Primary Graft Dysfunction in Lung Transplantation: An Overview of the Molecular Mechanisms
Abstract
1. Introduction
2. Pathophysiologic Hallmarks of PGD
3. Sources and Mechanisms of Oxidative Stress in LIRI
3.1. Cellular and Molecular Origins of Oxidative Stress
3.2. Mitochondrial Mechanisms of Oxidative Stress
3.3. Mechanotransduction-Induced Oxidative Stress
4. Impact of Donor-Related Factors on Lung Injury
4.1. Donor Lung Preservation and Impact on LIRI
4.2. The Role of Donor Type in LIRI
5. The Innate Immune Response in LIRI
5.1. DAMPs and PRRs Initiate the Innate Immune Response
5.2. Neutrophils as Mediators of PGD
5.3. Complement Activation and Amplification of Lung Injury
5.4. Recipient-Related Factors in LIRI
6. Structural Consequences of LIRI
6.1. Cell Death Mechanisms
6.2. Damage to the Endothelial Membrane
6.3. Signaling Pathways Altering Vascular Permeability
7. Conclusions
Funding
Conflicts of Interest
Abbreviations
PGD | Primary graft dysfunction |
PGD3 | Primary graft dysfunction grade 3 |
PVR | Pulmonary vascular resistance |
LIRI | Lung ischemia–reperfusion injury |
EVLP | Ex vivo lung perfusion |
ROS | Reactive oxygen species |
ECs | Endothelial cells |
AMs | Alveolar macrophages |
NOS | Nitric oxide synthase |
ATP | Adenosine triphosphate |
Na+ | Sodium |
Ca2+ | Calcium |
K+ | Potassium |
NO | Nitric oxide |
eNOS | Endothelial NOS |
RNS | Reactive nitrogen species |
nNOS | Neuronal NOS |
iNOS | Inducible NOS |
mtNOS | Mitochondrial NOS |
mPTP | Mitochondrial permeability transition pore |
pO2 | Partial oxygen pressure |
DCD | Donation after circulatory death |
DBD | Donation after brain death |
FiO2 | Fraction of inspired oxygen |
ECMO | Extracorporeal membrane oxygenation |
DAMPs | Damage-associated molecular patterns |
HMGB1 | High-mobility group box 1 |
eATP | Extracellular ATP |
mtDNA | Mitochondrial DNA |
PRRs | Pattern recognition receptors |
TLRs | Toll-like receptors |
NLRs | NOD-like receptors |
RAGE | Receptor for advanced glycation end products |
NLRP3 | NOD-like receptor protein 3 |
mRAGE | Membrane-bound receptor for advanced glycation end products |
ARDS | Acute respiratory distress syndrome |
ER | Endoplasmic reticulum |
NCMs | Non-classical monocytes |
CMs | Classical monocytes |
NETs | Neutrophil extracellular traps |
IRI | Ischemia–reperfusion injury |
MACs | Membrane attack complexes |
BAL | Bronchoalveolar lavage |
CFH | Cell-free hemoglobin |
RBCs | Red blood cells |
CPB | Cardiopulmonary bypass |
PGE2 | Prostaglandin E2 |
IPF | Idiopathic pulmonary fibrosis |
cfDNA | Cell-free DNA |
PCD | Programmed cell death |
RIPK1/3 | Receptor interacting kinases 1 and 3 |
MLKL | Mixed lineage kinase like |
ECM | Extracellular matrix |
MMPs | Matrix metalloproteinases |
BOS | Bronchiolitis obliterans syndrome |
CLAD | Chronic lung allograft dysfunction |
MLCK | Myosin light chain kinase |
TRPC6 | Transient receptor potential channel 6 |
References
- Christie, J.D.; Carby, M.; Bag, R.; Corris, P.; Hertz, M.; Weill, D. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction Part II: Definition. A Consensus Statement of the International Society for Heart and Lung Transplantation. J. Heart Lung Transplant. 2005, 24, 1454–1459. [Google Scholar] [CrossRef] [PubMed]
- Diamond, J.M.; Arcasoy, S.; Kennedy, C.C.; Eberlein, M.; Singer, J.P.; Patterson, G.M.; Edelman, J.D.; Dhillon, G.; Pena, T.; Kawut, S.M.; et al. Report of the International Society for Heart and Lung Transplantation Working Group on Primary Lung Graft Dysfunction, part II: Epidemiology, risk factors, and outcomes—A 2016 Consensus Group statement of the International Society for Heart and Lung Transplantation. J. Heart Lung Transplant. 2017, 36, 1104–1113. [Google Scholar] [PubMed]
- Morrison, M.I.; Pither, T.L.; Fisher, A.J. Pathophysiology and classification of primary graft dysfunction after lung transplantation. J. Thorac. Dis. 2017, 9, 4084–4097. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.J.; Diamond, J.M.; Cantu, E.; Lee, J.C.; Lederer, D.J.; Lama, V.N.; Orens, J.; Weinacker, A.; Wilkes, D.S.; Bhorade, S.; et al. Latent class analysis identifies distinct phenotypes of primary graft dysfunction after lung transplantation. Chest 2013, 144, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Christie, J.D.; Bellamy, S.; Ware, L.B.; Lederer, D.; Hadjiliadis, D.; Lee, J.; Robinson, N.; Localio, A.R.; Wille, K.; Lama, V.; et al. Construct validity of the definition of primary graft dysfunction after lung transplantation. J. Heart Lung Transplant. 2010, 29, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- Van Slambrouck, J.; Van Raemdonck, D.; Vos, R.; Vanluyten, C.; Vanstapel, A.; Prisciandaro, E.; Willems, L.; Orlitová, M.; Kaes, J.; Jin, X.; et al. A Focused Review on Primary Graft Dysfunction after Clinical Lung Transplantation: A Multilevel Syndrome. Cells 2022, 11, 745. [Google Scholar] [CrossRef] [PubMed]
