differentially sensitive neuronal subpopulations in the central nervous system and the formation of hindbrain heterotopias in ethanol-exposed zebrafish. Birth Defects Res. 2019, 111, 700–713. [Google Scholar] [CrossRef]
- Goeke, C.M.; Roberts, M.L.; Hashimoto, J.G.; Finn, D.A.; Guizzetti, M. Neonatal Ethanol and Choline Treatments Alter the Morphology of Developing Rat Hippocampal Pyramidal Neurons in Opposite Directions. Neuroscience 2018, 374, 13–24. [Google Scholar] [CrossRef]
- Wille-Bille, A.; Miranda-Morales, R.S.; Pucci, M.; Bellia, F.; D’ADdario, C.; Pautassi, R.M. Prenatal ethanol induces an anxiety phenotype and alters expression of dynorphin & nociceptin/orphanin FQ genes. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 85, 77–88. [Google Scholar] [CrossRef]
- Bordner, K.; Deak, T. Endogenous opioids as substrates for ethanol intake in the neonatal rat: The impact of prenatal ethanol exposure on the opioid family in the early postnatal period. Physiol. Behav. 2015, 148, 100–110. [Google Scholar] [CrossRef]
- Xu, C.; Fan, W.; Zhang, Y.; Loh, H.H.; Law, P.-Y. Kappa opioid receptor controls neural stem cell differentiation via a miR-7a/Pax6 dependent pathway. Stem Cells 2021, 39, 600–616. [Google Scholar] [CrossRef] [PubMed]
- Hahn, J.W.; Jagwani, S.; Kim, E.; Rendell, V.R.; He, J.; Ezerskiy, L.A.; Wesselschmidt, R.; Coscia, C.J.; Belcheva, M.M. Mu and kappa opioids modulate mouse embryonic stem cell-derived neural progenitor differentiation via MAP kinases. J. Neurochem. 2010, 112, 1431–1441. [Google Scholar] [CrossRef] [PubMed]
- Fong, H.; Zheng, J.; Kurrasch, D. The structural and functional complexity of the integrative hypothalamus. Science 2023, 382, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Poon, K.; Mandava, S.; Chen, K.; Barson, J.R.; Buschlen, S.; Leibowitz, S.F.; Alquier, T. Prenatal exposure to dietary fat induces changes in the transcriptional factors, TEF and YAP, which may stimulate differentiation of peptide neurons in rat hypothalamus. PLoS ONE 2013, 8, e77668. [Google Scholar] [CrossRef]
- Boschen, K.E.; Fish, E.W.; Parnell, S.E. Prenatal alcohol exposure disrupts Sonic hedgehog pathway and primary cilia genes in the mouse neural tube. Reprod. Toxicol. 2021, 105, 136–147. [Google Scholar] [CrossRef]
- Somm, E.; Schwitzgebel, V.M.; Vauthay, D.M.; Aubert, M.L.; Huppi, P.S. Prenatal nicotine exposure and the programming of metabolic and cardiovascular disorders. Mol. Cell. Endocrinol. 2009, 304, 69–77. [Google Scholar] [CrossRef]
- Poon, K.; Alam, M.; Karatayev, O.; Barson, J.R.; Leibowitz, S.F. Regulation of the orexigenic neuropeptide, enkephalin, by PPARdelta and fatty acids in neurons of the hypothalamus and forebrain. J. Neurochem. 2015, 135, 918–931. [Google Scholar] [CrossRef]
- Cifasd, T.; Bodnar, T.S.; Raineki, C.; Wertelecki, W.; Yevtushok, L.; Plotka, L.; Granovska, I.; Zymak-Zakutnya, N.; Pashtepa, A.; Wells, A.; et al. Immune network dysregulation associated with child neurodevelopmental delay: Modulatory role of prenatal alcohol exposure. J. Neuroinflammation 2020, 17, 39. [Google Scholar] [CrossRef]
- Son, J.H.; Winzer-Serhan, U.H. Chronic neonatal nicotine exposure increases mRNA expression of neurotrophic factors in the postnatal rat hippocampus. Brain Res. 2009, 1278, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Chang, G.Q.; Karatayev, O.; Liang, S.C.; Barson, J.R.; Leibowitz, S.F. Prenatal ethanol exposure stimulates neurogenesis in hypothalamic and limbic peptide systems: Possible mechanism for offspring ethanol overconsumption. Neuroscience 2012, 222, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Poon, K.; Abramova, D.; Ho, H.T.; Leibowitz, S. Prenatal fat-rich diet exposure alters responses of embryonic neurons to the chemokine, CCL2, in the hypothalamus. Neuroscience 2016, 324, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Gil-Mohapel, J.; Titterness, A.; Patten, A.; Taylor, S.; Ratzlaff, A.; Ratzlaff, T.; Helfer, J.; Christie, B. Prenatal ethanol exposure differentially affects hippocampal neurogenesis in the adolescent and aged brain. Neuroscience 2014, 273, 174–188. [Google Scholar] [CrossRef]
- Xu, M.; Wang, S.; Qi, Y.; Chen, L.; Frank, J.A.; Yang, X.H.; Zhang, Z.; Shi, X.; Luo, J. Role of MCP-1 in alcohol-induced aggressiveness of colorectal cancer cells. Mol. Carcinog. 2016, 55, 1002–1011. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, X.; Yang, F.; Xu, M.; Frank, J.A.; Wang, H.; Wang, S.; Ke, Z.-J.; Luo, J. Ethanol-induced damage to the developing spinal cord: The involvement of CCR2 signaling. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 2746–2761. [Google Scholar] [CrossRef]
- Chometton, S.; Croizier, S.; Fellmann, D.; Risold, P.-Y. The MCH neuron population as a model for the development and evolution of the lateral and dorsal hypothalamus. J. Chem. Neuroanat. 2016, 75, 28–31. [Google Scholar] [CrossRef]
- Mardini, V.; Rohde, L.A.; Ceresér, K.M.M.; Gubert, C.d.M.; da Silva, E.G.; Xavier, F.; Parcianello, R.; Röhsig, L.M.; Pechansky, F.; Pianca, T.G.; et al. IL-6 and IL-10 levels in the umbilical cord blood of newborns with a history of crack/cocaine exposure in utero: A comparative study. Trends Psychiatry Psychother. 2016, 38, 40–49. [Google Scholar] [CrossRef]
- Chahal, N.; McLain, A.C.; Ghassabian, A.; Michels, K.A.; Bell, E.M.; Lawrence, D.A.; Yeung, E.H. Maternal Smoking and Newborn Cytokine and Immunoglobulin Levels. Nicotine Tob. Res. 2017, 19, 789–796. [Google Scholar] [CrossRef]
- Al-Odat, I.; Chen, H.; Chan, Y.L.; Amgad, S.; Wong, M.G.; Gill, A.; Pollock, C.; Saad, S.; Abreu-Villaça, Y. The impact of maternal cigarette smoke exposure in a rodent model on renal development in the offspring. PLoS ONE 2014, 9, e103443. [Google Scholar] [CrossRef]
- Yu, M.; Zheng, X.; Peake, J.; Joad, J.P.; Pinkerton, K.E. Perinatal environmental tobacco smoke exposure alters the immune response and airway innervation in infant primates. J. Allergy Clin. Immunol. 2008, 122, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Dunn, G.A.; Mitchell, A.; Selby, M.; Fair, D.A.; Gustafsson, H.C.; Sullivan, E.L. Maternal diet and obesity shape offspring central and peripheral inflammatory outcomes in juvenile non-human primates. Brain Behav. Immun. 2022, 102, 224–236. [Google Scholar] [CrossRef] [PubMed]
- Alati, R.; Al Mamun, A.; Williams, G.M.; O’Callaghan, M.; Najman, J.M.; Bor, W. In utero alcohol exposure and prediction of alcohol disorders in early adulthood: A birth cohort study. Arch. Gen. Psychiatry 2006, 63, 1009–1016. [Google Scholar] [CrossRef] [PubMed]
- Bayer, S.; Altman, J.; Russo, R.J.; Zhang, X. Timetable of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicol 1993, 14, 83–144. [Google Scholar]
- Malone, S.M.; McGue, M.; Iacono, W.G. Mothers’ maximum drinks ever consumed in 24 hours predicts mental health problems in adolescent offspring. J. Child Psychol. Psychiatry 2010, 51, 1067–1075. [Google Scholar] [CrossRef]
- Easey, K.E.; Dyer, M.L.; Timpson, N.J.; Munafo, M.R. Prenatal alcohol exposure and offspring mental health: A systematic review. Drug Alcohol. Depend. 2019, 197, 344–353. [Google Scholar] [CrossRef]
- Duko, B.; Pereira, G.; Tait, R.J.; Nyadanu, S.D.; Betts, K.; Alati, R. Prenatal Tobacco Exposure and the Risk of Tobacco Smoking and Dependence in Offspring: A Systematic Review and Meta-Analysis. Drug Alcohol. Depend. 2021, 227, 108993. [Google Scholar] [CrossRef]
- Goldschmidt, L.; Cornelius, M.D.; Day, N.L. Prenatal cigarette smoke exposure and early initiation of multiple substance use. Nicotine Tob. Res. 2012, 14, 694–702. [Google Scholar] [CrossRef]
- Rydell, M.; Cnattingius, S.; Granath, F.; Magnusson, C.; Galanti, M.R. Prenatal exposure to tobacco and future nicotine dependence: Population-based cohort study. Br. J. Psychiatry 2012, 200, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Mayes, L.C. A behavioral teratogenic model of the impact of prenatal cocaine exposure on arousal regulatory systems. Neurotoxicol. Teratol. 2002, 24, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Minnes, S.; Singer, L.; Min, M.O.; Wu, M.; Lang, A.; Yoon, S. Effects of prenatal cocaine/polydrug exposure on substance use by age 15. Drug Alcohol. Depend. 2014, 134, 201–210. [Google Scholar] [CrossRef]
- Richardson, G.A.; De Genna, N.M.; Goldschmidt, L.; Larkby, C.; Donovan, J.E. Prenatal cocaine exposure: Direct and indirect associations with 21-year-old offspring substance use and behavior problems. Drug Alcohol. Depend. 2019, 195, 121–131. [Google Scholar] [CrossRef]
- Sullivan, E.L.; Nousen, E.K.; Chamlou, K.A. Maternal high fat diet consumption during the perinatal period programs offspring behavior. Physiol. Behav. 2014, 123, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Urbonaite, G.; Knyzeliene, A.; Bunn, F.S.; Smalskys, A.; Neniskyte, U. The impact of maternal high-fat diet on offspring neurodevelopment. Front. Neurosci. 2022, 16, 909762. [Google Scholar] [CrossRef]
- Polli, F.S.; Kohlmeier, K.A. Prenatal Nicotine Exposure in Rodents: Why Are There So Many Variations in Behavioral Outcomes? Nicotine Tob. Res. 2020, 22, 1694–1710. [Google Scholar] [CrossRef]
- Marquardt, K.; Brigman, J.L. The impact of prenatal alcohol exposure on social, cognitive and affective behavioral domains: Insights from rodent models. Alcohol 2016, 51, 1–15. [Google Scholar] [CrossRef]
- Ciafre, S.; Ferraguti, G.; Greco, A.; Polimeni, A.; Ralli, M.; Ceci, F.M.; Ceccanti, M.; Fiore, M. Alcohol as an early life stressor: Epigenetics, metabolic, neuroendocrine and neurobehavioral implications. Neurosci. Biobehav. Rev. 2020, 118, 654–668. [Google Scholar] [CrossRef]
- Motamedi, S.; Amleshi, R.S.; Javar, B.A.; Shams, P.; Kohlmeier, K.A.; Shabani, M. Cannabis during pregnancy: A way to transfer an impairment to later life. Birth Defects Res. 2023, 115, 1327–1344. [Google Scholar] [CrossRef]
- Diaz, M.R.; Johnson, J.M.; Varlinskaya, E.I. Increased ethanol intake is associated with social anxiety in offspring exposed to ethanol on gestational day 12. Behav. Brain Res. 2020, 393, 112766. [Google Scholar] [CrossRef]
- Kim, P.; Park, J.H.; Choi, C.S.; Choi, I.; Joo, S.H.; Kim, M.K.; Kim, S.Y.; Kim, K.C.; Park, S.H.; Kwon, K.J.; et al. Effects of ethanol exposure during early pregnancy in hyperactive, inattentive and impulsive behaviors and MeCP2 expression in rodent offspring. Neurochem. Res. 2013, 38, 620–631. [Google Scholar] [CrossRef]
- Fish, E.; Wieczorek, L.; Rumple, A.; Suttie, M.; Moy, S.; Hammond, P.; Parnell, S. The enduring impact of neurulation stage alcohol exposure: A combined behavioral and structural neuroimaging study in adult male and female C57BL/6J mice. Behav. Brain Res. 2018, 338, 173–184. [Google Scholar] [CrossRef]
- Wang, R.; Martin, C.D.; Lei, A.L.; Hausknecht, K.A.; Ishiwari, K.; Richards, J.B.; Haj-Dahmane, S.; Shen, R.-Y. Prenatal Ethanol Exposure Leads to Attention Deficits in Both Male and Female Rats. Front. Neurosci. 2020, 14, 12. [Google Scholar] [CrossRef] [PubMed]
- Molina, J.C.; Spear, N.E.; Spear, L.P.; Mennella, J.A.; Lewis, M.J. The International society for developmental psychobiology 39th annual meeting symposium: Alcohol and development: Beyond fetal alcohol syndrome. Dev. Psychobiol. 2007, 49, 227–242. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, B.; Weinberg, J.; Hicks, G.G. Effects of prenatal alcohol exposure (PAE): Insights into FASD using mouse models of PAE. Biochem. Cell Biol. 2018, 96, 131–147. [Google Scholar] [CrossRef]
- Subbanna, S.; Basavarajappa, B.S. Binge-like Prenatal Ethanol Exposure Causes Impaired Cellular Differentiation in the Embryonic Forebrain and Synaptic and Behavioral Defects in Adult Mice. Brain Sci. 2022, 12, 793. [Google Scholar] [CrossRef]