- Den Hengst, W.A.; Gielis, J.F.; Lin, J.Y.; Van Schil, P.E.; De Windt, L.J.; Moens, A.L. Lung ischemia-reperfusion injury: A molecular and clinical view on a complex pathophysiological process. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H1283–H1299. [Google Scholar] [CrossRef] [PubMed]
- Chacon-Alberty, L.; Fernandez, R.; Jindra, P.; King, M.; Rosas, I.; Hochman-Mendez, C.; Loor, G. Primary Graft Dysfunction in Lung Transplantation: A Review of Mechanisms and Future Applications. Transplantation 2023, 107, 1687–1697. [Google Scholar] [CrossRef] [PubMed]
- Weyker, P.D.; Webb, C.A.J.; Kiamanesh, D.; Flynn, B.C. Lung ischemia reperfusion injury: A bench-to-bedside review. Semin. Cardiothorac. Vasc. Anesth. 2013, 17, 28–43. [Google Scholar] [CrossRef] [PubMed]
- Gelman, A.E.; Fisher, A.J.; Huang, H.J.; Baz, M.A.; Shaver, C.M.; Egan, T.M.; Mulligan, M.S. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction Part III: Mechanisms: A 2016 Consensus Group Statement of the International Society for Heart and Lung Transplantation. J. Heart Lung Transplant. 2017, 36, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- Martinsson, A.; Thoren, A.; Ricksten, S.E.; Oras, J.; Abed, M.M.; Vestlund, P.; Magnusson, J.M.; Wallinder, A. Donor lung weight a novel predictor for primary graft dysfunction. JHLT Open 2025, 9, 100271. [Google Scholar] [CrossRef] [PubMed]
- Sakanoue, I.; Okamoto, T.; Ayyat, K.S.; Yun, J.J.; Tantawi, A.M.; McCurry, K.R. Real-time lung weight measurement during clinical ex vivo lung perfusion. J. Heart Lung Transplant. 2024, 43, 2008–2017. [Google Scholar] [CrossRef] [PubMed]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef] [PubMed]
- Scozzi, D.; Liao, F.; Krupnick, A.S.; Kreisel, D.; Gelman, A.E. The role of neutrophil extracellular traps in acute lung injury. Front. Immunol. 2022, 13, 953195. [Google Scholar] [CrossRef] [PubMed]
- Kuhnle, G.E.H.; Reichenspurner, H.; Lange, T.; Wagner, F.; Groh, J.; Messmer, K.; Goetz, A.E. Microhemodynamics and leukocyte sequestration after pulmonary ischemia and reperfusion in rabbits. J. Thorac. Cardiovasc. Surg. 1998, 115, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Lien, D.C.; Wagner, W.W.; Capen, R.L.; Haslett, C.; Hanson, W.L.; Hofmeister, S.E.; Henson, P.M.; Worthen, G.S. Physiological neutrophil sequestration in the lung: Visual evidence for localization in capillaries. J. Appl. Physiol. 1987, 62, 1236–1243. [Google Scholar] [CrossRef] [PubMed]
- Frey, R.S.; Ushio-Fukai, M.; Malik, A.B. NADPH oxidase-dependent signaling in endothelial cells: Role in physiology and pathophysiology. Antioxid. Redox Signal. 2009, 11, 791–810. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, R.S.; Andrade, C.F. Oxidative Stress and Lung Ischemia-Reperfusion Injury. Oxidative Med. Cell. Longev. 2015, 2015, 590987. [Google Scholar] [CrossRef] [PubMed]
- Kukreja, J.; Campo-Canaveral de la Cruz, J.L.; Van Raemdonck, D.; Cantu, E.; Date, H.; D’Ovidio, F.; Hartwig, M.; Klapper, J.A.; Kelly, R.F.; Lindstedt, S.; et al. The 2024 American Association for Thoracic Surgery expert consensus document: Current standards in donor lung procurement and preservation. J. Thorac. Cardiovasc. Surg. 2025, 169, 484–504. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.B.; Dodia, C. Lung as a model for evaluation of critical intracellular PO2 and PCO. Am. J. Physiol.-Endocrinol. Metab. 1981, 241, E47–E50. [Google Scholar] [CrossRef] [PubMed]
- Fukuse, T.; Hirata, T.; Nakamura, T.; Kawashima, M.; Hitomi, S.; Wada, H. Influence of Deflated and Anaerobic Conditions During Cold Storage on Rat Lungs. Am. J. Respir. Crit. Care Med. 1999, 160, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Kinnula, V.L.; Sarnesto, A.; Heikkilä, L.; Toivonen, H.; Mattila, S.; Raivio, K.O. Assessment of xanthine oxidase in human lung and lung transplantation. Eur. Respir. J. 1997, 10, 676–680. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, T.P.; Rao, N.V.; Hopkins, C.; Pennington, L.; Tolley, E.; Hoidal, J.R. Role of reactive oxygen species in reperfusion injury of the rabbit lung. J. Clin. Investig. 1989, 83, 1326–1335. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.J.; Grum, C.M.; Gallagher, K.P.; Bolling, S.F.; Deeb, G.M.; Morganroth, M.L. Xanthine oxidase inhibition attenuates ischemic-reperfusion lung injury. J. Surg. Res. 1988, 44, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Allison, R.C.; Kyle, J.; Keith Adkins, W.; Ravi Prasad, V.; McCord, J.M.; Taylor, A.E. Effect of ischemia reperfusion or hypoxia reoxygenation on lung vascular permeability and resistance. J. Appl. Physiol. 