- Cardenas, A.; Martinez, M.; Mejia, A.S.; Lotfipour, S. Early adolescent subchronic low-dose nicotine exposure increases subsequent cocaine and fentanyl self-administration in Sprague–Dawley rats. Behav. Pharmacol. 2021, 32, 86–91. [Google Scholar] [CrossRef]
- Mendez, S.B.; Salazar-Juarez, A. Prenatal and postnatal cocaine exposure enhances the anxiety- and depressive-like behaviors in rats: An ontogenetic study. Int. J. Dev. Neurosci. 2024, 84, 546–557. [Google Scholar] [CrossRef]
- Keller, R.W., Jr.; LeFevre, R.; Raucci, J.; Carlson, J.N.; Glick, S.D. Enhanced cocaine self-administration in adult rats prenatally exposed to cocaine. Neurosci. Lett. 1996, 205, 153–156. [Google Scholar] [CrossRef]
- Bocarsly, M.; Barson, J.R.; Hauca, J.M.; Hoebel, B.G.; Leibowitz, S.F.; Avena, N.M. Effects of perinatal exposure to palatable diets on body weight and sensitivity to drugs of abuse in rats. Physiol. Behav. 2012, 107, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Naef, L.; Srivastava, L.; Gratton, A.; Hendrickson, H.; Owens, S.M.; Walker, C.-D. Maternal high fat diet during the perinatal period alters mesocorticolimbic dopamine in the adult rat offspring: Reduction in the behavioral responses to repeated amphetamine administration. Psychopharmacology 2008, 197, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Karatayev, O.; Lukatskaya, O.; Moon, S.-H.; Guo, W.-R.; Chen, D.; Algava, D.; Abedi, S.; Leibowitz, S.F. Nicotine and ethanol co-use in Long-Evans rats: Stimulatory effects of perinatal exposure to a fat-rich diet. Alcohol 2015, 49, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Lees, B.; Mewton, L.; Stapinski, L.A.; Teesson, M.; Squeglia, L.M. Association of prenatal alcohol exposure with preadolescent alcohol sipping in the ABCD study®. Drug Alcohol. Depend. 2020, 214, 108187. [Google Scholar] [CrossRef]
- Lees, B.; Mewton, L.; Jacobus, J.; Valadez, E.A.; Stapinski, L.A.; Teesson, M.; Tapert, S.F.; Squeglia, L.M. Association of Prenatal Alcohol Exposure With Psychological, Behavioral, and Neurodevelopmental Outcomes in Children From the Adolescent Brain Cognitive Development Study. Am. J. Psychiatry 2020, 177, 1060–1072. [Google Scholar] [CrossRef]
- Groenman, A.P.; Janssen, T.W.P.; Oosterlaan, J. Childhood Psychiatric Disorders as Risk Factor for Subsequent Substance Abuse: A Meta-Analysis. J. Am. Acad. Child. Adolesc. Psychiatry 2017, 56, 556–569. [Google Scholar] [CrossRef]
- Hamilton, D.A.; Barto, D.; Rodriguez, C.I.; Magcalas, C.M.; Fink, B.C.; Rice, J.P.; Bird, C.W.; Davies, S.; Savage, D.D. Effects of moderate prenatal ethanol exposure and age on social behavior, spatial response perseveration errors and motor behavior. Behav. Brain Res. 2014, 269, 44–54. [Google Scholar] [CrossRef]
- Watts, A.L.; Wood, P.K.; Jackson, K.M.; Lisdahl, K.M.; Heitzeg, M.M.; Gonzalez, R.; Tapert, S.F.; Barch, D.M.; Sher, K.J. Incipient alcohol use in childhood: Early alcohol sipping and its relations with psychopathology and personality. Dev. Psychopathol. 2021, 33, 1338–1350. [Google Scholar] [CrossRef]
- Marmorstein, N.R.; White, H.R.; Loeber, R.; Stouthamer-Loeber, M. Anxiety as a predictor of age at first use of substances and progression to substance use problems among boys. J. Abnorm. Child. Psychol. 2010, 38, 211–224. [Google Scholar] [CrossRef]
- Tiesler, C.M.; Heinrich, J. Prenatal nicotine exposure and child behavioural problems. Eur. Child. Adolesc. Psychiatry 2014, 23, 913–929. [Google Scholar] [CrossRef]
- Richardson, G.A.; Goldschmidt, L.; Larkby, C.; Day, N.L. Effects of prenatal cocaine exposure on child behavior and growth at 10years of age. Neurotoxicol. Teratol. 2013, 40, 1–8. [Google Scholar] [CrossRef]
- Bendersky, M.; Bennett, D.; Lewis, M. Aggression at age 5 as a function of prenatal exposure to cocaine, gender, and environmental risk. J. Pediatr. Psychol. 2006, 31, 71–84. [Google Scholar] [CrossRef]
- Brekke, H.K.; van Odijk, J.; Ludvigsson, J. Predictors and dietary consequences of frequent intake of high-sugar, low-nutrient foods in 1-year-old children participating in the ABIS study. Br. J. Nutr. 2007, 97, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Rising, R.; Lifshitz, F. Relationship between maternal obesity and infant feeding-interactions. Nutr. J. 2005, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Collier, A.D.; Yasmin, N.; Karatayev, O.; Abdulai, A.R.; Yu, B.; Fam, M.; Campbell, S.; Leibowitz, S.F. Embryonic ethanol exposure and optogenetic activation of hypocretin neurons stimulate similar behaviors early in life associated with later alcohol consumption. Sci. Rep. 2024, 14, 3021. [Google Scholar] [CrossRef]
- Munoz-Villegas, P.; Rodriguez, V.M.; Giordano, M.; Juarez, J. Risk-taking, locomotor activity and dopamine levels in the nucleus accumbens and medial prefrontal cortex in male rats treated prenatally with alcohol. Pharmacol. Biochem. Behav. 2017, 153, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Ajarem, J.S.; Ahmad, M. Prenatal nicotine exposure modifies behavior of mice through early development. Pharmacol. Biochem. Behav. 1998, 59, 313–318. [Google Scholar] [CrossRef]
- Torabi, R.; Jenkins, S.; Harker, A.; Whishaw, I.Q.; Gibb, R.; Luczak, A. A Neural Network Reveals Motoric Effects of Maternal Preconception Exposure to Nicotine on Rat Pup Behavior: A New Approach for Movement Disorders Diagnosis. Front. Neurosci. 2021, 15, 686767. [Google Scholar] [CrossRef]
- Johns, J.M.; Means, L.W.; Means, M.J.; McMillen, B.A. Prenatal exposure to cocaine. I: Effects on gestation, development, and activity in Sprague-Dawley rats. Neurotoxicol. Teratol. 1992, 14, 337–342. [Google Scholar] [CrossRef]