1990, 69, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Matute-Bello, G.; Frevert, C.W.; Martin, T.R. Animal models of acute lung injury. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2008, 295, L379–L399. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Chapman, K.E.; Fisher, A.B. Lung ischemia: A model for endothelial mechanotransduction. Cell Biochem. Biophys. 2008, 52, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Milovanova, T.; Chatterjee, S.; Manevich, Y.; Kotelnikova, I.; Debolt, K.; Madesh, M.; Moore, J.S.; Fisher, A.B. Lung endothelial cell proliferation with decreased shear stress is mediated by reactive oxygen species. Am. J. Physiol. Cell Physiol. 2005, 290, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Levitan, I.; Wei, Z.; Fisher, A.B. KATP channels are an important component of the shear-sensing mechanism in the pulmonary microvasculature. Microcirculation 2006, 13, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Matsuzaki, I.; Chatterjee, S.; Fisher, A.B. Activation of endothelial NADPH oxidase during normoxic lung ischemia is K ATP channel dependent. Am. J. Physiol. Lung Cell Mol. Physiol. 2005, 289, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Al-Mehdi, A.B.; Fisher, A.B.; Al-Mehdi, A.B. Anoxia-reoxygenation versus ischemia in isolated rat lungs. Lung Cell. Mol. Physiol. 1997, 273, L1112–L1117. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Al-Mehdi, A.B.; Fisher, A.B. An immediate endothelial cell signaling response to lung ischemia. Am. J. Physiol. Cell. Mol. Physiol. 2001, 281, L993–L1000. [Google Scholar] [CrossRef] [PubMed]
- Tozawa, K.; Al-Mehdi, A.B.; Muzykantov, V.; Fisher, A.B. In Situ Imaging of Intracellular Calcium with Ischemia in Lung Subpleural Microvascular Endothelial Cells. Antioxid. Redox Signal. 1999, 1, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Manevich, Y.; Al-Mehdi, A.; Muzykantov, V.; Fisher, A.B. Oxidative burst and NO generation as initial response to ischemia in flow-adapted endothelial cells. Am. J. Physiol. Circ. Physiol. 2001, 280, H2126–H2135. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, H.J.; Liu, C.A.; Huang, B.; Tseng, A.H.; Wang, D.L. Shear-induced endothelial mechanotransduction: The interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J. Biomed. Sci. 2014, 21, 3. [Google Scholar] [CrossRef] [PubMed]
- Szabó, C.; Ischiropoulos, H.; Radi, R. Peroxynitrite: Biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 2007, 6, 662–680. [Google Scholar] [CrossRef] [PubMed]
- Cuzzocrea, S.; Chatterjee, P.K.; Mazzon, E.; Dugo, L.; De Sarro, A.; Van De Loo, F.A.J.; Caputi, A.P.; Thiemermann, C. Role of induced nitric oxide in the initiation of the inflammatory response after postischemic injury. Shock 2002, 18, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Tremblay, L.; Cassivi, S.D.; Bai, X.-H.; Mourgeon, E.; Pierre, A.F.; Slutsky, A.S.; Post, M.; Keshavjee, S. Alterations of nitric oxide synthase expression and activity during rat lung transplantation. Am. J. Physiol. Cell. Mol. Physiol. 2000, 278, L1071–L1081. [Google Scholar] [CrossRef] [PubMed]
- Cinelli, M.A.; Do, H.T.; Miley, G.P.; Silverman, R.B. Inducible nitric oxide synthase: Regulation, structure, and inhibition. Med. Res. Rev. 2020, 40, 158–189. [Google Scholar] [CrossRef] [PubMed]
- Ovechkin, A.V.; Lominadze, D.; Sedoris, K.C.; Gozal, E.; Robinson, T.W.; Roberts, A.M. Inhibition of inducible nitric oxide synthase attenuates platelet adhesion in subpleural arterioles caused by lung ischemia-reperfusion in rabbits. J. Appl. Physiol. 2005, 99, 2423–2432. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.X.; Zhu, H.W.; Chen, X.; Wei, J.L.; Zhang, X.F.; Xu, M.Y. Inducible nitric oxide synthase inhibition reverses pulmonary arterial dysfunction in lung transplantation. Inflamm. Res. 2014, 63, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Date, H.; Matsumura, A.; Manchester, J.K.; Cooper, J.M.; Lowry, O.H.; Cooper, J.D. Changes in alveolar oxygen and carbon dioxide concentration and oxygen consumption during lung preservation The maintenance of aerobic metabolism during lung preservation. J. Thorac. Cardiovasc. Surg. 1993, 105, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Hoetzenecker, K.; Campo-Canaveral de la Cruz, J.L.; Schwarz, S.; Barturen, M.G.; Tomlinson, G.; Yeung, J.; Donahoe, L.; Yasufuku, K.; Pierre, A.; et al. Extension of Cold Static Donor Lung Preservation at 10 °C. NEJM Evid. 2023, 2, EVIDoa2300008. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Wang, A.; Ribeiro, R.V.P.; Beroncal, E.L.; Baciu, C.; Galasso, M.; Gomes, B.; Mariscal, A.; Hough, O.; Brambate, E.; et al. Static lung storage at 10 °C maintains mitochondrial health and preserves donor organ function. Sci. Transl. Med. 2021, 13, eabf7601. [Google Scholar] [CrossRef] [PubMed]
- Cenik, I.; Van Slambrouck, J.; Prisciandaro, E.; Provoost, A.; Barbarossa, A.; Vandervelde, C.M.; Jin, X.; Novysedlak, R.; De Leyn, P.; Van Veer, H.; et al. Measuring Donor Lung Temperature in Clinical Lung Transplantation: Controlled Hypothermic Storage versus Static Ice Storage. J. Heart Lung Transplant. 2024, 43, S162–S163. [Google Scholar] [CrossRef]
- Cenik, I.; Van Slambrouck, J.; Barbarossa, A.; Vanluyten, C.; Jin, X.; Prisciandaro, E.; Provoost, A.; Vandervelde, C.M.; Novysedlak, R.; Sercik, O.; et al. Temperature dynamics of donor lungs from procurement to reperfusion: Static ice versus controlled hypothermic storage. J. Heart Lung Transplant. 2025, in press. [Google Scholar] [CrossRef] [PubMed]
- Pontula, A.; Halpern, S.E.; Bottiger, B.A.; D. U. Perioperative Outcomes Research Team; Haney, J.C.; Klapper, J.A.; Hartig, M.G. Comparing the Paragonix LUNGguard Donor Lung Preservation System to Traditional Ice Storage. J. Heart Lung Transplant. 2022, 41 (Suppl. S4), S257. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, S.N.; Li, L.; Zhang, X.B.; Wu, R.C.; Liu, J.H.; Huang, Z.; Li, W.; Ran, J. Prolonged warm ischemia aggravates hepatic mitochondria damage and apoptosis in DCD liver by regulating Ca2+/CaM/CaMKII signaling pathway. Int. J. Clin. Exp. Pathol. 2019, 12, 217. [Google Scholar] [PubMed]
- Baniene, R.; Trumbeckas, D.; Kincius, M.; Pauziene, N.; Raudone, L.; Jievaltas, M.; Trumbeckaite, S. Short ischemia induces rat kidney mitochondria dysfunction. J. Bioenerg. Biomembr. 2016, 48, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Mondal, N.K.; Li, S.; Elsenousi, A.E.; Mattar, A.; Nordick, K.V.; Lamba, H.K.; Hochman-Mendez, C.; Rosengart, T.; Liao, K.K. NADPH oxidase overexpression and mitochondrial OxPhos impairment are more profound in human hearts donated after circulatory death than brain death. Am. J. Physiol. Heart Circ. Physiol. 2024, 326, H548–H562. [Google Scholar] [CrossRef] [PubMed]
- Willet, K.; Detry, O.; Lambermont, B.; Meurisse, M.; Defraigne, J.O.; Sluse-Goffart, C.; Sluse, F.E. Effects of cold and warm ischemia on the mitochondrial oxidative phosphorylation of swine lung. Transplantation 2000, 69, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Sommer, S.P.; Sommer, S.; Sinha, B.; Wiedemann, J.; Otto, C.; Aleksic, I.; Schimmer, C.; Leyh, R.G. Ischemia-reperfusion injuryinduced pulmonary mitochondrial damage. J. Heart Lung Transplant. 2011, 30, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Glynos, C.; Athanasiou, C.; Kotanidou, A.; Korovesi, I.; Kaziani, K.; Livaditi, O.; Dimopoulou, I.; Maniatis, N.A.; Tsangaris, I.; Roussos, C.; et al. Preclinical pulmonary capillary endothelial dysfunction is present in brain dead subjects. Pulm. Circ. 2013, 3, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Morariu, A.M.; Schuurs, T.A.; Leuvenink, H.G.D.; Van Oeveren, W.; Rakhorst, G.; Ploeg, R.J. Early events in kidney donation: Progression of endothelial activation, oxidative stress and tubular injury after brain death. Am. J. Transplant. 2008, 8, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Baciu, C.; Sage, A.; Zamel, R.; Shin, J.; Bai, X.H.; Hough, O.; Bhat, M.; Yeung, J.C.; Cypel, M.; Keshavjee, S.; et al. Transcriptomic investigation reveals donor-specific gene signatures in human lung transplants. Eur. Respir. J. 2021, 57, 2000327. [Google Scholar] [CrossRef] [PubMed]
- Li, S.S.; Funamoto, M.; Singh, R.; Rabi, S.A.; Kreso, A.; Michel, E.; Langer, N.B.; Osho, A.A. Outcomes of donation after circulatory death (DCD) and ex-vivo lung perfusion (EVLP) lung transplantation. J. Heart Lung Transplant. 2024, 44, 721–733. [Google Scholar] [CrossRef] [PubMed]
- Abul Kashem, M.; Loor, G.; Hartwig, M.; Van Raemdonck, D.; Villavicencio, M.; Ius, F.; Ghadimi, K.; Salman, J.; Chandrashekaran, S.; Machuca, T.; et al. A multicenter analysis of lung transplantation outcomes comparing donation after circulatory death and donation after brain death. JHLT Open 2024, 6, 100132. [Google Scholar] [CrossRef] [PubMed]
- Frye, C.C.; Bery, A.I.; Kreisel, D.; Kulkarni, H.S. Sterile inflammation in thoracic transplantation. Cell Mol. Life Sci. 2021, 78, 581–601. [Google Scholar] [CrossRef] [PubMed]
- Diamond, J.M.; Wigfield, C.H. Role of innate immunity in primary graft dysfunction after lung transplantation. Curr. Opin. Organ. Transpl. 2013, 18, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Nie, H. Advances in lung ischemia/reperfusion injury: Unraveling the role of innate immunity. Inflamm. Res. 2024, 73, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Fei, L.; Jifeng, F.; Tiantian, W.; Yi, H.; Linghui, P. Glycyrrhizin ameliorate ischemia reperfusion lung injury through downregulate TLR2 signaling cascade in alveolar macrophages. Front Pharmacol. 2017, 8, 389. [Google Scholar] [CrossRef] [PubMed]