- Collier, A.D.; Min, S.S.; Campbell, S.D.; Roberts, M.Y.; Camidge, K.; Leibowitz, S.F. Maternal ethanol consumption before paternal fertilization: Stimulation of hypocretin neurogenesis and ethanol intake in zebrafish offspring. Prog. Neuro-Psychoph 2020, 96, 109728. [Google Scholar] [CrossRef]
- García-Fuster, M.; Parks, G.; Clinton, S.; Watson, S.; Akil, H.; Civelli, O. The melanin-concentrating hormone (MCH) system in an animal model of depression-like behavior. Eur. Neuropsychopharmacol. 2012, 22, 607–613. [Google Scholar] [CrossRef]
- Mitra, A.; Klockars, A.; Gosnell, B.A.; Le Grevès, M.; Olszewski, P.K.; Levine, A.S.; Schiöth, H.B. Expression levels of genes encoding melanin concentrating hormone (MCH) and MCH receptor change in taste aversion, but MCH injections do not alleviate aversive responses. Pharmacol. Biochem. Behav. 2012, 100, 581–586. [Google Scholar] [CrossRef]
- Supko, D.E.; Uretsky, N.J.; Wallace, L.J. Activation of AMPA/kainic acid glutamate receptors in the zona incerta stimulates locomotor activity. Brain Res. 1991, 564, 159–163. [Google Scholar] [CrossRef]
- Milner, K.L.; Mogenson, G.J. Electrical and chemical activation of the mesencephalic and subthalamic locomotor regions in freely moving rats. Brain Res. 1988, 452, 273–285. [Google Scholar] [CrossRef]
- Morganstern, I.; Gulati, G.; Leibowitz, S.F. Role of melanin-concentrating hormone in drug use disorders. Brain Res. 2020, 1741, 146872. [Google Scholar] [CrossRef]
- Hurley, S.W.; Johnson, A.K. The role of the lateral hypothalamus and orexin in ingestive behavior: A model for the translation of past experience and sensed deficits into motivated behaviors. Front. Syst. Neurosci. 2014, 8, 216. [Google Scholar] [CrossRef] [PubMed]
- Blacktop, J.M.; Sorg, B.A. Perineuronal nets in the lateral hypothalamus area regulate cue-induced reinstatement of cocaine-seeking behavior. Neuropsychopharmacology 2019, 44, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Bolado, G.; Celio, M.R. The ventrolateral hypothalamic area and the parvafox nucleus: Role in the expression of (positive) emotions? J. Comp. Neurol. 2016, 524, 1616–1623. [Google Scholar] [CrossRef] [PubMed]
- Venner, A.; Anaclet, C.; Broadhurst, R.Y.; Saper, C.B.; Fuller, P.M. A Novel Population of Wake-Promoting GABAergic Neurons in the Ventral Lateral Hypothalamus. Curr. Biol. 2016, 26, 2137–2143. [Google Scholar] [CrossRef]
- Barson, J.R.; Carr, A.J.; Soun, J.E.; Sobhani, N.C.; Leibowitz, S.F.; Hoebel, B.G. Opioids in the nucleus accumbens stimulate ethanol intake. Physiol. Behav. 2009, 98, 453–459. [Google Scholar] [CrossRef]
- Chen, G.; Carlson, V.C.C.; Wang, J.; Beck, A.; Heinz, A.; Ron, D.; Lovinger, D.M.; Buck, K.J. Striatal involvement in human alcoholism and alcohol consumption, and withdrawal in animal models. Alcohol. Clin. Exp. Res. 2011, 35, 1739–1748. [Google Scholar] [CrossRef]
- Sterling, M.E.; Chang, G.Q.; Karatayev, O.; Chang, S.Y.; Leibowitz, S.F. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides. Behav. Brain Res. 2016, 304, 125–138. [Google Scholar] [CrossRef]
- Chen, T.H.; Wang, Y.H.; Wu, Y.H. Developmental exposures to ethanol or dimethylsulfoxide at low concentrations alter locomotor activity in larval zebrafish: Implications for behavioral toxicity bioassays. Aquat. Toxicol. 2011, 102, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Singh, C.; Oikonomou, G.; Prober, D.A. Genetic analysis of histamine signaling in larval zebrafish sleep. Eneuro 2017, 4. [Google Scholar] [CrossRef] [PubMed]
- Eacret, D.; Grafe, L.A.; Dobkin, J.; Gotter, A.L.; Renger, J.J.; Winrow, C.J.; Bhatnagar, S. Orexin signaling during social defeat stress influences subsequent social interaction behaviour and recognition memory. Behav. Brain Res. 2019, 356, 444–452. [Google Scholar] [CrossRef]
- Tyree, S.M.; Jennings, K.J.; Gonzalez, O.C.; Li, S.-B.; Nicholson, J.R.; von Heimendahl, M.; de Lecea, L. Optogenetic and pharmacological interventions link hypocretin neurons to impulsivity in mice. Commun. Biol. 2023, 6, 74. [Google Scholar] [CrossRef] [PubMed]
- Imperatore, R.; D’aNgelo, L.; Safari, O.; Motlagh, H.A.; Piscitelli, F.; de Girolamo, P.; Cristino, L.; Varricchio, E.; di Marzo, V.; Paolucci, M. Overlapping Distribution of Orexin and Endocannabinoid Receptors and Their Functional Interaction in the Brain of Adult Zebrafish. Front. Neuroanat. 2018, 12, 62. [Google Scholar] [CrossRef]
- Carpenter, R.E.; Watt, M.J.; Forster, G.L.; Øverli, Ø.; Bockholt, C.; Renner, K.J.; Summers, C.H. Corticotropin releasing factor induces anxiogenic locomotion in trout and alters serotonergic and dopaminergic activity. Horm. Behav. 2007, 52, 600–611. [Google Scholar] [CrossRef]
- von Trotha, J.W.; Vernier, P.; Bally-Cuif, L. Emotions and motivated behavior converge on an amygdala-like structure in the zebrafish. Eur. J. Neurosci. 2014, 40, 3302–3315. [Google Scholar] [CrossRef]
- Mathuru, A.S.; Kibat, C.; Cheong, W.F.; Shui, G.; Wenk, M.R.; Friedrich, R.W.; Jesuthasan, S. Chondroitin Fragments Are Odorants that Trigger Fear Behavior in Fish. Curr. Biol. 2012, 22, 538–544. [Google Scholar] [CrossRef]
- Singh, C.; Rihel, J.; Prober, D.A. Neuropeptide Y Regulates Sleep by Modulating Noradrenergic Signaling. Curr. Biol. 2017, 27, 3796–3811.e3795. [Google Scholar] [CrossRef]
- Oikonomou, G.; Altermatt, M.; Zhang, R.-W.; Coughlin, G.M.; Montz, C.; Gradinaru, V.; Prober, D.A. The Serotonergic Raphe Promote Sleep in Zebrafish and Mice. Neuron 2019, 103, 686–701.e688. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Mucino, L.A.; García-García, F.; Cueto-Escobedo, J.; Acosta-Hernández, M.; Venebra-Muñoz, A.; Rodríguez-Alba, J.C. Sleep loss and addiction. Neurosci. Biobehav. Rev. 2022, 141, 104832. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, U.; James, M.H. Sleep disturbance in substance use disorders: The orexin (hypocretin) system as an emerging pharmacological target. Neuropsychopharmacology 2023, 48, 228–229. [Google Scholar] [CrossRef] [PubMed]