- Phelan, P.; Merry, H.E.; Hwang, B.; Mulligan, M.S. Differential toll-like receptor activation in lung ischemia reperfusion injury. J. Thorac. Cardiovasc. Surg. 2015, 149, 1653–1661. [Google Scholar] [CrossRef] [PubMed]
- Mallavia, B.; Liu, F.; Lefrançais, E.; Cleary, S.J.; Kwaan, N.; Tian, J.J.; Magnen, M.; Sayah, D.M.; Soong, A.; Chen, J.; et al. Mitochondrial DNA stimulates TLR9-dependent neutrophil extracellular trap formation in primary graft dysfunction. Am. J. Respir. Cell Mol. Biol. 2020, 62, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Querrey, M.; Chiu, S.; Lecuona, E.; Wu, Q.; Sun, H.; Anderson, M.; Kelly, M.; Ravi, S.; Misharin, A.V.; Kreisel, D.; et al. CD11b suppresses TLR activation of nonclassical monocytes to reduce primary graft dysfunction after lung transplantation. J. Clin. Investig. 2022, 132, e157262. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Zhao, X.; Bi, S.; Cao, Y. Pretreatment with Erythropoietin Attenuates Lung Ischemia/Reperfusion Injury via Toll-Like Receptor-4/Nuclear Factor-κB (TLR4/NF-κB) Pathway. Med. Sci. Monit. 2018, 24, 1251–1257. [Google Scholar] [CrossRef] [PubMed]
- Zanotti, G.; Casiraghi, M.; Abano, J.B.; Tatreau, J.R.; Sevala, M.; Berlin, H.; Smyth, S.; Funkhouser, W.K.; Burridge, K.; Randell, S.H.; et al. Novel critical role of Toll-like receptor 4 in lung ischemia-reperfusion injury and edema Egan TM. Novel critical role of Toll-like receptor 4 in lung ischemia-reperfusion injury and edema. Am. J. Physiol. Lung Cell Mol. Physiol. 2009, 297, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Merry, H.E.; Phelan, P.; Doak, M.R.; Zhao, M.; Hwang, B.; Mulligan, M.S. Role of toll-like receptor-4 in lung ischemia-reperfusion injury. Ann. Thorac. Surg. 2015, 99, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
- Prakash, A.; Mesa, K.R.; Wilhelmsen, K.; Xu, F.; Dodd-OJM; Hellman, J. Alveolar macrophages and toll-like receptor 4 mediate ventilated lung ischemia reperfusion injury in mice. Anesthesiology 2012, 117, 822–835. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, L.L.; Zhao, Z.A.; Niu, C.Y.; Zhao, Z.G. NLRP3 Inflammasome-mediated pyroptosis in acute lung injury: Roles of main lung cell types and therapeutic perspectives. Int. Immunopharmacol. 2025, 154, 114560. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.Y.; Wu, C.Y.; Tong, S.; Xiong, P.; Wang, S.H. The selective Nlrp3 inflammasome inhibitor Mcc950 attenuates lung ischemia-reperfusion injury. Biochem. Biophys. Res. Commun. 2018, 503, 3031–3037. [Google Scholar] [CrossRef] [PubMed]
- Andreasson, A.S.I.; Borthwick, L.A.; Gillespie, C.; Jiwa, K.; Scott, J.; Henderson, P.; Mayes, J.; Romano, R.; Roman, M.; Ali, S.; et al. The role of interleukin-1β as a predictive biomarker and potential therapeutic target during clinical ex vivo lung perfusion. J. Heart Lung Transplant. 2017, 36, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, T.; Wheeler, D.; Farver, C.F.; McCurry, K.R. Transplant suitability of rejected human donor lungs with prolonged cold ischemia time in low-flow acellular and high-flow cellular ex vivo lung perfusion systems. Transplantation 2019, 103, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Sage, A.T.; Chao, B.T.; Yeung, J.C.; Liu, M.; Cypel, M.; Keshavjee, S. Kinetic Modeling of Ex Vivo Lung Perfusion Biomarkers for the Prediction of Lung Transplant Outcomes. J. Heart Lung Transplant. 2022, 41, S256. [Google Scholar] [CrossRef]
- Cypel, M.; Kaneda, H.; Yeung, J.C.; Anraku, M.; Yasufuku, K.; de Perrot, M.; Pierre, A.; Waddell, T.K.; Liu, M.; Keshavjee, S. Increased levels of interleukin-1β and tumor necrosis factor-α in donor lungs rejected for transplantation. J. Heart Lung Transplant. 2011, 30, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.A.; Knight, P.R.; Raghavendran, K. The receptor for advanced glycation end products and acute lung injury/acute respiratory distress syndrome. Intensive Care Med. 2012, 38, 1588–1598. [Google Scholar] [CrossRef] [PubMed]
- Pelaez, A.; Force, S.D.; Gal, A.A.; Neujahr, D.C.; Ramirez, A.M.; Naik, P.M.; Quintero, D.A.; Pileggi, A.V.; Easley, K.A.; Echeverry, R.; et al. Receptor for advanced glycation end products in donor lungs is associated with primary graft dysfunction after lung transplantation. Am. J. Transplant. 2010, 10, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Cypel, M.; Juvet, S.; Saito, T.; Zamel, R.; Machuca, T.N.; Hsin, M.; Kim, H.; Waddell, T.K.; Liu, M.; et al. Higher M30 and high mobility group box 1 protein levels in ex vivo lung perfusate are associated with primary graft dysfunction after human lung transplantation. J. Heart Lung Transplant. 2018, 37, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Nakata, K.; Okazaki, M.; Shimizu, D.; Suzawa, K.; Shien, K.; Miyoshi, K.; Otani, S.; Yamamoto, H.; Sugimoto, S.; Yamane, M.; et al. Protective effects of anti-HMGB1 monoclonal antibody on lung ischemia reperfusion injury in mice. Biochem. Biophys. Res. Commun. 2021, 573, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, D.I.; Gowda, R.; Mehra, D.; Qu, W.; Weinberg, A.; Twaddell, W.; Sarkar, J.; Wallace, A.; Hudson, B.; D’Ovidio, F.; et al. Blockade of receptor for advanced glycation end product attenuates pulmonary reperfusion injury in mice. J. Thorac. Cardiovasc. Surg. 2008, 136, 1576–1585. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Le, Y.; Li, S.; Bian, Y. Signaling pathways and potential therapeutic targets in acute respiratory distress syndrome (ARDS). Respir. Res. 2024, 25, 30. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Ye, X.; Xu, H.; Liu, S.F. Activation of endothelial intrinsic NF-{kappa}B pathway impairs protein C anticoagulation mechanism and promotes coagulation in endotoxemic mice. Blood 2009, 114, 2521–2529. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.C.; Gelman, A.E.; Chong, A.S. Update on the immunological mechanisms of primary graft dysfunction and chronic lung allograft dysfunction. Curr. Opin. Organ. Transplant. 2024, 29, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Dong, C.; Sun, Q. Immune response associated with ischemia and reperfusion injury during organ transplantation. Inflamm. Res. 2022, 71, 1463–1476. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, C.; Lecuona, E.; Wu, Q.; Yang, W.; Núñez-Santana, F.L.; Akbarpour, M.; Liu, X.; Ren, Z.; Li, W.; Querrey, M.; et al. Crosstalk between nonclassical monocytes and alveolar macrophages mediates transplant ischemia-reperfusion injury through classical monocyte recruitment. J. Clin. Investig. 2021, 6, e147282. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, H.M.; Fernandez, R.; Tanaka, S.; Li, W.; Spahn, J.H.; Chiu, S.; Akbarpour, M.; Ruiz-Perez, D.; Wu, Q.; Turam, C.; et al. Spleen-derived classical monocytes mediate lung ischemia-reperfusion injury through IL-1β. J. Clin. Investig. 2018, 128, 2833–2847. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Chiu, S.; Akbarpour, M.; Sun, H.; Reyfman, P.A.; Anekalla, K.R.; Abdala-Valencia, H.; Edgren, D.; Li, W.; Kreisel, D.; et al. Donor pulmonary intravascular nonclassical monocytes recruit recipient neutrophils and mediate primary lung allograft dysfunction. Sci. Transl. Med. 2017, 9, eaal4508. [Google Scholar] [CrossRef] [PubMed]
- De Perrot, M.; Sekine, Y.; Fischer, S.; Waddell, T.K.; McRae, K.; Liu, M.; Wigle, D.A.; Keshavjee, S. Interleukin-8 release during early reperfusion predicts graft function in human lung transplantation. Am. J. Respir. Crit. Care Med. 2002, 165, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Andreasson, A.S.I.; Karamanou, D.M.; Gillespie, C.S.; Özalp, F.; Butt, T.; Hill, P.; Jiwa, K.; Walden, H.R.; Green, N.J.; Borthwick, L.A.; et al. Profiling inflammation and tissue injury markers in perfusate and bronchoalveolar lavage fluid during human ex vivo lung perfusion. Eur. J. Cardio-Thorac. Surg. 2017, 51, 577–586. [Google Scholar]
- Hashimoto, K.; Cypel, M.; Kim, H.; Machuca, T.N.; Nakajima, D.; Chen, M.; Hsin, M.K.; Zamel, R.; Azad, S.; Waddell, T.K.; et al. Soluble Adhesion Molecules During Ex Vivo Lung Perfusion Are Associated with Posttransplant Primary Graft Dysfunction. Am. J. Transplant. 2017, 17, 1396–1404. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, S.P.; Gough, M.J.; Homer-Vanniasinkam, S. The role of the neutrophil in ischaemia-reperfusion injury: Potential therapeutic interventions. Cardiovasc. Surg. 1998, 6, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, T.A.; Brill, A.; Duerschmied, D.; Schatzberg, D.; Monestier, M.; Myers, D.D.; Wrobleski, S.K.; Wakefield, T.W.; Hartwig, J.H.; Wagner, D.D. Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. USA 2010, 107, 15880–15885. [Google Scholar] [CrossRef] [PubMed]
- Demertzis, S.; Langer, F.; Graeter, T.; Dwenger, A.; Georg, T.; Schäfers, H.J. Amelioration of lung reperfusion injury by L- and E- selectin blockade. Eur. J. Cardiothorac. Surg. 1999, 16, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Aoki, T.; Tsuchida, M.; Takekubo, M.; Saito, M.; Sato, K.; Hayashi, J. Neutrophil elastase inhibitor ameliorates reperfusion injury in a canine model of lung transplantation. Eur. Surg. Res. 2005, 37, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Sayah, D.M.; Mallavia, B.; Liu, F.; Ortiz-Muñoz, G.; Caudrillier, A.; DerHovanessian, A.; Ross, D.J.; Saggar, R.; Ardehail, A.; Belperio, J.A.; et al. Neutrophil extracellular traps are pathogenic in primary graft dysfunction after lung transplantation. Am. J. Respir. Crit. Care Med. 2015, 191, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Naka, Y.; Marsh, H.C.; Scesney, S.M.; Oz, M.C.; Pinsky, D.J. Complement activation as a cause for primary graft failure in an isogeneic rat model of hypothermic lung preservation and transplantation. Transplantation 1997, 64, 1248–1255. [Google Scholar] [CrossRef] [PubMed]