- Racz, I.; Markert, A.; Mauer, D.; Stoffel-Wagner, B.; Zimmer, A. Long-term ethanol effects on acute stress responses: Modulation by dynorphin. Addict. Biol. 2013, 18, 678–688. [Google Scholar] [CrossRef]
- Nylander, I.; Hyytia, P.; Forsander, O.; Terenius, L. Differences between Alcohol-Preferring (Aa) and Alcohol-Avoiding (Ana) Rats in the Prodynorphin and Proenkephalin Systems. Alcohol. Clin. Exp. Res. 1994, 18, 1272–1279. [Google Scholar] [CrossRef]
- Galeote, L.; Maldonado, R.; Berrendero, F. Involvement of kappa/dynorphin system in the development of tolerance to nicotine-induced antinociception. J. Neurochem. 2008, 105, 1358–1368. [Google Scholar] [CrossRef]
- Berrendero, F.; Robledo, P.; Trigo, J.M.; Martín-García, E.; Maldonado, R. Neurobiological mechanisms involved in nicotine dependence and reward: Participation of the endogenous opioid system. Neurosci. Biobehav. Rev. 2010, 35, 220–231. [Google Scholar] [CrossRef]
- Shippenberg, T.; Zapata, A.; Chefer, V. Dynorphin and the pathophysiology of drug addiction. Pharmacol. Ther. 2007, 116, 306–321. [Google Scholar] [CrossRef]
- Quiroga, C.; Barberena, J.J.; Alcaraz-Silva, J.; Machado, S.; Imperatori, C.; Yadollahpour, A.; Budde, H.; Yamamoto, T.; Telles-Correia, D.; Murillo-Rodríguez, E. The Role of Peroxisome Proliferator-Activated Receptor in Addiction: A Novel Drug Target. Curr. Top. Med. Chem. 2021, 21, 964–975. [Google Scholar] [CrossRef]
- Mason, B.J.; Estey, D.; Roberts, A.; de Guglielmo, G.; George, O.; Light, J.; Stoolmiller, M.; Quello, S.; Skinner, M.; Shadan, F.; et al. A reverse translational study of PPAR-α agonist efficacy in human and rodent models relevant to alcohol use disorder. Neurobiol. Stress. 2024, 29, 100604. [Google Scholar] [CrossRef]
- Clinton, S.M.; Turner, C.A.; Flagel, S.B.; Simpson, D.N.; Watson, S.J.; Akil, H. Neonatal fibroblast growth factor treatment enhances cocaine sensitization. Pharmacol. Biochem. Behav. 2012, 103, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Aleshin, S.; Strokin, M.; Sergeeva, M.; Reiser, G. Peroxisome proliferator-activated receptor (PPAR)beta/delta, a possible nexus of PPARalpha- and PPARgamma-dependent molecular pathways in neurodegenerative diseases: Review and novel hypotheses. Neurochem. Int. 2013, 63, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Flores, G.; de Jesus Gomez-Villalobos, M.; Rodriguez-Sosa, L. Prenatal amphetamine exposure effects on dopaminergic receptors and transporter in postnatal rats. Neurochem. Res. 2011, 36, 1740–1749. [Google Scholar] [CrossRef]
- Maier, S.E.; Chen, W.-J.A.; West, J.R. Prenatal binge-like alcohol exposure alters neurochemical profiles in fetal rat brain. Pharmacol. Biochem. Behav. 1996, 55, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.Y.; Hannigan, J.H.; Kapatos, G. Prenatal ethanol reduces the activity of adult midbrain dopamine neurons. Alcohol. Clin. Exp. Res. 1999, 23, 1801–1807. [Google Scholar] [CrossRef]
- Zhu, J.M.; Zhang, X.; Xu, Y.; Spencer, T.J.; Biederman, J.; Bhide, P.G. Prenatal Nicotine Exposure Mouse Model Showing Hyperactivity, Reduced Cingulate Cortex Volume, Reduced Dopamine Turnover, and Responsiveness to Oral Methylphenidate Treatment. J. Neurosci. 2012, 32, 9410–9418. [Google Scholar] [CrossRef]
- McCarthy, D.M.; Zhang, L.; Wilkes, B.J.; Vaillancourt, D.E.; Biederman, J.; Bhide, P.G. Nicotine and the developing brain: Insights from preclinical models. Pharmacol. Biochem. Behav. 2022, 214, 173355. [Google Scholar] [CrossRef]
- Stanwood, G.D.; Washington, R.A.; Shumsky, J.S.; Levitt, P. Prenatal cocaine exposure produces consistent developmental alterations in dopamine-rich regions of the cerebral cortex. Neuroscience 2001, 106, 5–14. [Google Scholar] [CrossRef]
- Keller, R.W., Jr.; Snyder-Keller, A. Prenatal cocaine exposure. Ann. N. Y. Acad. Sci. 2000, 909, 217–232. [Google Scholar] [CrossRef]
- Bellone, C.; Mameli, M.; Lüscher, C. In utero exposure to cocaine delays postnatal synaptic maturation of glutamatergic transmission in the VTA. Nat. Neurosci. 2011, 14, 1439–1446. [Google Scholar] [CrossRef]
- Lee, C.T.; Chen, J.; Worden, L.T.; Freed, W.J. Cocaine causes deficits in radial migration and alters the distribution of glutamate and GABA neurons in the developing rat cerebral cortex. Synapse 2011, 65, 21–34. [Google Scholar] [CrossRef]
- Smaga, I.; Gawlinska, K.; Gawlinski, D.; Surowka, P.; Filip, M. A maternal high-fat diet during pregnancy and lactation disrupts short-term memory functions via altered hippocampal glutamatergic signaling in female rat offspring. Behav. Brain Res. 2023, 445, 114396. [Google Scholar] [CrossRef] [PubMed]
- Buske, C.; Gerlai, R. Early embryonic ethanol exposure impairs shoaling and the dopaminergic and serotoninergic systems in adult zebrafish. Neurotoxicol. Teratol. 2011, 33, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Palmiter, R.D. Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci. 2007, 30, 375–381. [Google Scholar] [CrossRef]
- Koob, G.F.; Le Moal, M. Addiction and the brain antireward system. Annu. Rev. Psychol. 2008, 59, 29–53. [Google Scholar] [CrossRef]
- Blum, K.; Thanos, P.K.; Gold, M.S. Dopamine and glucose, obesity, and reward deficiency syndrome. Front. Psychol. 2014, 5, 919. [Google Scholar] [CrossRef]
- Karkhanis, A.; Holleran, K.M.; Jones, S.R. International Review of Neurobiology; Elsevier: Amsterdam, The Netherlands, 2017; Volume 136, pp. 53–88. [Google Scholar]
- Griffond, B.; Risold, P.Y. MCH and feeding behavior-interaction with peptidic network. Peptides 2009, 30, 2045–2051. [Google Scholar] [CrossRef]
- Routh, V.H.; Hao, L.; Santiago, A.M.; Sheng, Z.; Zhou, C. Hypothalamic glucose sensing: Making ends meet. Front. Syst. Neurosci. 2014, 8, 236. [Google Scholar] [CrossRef]
- Santollo, J.; Eckel, L.A. The orexigenic effect of melanin-concentrating hormone (MCH) is influenced by sex and stage of the estrous cycle. Physiol. Behav. 2008, 93, 842–850. [Google Scholar] [CrossRef]
- Terrill, S.J.; Subramanian, K.S.; Lan, R.; Liu, C.M.; Cortella, A.M.; Noble, E.E.; Kanoski, S.E. Nucleus accumbens melanin-concentrating hormone signaling promotes feeding in a sex-specific manner. Neuropharmacology 2020, 178, 108270. [Google Scholar] [CrossRef]
- Kuebler, I.R.K.; Suarez, M.; Wakabayashi, K.T. Sex differences and sex-specific regulation of motivated behavior by Melanin-concentrating hormone: A short review. Biol. Sex. Differ. 2024, 15, 33. [Google Scholar] [CrossRef]
- Knollema, S.; Brown, E.R.; Vale, W.; Sawchenko, P.E. Novel hypothalamic and preoptic sites of prepro-melanin-concentrating hormone messenger ribonucleic Acid and Peptide expression in lactating rats. J. Neuroendocr. 1992, 4, 709–717. [Google Scholar] [CrossRef]
- Fuente-Martin, E.; Argente-Arizon, P.; Ros, P.; Argente, J.; Chowen, J.A. Sex differences in adipose tissue: It is not only a question of quantity and distribution. Adipocyte 2013, 2, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhao, J.; Balesar, R.; Fronczek, R.; Zhu, Q.-B.; Wu, X.-Y.; Hu, S.-H.; Bao, A.-M.; Swaab, D.F. Sexually Dimorphic Changes of Hypocretin (Orexin) in Depression. Ebiomedicine 2017, 18, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Wennström, M.; Londos, E.; Minthon, L.; Nielsen, H.M. Altered CSF Orexin and α-Synuclein Levels in Dementia Patients. J. Alzheimer’s Dis. 2012, 29, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, F.M.; Kratzsch, J.; Gertz, H.-J.; Tittmann, M.; Jahn, I.; Pietsch, U.-C.; Kaisers, U.X.; Thiery, J.; Hegerl, U.; Schönknecht, P. Cerebrospinal Fluid Melanin-Concentrating Hormone (MCH) and Hypocretin-1 (HCRT-1, Orexin-A) in Alzheimer’s Disease. PLoS ONE 2013, 8, e63136. [Google Scholar] [CrossRef]
- Radke, A.K.; Sneddon, E.A.; Frasier, R.M.; Hopf, F.W. Recent Perspectives on Sex Differences in Compulsion-Like and Binge Alcohol Drinking. Int. J. Mol. Sci. 2021, 22, 3788. [Google Scholar] [CrossRef]
- Cross, S.J.; Linker, K.E.; Leslie, F.M. Sex-Dependent Effects of Nicotine on the Developing Brain. J. Neurosci. Res. 2017, 95, 422–436. [Google Scholar] [CrossRef]
- Calakos, K.C.; Bhatt, S.; Foster, D.W.; Cosgrove, K.P. Mechanisms Underlying Sex Differences in Cannabis Use. Curr. Addict. Rep. 2017, 4, 439–453. [Google Scholar] [CrossRef]
- Flores-Bonilla, A.; Richardson, H.N. Sex Differences in the Neurobiology of Alcohol Use Disorder. Alcohol. Res. 2020, 40, 04. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kay, K.; Troike, K.; Ahluwalia, M.S.; Lathia, J.D. Sex Differences in Glioblastoma Immunotherapy Response. Neuromolecular Med. 2022, 24, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.F.S.; Donahue, R.R.; Laird, D.E.; Oliveira, M.C.G.; Taylor, B.K. The PPARγ agonist pioglitazone produces a female-predominant inhibition of hyperalgesia associated with surgical incision, peripheral nerve injury, and painful diabetic neuropathy. Neuropharmacology 2022, 205, 108907. [Google Scholar] [CrossRef] [PubMed]
- Larsson, A.; Sköldenberg, E.; Ericson, H. Serum and plasma levels of FGF-2 and VEGF in healthy blood donors. Angiogenesis 2002, 5, 107–110. [Google Scholar] [CrossRef]
- Minge, C.; Robker, R.; Norman, R. PPAR gamma: Coordinating metabolic and immune contributions of female fertility. PPAR Research 2008, 2008, 19. [Google Scholar] [CrossRef]
- Park, H.J.; Choi, J.-M. Sex-specific regulation of immune responses by PPARs. Exp. Mol. Med. 2017, 49, e364. [Google Scholar] [CrossRef]
- Zhang, J.; Song, H.; Lu, Y.; Chen, H.; Jiang, S.; Li, L. Effects of estradiol on VEGF and bFGF by Akt in endometrial cancer cells are mediated through the NF-κB pathway. Oncol. Rep. 2016, 36, 705–714. [Google Scholar] [CrossRef]
- Lengi, A.J.; Phillips, R.A.; Karpuzoglu, E.; Ahmed, S.A. Estrogen selectively regulates chemokines in murine splenocytes. J. Leukoc. Biol. 2007, 81, 1065–1074. [Google Scholar] [CrossRef]
- Agabio, R.; Pisanu, C.; Gessa, G.L.; Franconi, F. Sex Differences in Alcohol Use Disorder. Curr. Med. Chem. 2017, 24, 2661–2670. [Google Scholar] [CrossRef]
- Thorner, E.D.; Jaszyna-Gasior, M.; Epstein, D.H.; Moolchan, E.T. Progression to daily smoking: Is there a gender difference among cessation treatment seekers? Subst. Use Misuse 2007, 42, 829–835. [Google Scholar] [CrossRef]
- Abreu-Villaça, Y.; Seidler, F.J.; Tate, C.A.; Slotkin, T.A. Nicotine is a neurotoxin in the adolescent brain: Critical periods, patterns of exposure, regional selectivity, and dose thresholds for macromolecular alterations. Brain Res. 2003, 979, 114–128. [Google Scholar] [CrossRef]
- Ruiz, S.M.; Oscar-Berman, M.; Sawyer, K.S.; Valmas, M.M.; Urban, T.; Harris, G.J. Drinking History Associations with Regional White Matter Volumes in Alcoholic Men and Women. Alcohol. Clin. Exp. Res. 2012, 37, 110–122. [Google Scholar] [CrossRef]
- Christiansen, D.M.; McCarthy, M.M.; Seeman, M.V. Where Sex Meets Gender: How Sex and Gender Come Together to Cause Sex Differences in Mental Illness. Front. Psychiatry 2022, 13, 856436. [Google Scholar] [CrossRef] [PubMed]
- Foster, K.T.; Li, N.; McClure, E.A.; Sonne, S.C.; Gray, K.M. Gender Differences in Internalizing Symptoms and Suicide Risk Among Men and Women Seeking Treatment for Cannabis Use Disorder from Late Adolescence to Middle Adulthood. J. Subst. Abus. Treat. 2016, 66, 16–22. [Google Scholar] [CrossRef]