- Grafals, M.; Thurman, J.M. The role of complement in organ transplantation. Front. Immunol. 2019, 10, 2380. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, C.; He, S.; Morris, K.; Qiao, F.; Casey, S.; Goddard, M.; Tomlinson, S. Targeted complement inhibitors protect against posttransplant cardiac ischemia and reperfusion injury and reveal an important role for the alternative pathway of complement activation. J. Immunol. 2010, 185, 7007–7013. [Google Scholar] [CrossRef] [PubMed]
- Błogowski, W.; Dołęgowska, B.; Sałata, D.; Budkowska, M.; Domański, L.; Starzyńska, T. Clinical analysis of perioperative complement activity during ischemia/reperfusion injury following renal transplantation. Clin. J. Am. Soc. Nephrol. 2012, 7, 1843–1851. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.F.; Ward, P.A. Role of C5a in inflammatory responses. Annu. Rev. Immunol. 2005, 23, 821–852. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.J.; Emtiazjoo, A.M.; Diamond, J.M.; Smith, P.A.; Roe, D.W.; Wille, K.M.; Orens, J.B.; Ware, L.B.; Weinacker, A.; Lama, V.N.; et al. Plasma complement levels are associated with primary graft dysfunction and mortality after lung transplantation. Am. J. Respir. Crit. Care Med. 2014, 189, 1564–1567. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, H.S.; Ramphal, K.; Ma, L.; Brown, M.; Oyster, M.; Speckhart, K.N.; Takahashi, T.; Byers, D.E.; Porteous, M.K.; Kalman, L.; et al. Local complement activation is associated with primary graft dysfunction after lung transplantation. JCI Insight 2020, 5, e138358. [Google Scholar] [CrossRef] [PubMed]
- Damman, J.; Hoeger, S.; Boneschansker, L.; Theruvath, A.; Waldherr, R.; Leuvenink, H.G.; Ploeg, R.J.; Yard, B.A.; Seelen, M.A. Targeting complement activation in brain-dead donors improves renal function after transplantation. Transpl. Immunol. 2011, 24, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, C.; Floerchinger, B.; Qiao, F.; Casey, S.; Williamson, T.; Moseley, E.; Stoica, S.; Goddard, M.; Ge, X.; Tullius, S.G.; et al. Donor brain death exacerbates complement-dependent ischemia/reperfusion injury in transplanted hearts. Circulation 2013, 127, 1290–1299. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Patel, K.; Lei, B.; Rucker, L.; Allen, D.P.; Zhu, P.; Vasu, C.; Martins, P.N.; Goddard, M.; Nadig, S.N.; et al. Donor pretreatment with nebulized complement C3a receptor antagonist mitigates brain-death induced immunological injury post–lung transplant. Am. J. Transplant. 2018, 18, 2417–2428. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Y.; Su, L.; Jiang, S.J. Recipient-related clinical risk factors for primary graft dysfunction after lung transplantation: A systematic review and meta-analysis. PLoS ONE 2014, 9, e92773. [Google Scholar] [CrossRef] [PubMed]
- Ayyat, K.S.; Elgharably, H.; Okamoto, T.; Sakanoue, I.; Said, S.A.; Yun, J.J.; Budev, M.M.; Pettersson, G.P.; McCurry, K.R. Lung Transplantation on Cardiopulmonary Bypass: Time Matters. J. Heart Lung Transplant. 2020, 39 (Suppl. S4), S327. [Google Scholar] [CrossRef]
- Gretchen, C.; Bayir, H.; Kochanek, P.M.; Ruppert, K.; Viegas, M.; Palmer, D.; Kim-Campbell, N. Association between Hyperoxemia and Increased Cell-Free Plasma Hemoglobin during Cardiopulmonary Bypass in Infants and Children. Pediatr. Crit. Care Med. 2022, 23, E111–E119. [Google Scholar] [CrossRef] [PubMed]
- Shaver, C.M.; Wickersham, N.; McNeil, J.B.; Nagata, H.; Miller, A.; Landstreet, S.R.; Kuck, J.L.; Diamond, J.M.; Lederer, D.J.; Kawut, S.M.; et al. Cell-free hemoglobin promotes primary graft dysfunction through oxidative lung endothelial injury. JCI Insight 2018, 3, e98546. [Google Scholar] [CrossRef] [PubMed]