- McHugh, R.K.; Votaw, V.R.; Sugarman, D.E.; Greenfield, S.F. Sex and gender differences in substance use disorders. Clin. Psychol. Rev. 2018, 66, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Knouse, M.C.; Briand, L.A. Behavioral sex differences in cocaine and opioid use disorders: The role of gonadal hormones. Neurosci. Biobehav. Rev. 2021, 128, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Moen, J.K.; Lee, A.M. Sex Differences in the Nicotinic Acetylcholine Receptor System of Rodents: Impacts on Nicotine and Alcohol Reward Behaviors. Front. Neurosci. 2021, 15, 745783. [Google Scholar] [CrossRef]
- Sneddon, E.A.; White, R.D.; Radke, A.K. Sex Differences in Binge-Like and Aversion-Resistant Alcohol Drinking in C57BL/6J Mice. Alcohol. Clin. Exp. Res. 2019, 43, 243–249. [Google Scholar] [CrossRef]
- Kokhan, V.S.; Chaprov, K.; Ninkina, N.N.; Anokhin, P.K.; Pakhlova, E.P.; Sarycheva, N.Y.; Shamakina, I.Y. Sex-Related Differences in Voluntary Alcohol Intake and mRNA Coding for Synucleins in the Brain of Adult Rats Prenatally Exposed to Alcohol. Biomedicines 2022, 10, 2163. [Google Scholar] [CrossRef]
- Radke, A.K.; Sneddon, E.A.; Monroe, S.C. Studying Sex Differences in Rodent Models of Addictive Behavior. Curr. Protoc. 2021, 1, e119. [Google Scholar] [CrossRef]
- Strong, M.N.; Yoneyama, N.; Fretwell, A.M.; Snelling, C.; Tanchuck, M.A.; Finn, D.A. “Binge” drinking experience in adolescent mice shows sex differences and elevated ethanol intake in adulthood. Horm. Behav. 2010, 58, 82–90. [Google Scholar] [CrossRef]
- Chellian, R.; Behnood-Rod, A.; Wilson, R.; Kamble, S.H.; Sharma, A.; McCurdy, C.R.; Bruijnzeel, A.W. Adolescent nicotine and tobacco smoke exposure enhances nicotine self-administration in female rats. Neuropharmacology 2020, 176, 108243. [Google Scholar] [CrossRef]
- Maric, I.; Krieger, J.-P.; van der Velden, P.; Börchers, S.; Asker, M.; Vujicic, M.; Asterholm, I.W.; Skibicka, K.P. Sex and Species Differences in the Development of Diet-Induced Obesity and Metabolic Disturbances in Rodents. Front. Nutr. 2022, 9, 828522. [Google Scholar] [CrossRef] [PubMed]
- Benowitz, N.L.; Lessov-Schlaggar, C.N.; Swan, G.E.; Jacob, P., 3rd. Female sex and oral contraceptive use accelerate nicotine metabolism. Clin. Pharmacol. Ther. 2006, 79, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Schnoll, R.A.; Patterson, F. Sex heterogeneity in pharmacogenetic smoking cessation clinical trials. Drug Alcohol. Depend. 2009, 104 (Suppl. S1), S94–S99. [Google Scholar] [CrossRef]
- Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Fowler, J.S.; Telang, F.; Goldstein, R.Z.; Alia-Klein, N.; Wong, C.; Hashimoto, K. Reduced Metabolism in Brain “Control Networks” following Cocaine-Cues Exposure in Female Cocaine Abusers. PLoS ONE 2011, 6, e16573. [Google Scholar] [CrossRef]
- Gao, X.B.; Horvath, T.L. From Molecule to Behavior: Hypocretin/orexin Revisited From a Sex-dependent Perspective. Endocr. Rev. 2022, 43, 743–760. [Google Scholar] [CrossRef]
- Cruz, B.; Borgonetti, V.; Bajo, M.; Roberto, M. Sex-dependent factors of alcohol and neuroimmune mechanisms. Neurobiol. Stress 2023, 26, 100562. [Google Scholar] [CrossRef]
- Fulham, M.A.; Mandrekar, P. Sexual Dimorphism in Alcohol Induced Adipose Inflammation Relates to Liver Injury. PLoS ONE 2016, 11, e0164225. [Google Scholar] [CrossRef]
- Cheng, Y.; Dempsey, R.E.; Roodsari, S.K.; Shuboni-Mulligan, D.D.; George, O.; Sanford, L.D.; Guo, M.-L. Cocaine Regulates NLRP3 Inflammasome Activity and CRF Signaling in a Region- and Sex-Dependent Manner in Rat Brain. Biomedicines 2023, 11, 1800. [Google Scholar] [CrossRef]
- Ashare, R.L.; Wetherill, R.R. The Intersection of Sex Differences, Tobacco Use, and Inflammation: Implications for Psychiatric Disorders. Curr. Psychiatry Rep. 2018, 20, 75. [Google Scholar] [CrossRef]
- Rodrigues, M.E.D.S.; Bolen, M.L.; Blackmer-Raynolds, L.; Schwartz, N.; Chang, J.; Tansey, M.G.; Sampson, T.R. Diet-induced metabolic and immune impairments are sex-specifically modulated by soluble TNF signaling in the 5xFAD mouse model of Alzheimer’s disease. Neurobiol. Dis. 2024, 196, 106511. [Google Scholar] [CrossRef]
- Sikic, A.; Frie, J.A.; Khokhar, J.Y.; Murray, J.E. Sex Differences in the Behavioural Outcomes of Prenatal Nicotine and Tobacco Exposure. Front. Neurosci. 2022, 16, 921429. [Google Scholar] [CrossRef] [PubMed]
- Czarnecki, D.M.; Russell, M.; Cooper, M.L.; Salter, D. Five-year reliability of self-reported alcohol consumption. J. Stud. Alcohol. 1990, 51, 68–76. [Google Scholar] [CrossRef] [PubMed]
- May, P.A.; Tabachnick, B.; Hasken, J.M.; Marais, A.-S.; de Vries, M.M.; Barnard, R.; Joubert, B.; Cloete, M.; Botha, I.; Kalberg, W.O.; et al. Who is most affected by prenatal alcohol exposure: Boys or girls? Drug Alcohol. Depend. 2017, 177, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Flannigan, K.; Poole, N.; Cook, J.; Unsworth, K. Sex-related differences among individuals assessed for fetal alcohol spectrum disorder in Canada. Alcohol. Clin. Exp. Res. 2023, 47, 613–623. [Google Scholar] [CrossRef]
- Traccis, F.; Frau, R.; Melis, M. Gender Differences in the Outcome of Offspring Prenatally Exposed to Drugs of Abuse. Front. Behav. Neurosci. 2020, 14, 72. [Google Scholar] [CrossRef]
- Weinberg, J.; Sliwowska, J.H.; Lan, N.; Hellemans, K.G.C. Prenatal alcohol exposure: Foetal programming, the hypothalamic-pituitary-adrenal axis and sex differences in outcome. J. Neuroendocrinol. 2008, 20, 470–488. [Google Scholar] [CrossRef]
- Pfinder, M.; Liebig, S.; Feldmann, R. Adolescents’ use of alcohol, tobacco and illicit drugs in relation to prenatal alcohol exposure: Modifications by gender and ethnicity. Alcohol 2013, 49, 143–153. [Google Scholar] [CrossRef]
- Long, M.; Kar, P.; Forkert, N.D.; Landman, B.A.; Ben Gibbard, W.; Tortorelli, C.; McMorris, C.A.; Huo, Y.; Lebel, C.A. Sex and age effects on gray matter volume trajectories in young children with prenatal alcohol exposure. Front. Hum. Neurosci. 2024, 18, 1379959. [Google Scholar] [CrossRef]
- von Ehrenstein, O.S.; Cui, X.; Yan, Q.; Aralis, H.; Ritz, B. Maternal prenatal smoking and autism spectrum disorder in offspring: A California statewide cohort and sibling study. Am. J. Epidemiol. 2021, 190, 728–737. [Google Scholar] [CrossRef]
- Kandel, D.B.; Wu, P.; Davies, M. Maternal smoking during pregnancy and smoking by adolescent daughters. Am. J. Public. Heal 1994, 84, 1407–1413. [Google Scholar] [CrossRef]
- Toro, R.; Leonard, G.; Lerner, J.V.; Lerner, R.M.; Perron, M.; Pike, G.B.; Richer, L.; Veillette, S.; Pausova, Z.; Paus, T. Prenatal exposure to maternal cigarette smoking and the adolescent cerebral cortex. Neuropsychopharmacology 2008, 33, 1019–1027. [Google Scholar] [CrossRef]
- Chaplin, T.M.; Freiburger, M.B.; Mayes, L.C.; Sinha, R. Prenatal cocaine exposure, gender, and adolescent stress response: A prospective longitudinal study. Neurotoxicol. Teratol. 2010, 32, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Finger, B.; McNeill, V.; Schuetze, P.; Eiden, R.D. Sex moderated and RSA mediated effects of prenatal cocaine exposure on behavior problems at age 7. Neurotoxicol. Teratol. 2022, 89, 107052. [Google Scholar] [CrossRef] [PubMed]
- Sonia, M.; Min, M.O.; Short, E.J.; Wu, M.; Lang, A.; Yoon, S.; Singer, L.T. Executive function in children with prenatal cocaine exposure (12–15 years). Neurotoxicol. Teratol. 2016, 57, 79–86. [Google Scholar]
- Taylor, A.N.; Branch, B.J.; Liu, S.H.; Kokka, N. Long-Term Effects of Fetal Ethanol Exposure on Pituitary-Adrenal Response to Stress. Pharmacol. Biochem. Behav. 1982, 16, 585–589. [Google Scholar] [CrossRef]
- Nelson, L.R.; Taylor, A.N.; Lewis, J.W.; Poland, R.E.; Redei, E.; Branch, B.J. Pituitary-adrenal responses to morphine and footshock stress are enhanced following prenatal alcohol exposure. Alcohol. Clin. Exp. Res. 1986, 10, 397–402. [Google Scholar] [CrossRef]
- Song, L.; Cui, J.; Wang, R.; Wang, N.; Yan, J.; Sun, B. Maternal exercise and high-fat diet affect hypothalamic neural projections in rat offspring in a sex-specific manner. J. Nutr. Biochem. 2022, 103, 108958. [Google Scholar] [CrossRef]
- Dias-Rocha, C.P.; Almeida, M.M.; Santana, E.M.; Costa, J.C.; Franco, J.G.; Pazos-Moura, C.C.; Trevenzoli, I.H. Maternal high-fat diet induces sex-specific endocannabinoid system changes in newborn rats and programs adiposity, energy expenditure and food preference in adulthood. J. Nutr. Biochem. 2018, 51, 56–68. [Google Scholar] [CrossRef]
- Sasaki, H.; Shitara, M.; Yokota, K.; Hikosaka, Y.; Moriyama, S.; Yano, M.; Fujii, Y. Increased FGFR1 copy number in lung squamous cell carcinomas. Mol. Med. Rep. 2012, 5, 725–728. [Google Scholar] [CrossRef]
- Bae, J.M.; Wen, X.; Kim, T.-S.; Kwak, Y.; Cho, N.-Y.; Lee, H.S.; Kang, G.H. Fibroblast Growth Factor Receptor 1 (FGFR1) Amplification Detected by Droplet Digital Polymerase Chain Reaction (ddPCR) Is a Prognostic Factor in Colorectal Cancers. Cancer Res. Treat. 2020, 52, 74–84. [Google Scholar] [CrossRef]
- Garmy-Susini, B.; Delmas, E.; Gourdy, P.; Zhou, M.; Bossard, C.; Bugler, B.; Bayard, F.; Krust, A.; Prats, A.; Doetschman, T.; et al. Role of fibroblast growth factor-2 isoforms in the effect of estradiol on endothelial cell migration and proliferation. Circ. Res. 2004, 94, 1301–1309. [Google Scholar] [CrossRef] [PubMed]
- Petridou, E.; Katsouyanni, K.; Spanos, E.; Skalkidis, Y.; Panagiotopoulou, K.; Trichopoulos, D. Pregnancy estrogens in relation to coffee and alcohol intake. Ann. Epidemiol. 1992, 2, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Nagata, C.; Iwasa, S.; Shiraki, M.; Sahashi, Y.; Shimizu, H. Association of maternal fat and alcohol intake with maternal and umbilical hormone levels and birth weight. Cancer Sci. 2007, 98, 869–873. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.M.; Sholar, P.W.; Bilbo, S.D. Sex differences in microglial colonization of the developing rat brain. J. Neurochem. 2012, 120, 948–963. [Google Scholar] [CrossRef]
- Terasaki, L.S.; Schwarz, J.M. Effects of moderate prenatal alcohol exposure during early gestation in rats on inflammation across the maternal-fetal-immune interface and later-life immune function in the offspring. J. Neuroimmune Pharmacol. 2016, 11, 680–692. [Google Scholar] [CrossRef]
- Kezer, C.A.; Simonetto, D.A.; Shah, V.H. Sex differences in alcohol consumption and alcohol-associated liver disease. Mayo clinic proceedings. 2021, 96, 1006–1016. [Google Scholar] [CrossRef]
- Erol, A.; Ho, A.M.C.; Winham, S.J.; Karpyak, V.M. Sex hormones in alcohol consumption: A systematic review of evidence. Addict. Biol. 2019, 24, 157–169. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karatayev, O.; Leibowitz, S.F. Melanin-Concentrating Hormone (MCH): Role in Mediating Reward-Motivated and Emotional Behavior and the Behavioral Disturbances Produced by Repeated Exposure to Reward Substances. Int. J. Mol. Sci. 2025, 26, 7143. https://doi.org/10.3390/ijms26157143
Karatayev O, Leibowitz SF. Melanin-Concentrating Hormone (MCH): Role in Mediating Reward-Motivated and Emotional Behavior and the Behavioral Disturbances Produced by Repeated Exposure to Reward Substances. International Journal of Molecular Sciences. 2025; 26(15):7143. https://doi.org/10.3390/ijms26157143
Chicago/Turabian StyleKaratayev, Olga, and Sarah F. Leibowitz. 2025. "Melanin-Concentrating Hormone (MCH): Role in Mediating Reward-Motivated and Emotional Behavior and the Behavioral Disturbances Produced by Repeated Exposure to Reward Substances" International Journal of Molecular Sciences 26, no. 15: 7143. https://doi.org/10.3390/ijms26157143
APA StyleKaratayev, O., & Leibowitz, S. F. (2025). Melanin-Concentrating Hormone (MCH): Role in Mediating Reward-Motivated and Emotional Behavior and the Behavioral Disturbances Produced by Repeated Exposure to Reward Substances. International Journal of Molecular Sciences, 26(15), 7143. https://doi.org/10.3390/ijms26157143