- Tomasek, T.; Ware, L.B.; Bastarache, J.A.; Meegan, J.E. Cell-free hemoglobin-mediated human lung microvascular endothelial barrier dysfunction is not mediated by cell death. Biochem. Biophys. Res. Commun. 2021, 556, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Somers, J.; Ruttens, D.; Verleden, S.E.; Vandermeulen, E.; Piloni, D.; Wauters, E.; Lambrechts, D.; Vos, R.; Verleden, G.M.; Vanaudenaerde, B.; et al. Interleukin-17 receptor polymorphism predisposes to primary graft dysfunction after lung transplantation. J. Heart Lung Transplant. 2015, 34, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Diamond, J.M.; Akimova, T.; Kazi, A.; Shah, R.J.; Cantu, E.; Feng, R.; Levine, M.H.; Kawut, S.M.; Meyer, N.J.; Lee, J.C.; et al. Genetic variation in the prostaglandin E2 pathway is associated with primary graft dysfunction. Am. J. Respir. Crit. Care Med. 2014, 189, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Diamond, J.M.; Meyer, N.J.; Feng, R.; Rushefski, M.; Lederer, D.J.; Kawut, S.M.; Lee, J.C.; Cantu, E.; Shah, R.J.; Lama, V.N.; et al. Variation in PTX3 is associated with primary graft dysfunction after lung transplantation. Am. J. Respir. Crit. Care Med. 2012, 186, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Diamond, J.M.; Lederer, D.J.; Kawut, S.M.; Lee, J.; Ahya, V.N.; Bellamy, S.; Palmer, S.M.; Lama, V.N.; Bhorade, S.; Crespo, M.; et al. Elevated plasma long pentraxin-3 levels and primary graft dysfunction after lung transplantation for idiopathic pulmonary fibrosis. Am. J. Transplant. 2011, 11, 2517–2522. [Google Scholar] [CrossRef] [PubMed]
- Bharat, A.; Saini, D.; Steward, N.; Hachem, R.; Trulock, E.P.; Patterson, G.A.; Meyers, B.F.; Mohanakumar, T. Antibodies to self-antigens predispose to primary lung allograft dysfunction and chronic rejection. Ann. Thorac. Surg. 2010, 90, 1094–1101. [Google Scholar] [CrossRef] [PubMed]
- Kaza, V.; Zhu, C.; Feng, L.; Torres, F.; Bollineni, S.; Mohanka, M.; Banga, A.; Joerns, J.; Mohanakumar, T.; Terada, L.S.; et al. Pre-existing self-reactive IgA antibodies associated with primary graft dysfunction after lung transplantation. Transpl Immunol. 2020, 59, 101271. [Google Scholar] [CrossRef] [PubMed]
- Capuzzimati, M.; Hough, O.; Liu, M. Cell death and ischemia-reperfusion injury in lung transplantation. J. Heart Lung Transplant. 2022, 41, 1003–1013. [Google Scholar] [CrossRef] [PubMed]
- Kanou, T.; Nakahira, K.; Choi, A.M.; Yeung, J.C.; Cypel, M.; Liu, M.; Keshavjee, S. Cell-free DNA in human ex vivo lung perfusate as a potential biomarker to predict the risk of primary graft dysfunction in lung transplantation. J. Thorac. Cardiovasc. Surg. 2021, 162, 490–499.e2. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Besla, R.; Zamel, R.; Juvet, S.; Kim, H.; Azad, S.; Waddell, T.K.; Cypel, M.; Liu, M.; Keshavjee, S. Circulating cell death biomarkers may predict survival in human lung transplantation. Am. J. Respir. Crit. Care Med. 2016, 194, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.; Cassivi, S.D.; Xavier, A.M.; Cardella, J.A.; Cutz, E.; Edwards, V.; Liu, M.; Keshavjee, S. Cell death in human lung transplantation: Apoptosis induction in human lungs during ischemia and after transplantation. Ann. Surg. 2000, 231, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.S.; Mura, M.; Seth, R.; Liu, M. Acute lung injury and cell death: How many ways can cells die? Am. J. Physiol. Lung Cell Mol. Physiol. 2008, 294, L632–L641. [Google Scholar] [CrossRef] [PubMed]
- Quadri, S.M.; Segall, L.; De Perrot, M.; Han, B.; Edwards, V.; Jones, N.; Waddell, T.K.; Liu, M.; Keshavjee, S. Caspace inhibition improves ischemia-reperfusion injury after lung transplantation. Am. J. Transplant. 2005, 5, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Zhang, X.; Liu, N.; Tang, L.; Peng, C.; Chen, X. Pyroptosis: Mechanisms and diseases. Signal Transduct. Target. Ther. 2021, 6, 128. [Google Scholar] [CrossRef] [PubMed]
- Debonneville, A.; Parapanov, R.; Lugrin, J.; Gonzalez, M.; Perentes, J.; Liaudet, L.; Krueger, T. (1271) Cell Death in Lung Transplantation. The Roles of Apoptosis, Necroptois, and Pyroptosis. J. Heart Lung Transplant. 2023, 42 (Suppl. S4), S542–S543. [Google Scholar] [CrossRef]
- Linkermann, A.; Green, D.R. Necroptosis. N. Engl. J. Med. 2014, 370, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Zamel, R.; Bai, X.H.; Lu, C.; Keshavjee, S.; Keshavjee, S.; Liu, M. Ischemia-reperfusion induces death receptor-independent necroptosis via calpain-STAT3 activation in a lung transplant setting. Am. J. Physiol. Lung Cell Mol. Physiol. 2018, 315, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Dokur, M.; Uysal, E.; Kucukdurmaz, F.; Altinay, S.; Polat, S.; Batcioglu, K.; Yilmaztekin, Y.; Guney, T.; Sapmaz Ercakalli, T.; Yaylali, A.; et al. Targeting the PANoptosome Using Necrostatin-1 Reduces PANoptosis and Protects the Kidney Against Ischemia-Reperfusion Injury in a Rat Model of Controlled Experimental Nonheart-Beating Donor. Transplant. Proc. 2024, 56, 2268–2279. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Liu, B.; Su, X.; Tian, X.; Wang, H. Unlocking cardioprotection: iPSC exosomes deliver Nec-1 to target PARP1/AIFM1 axis, alleviating HF oxidative stress and mitochondrial dysfunction. J. Transl. Med. 2024, 22, 681. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Liang, F.; Lou, Z.; Li, Y.; Li, J.; Chen, Y.; Ding, J.; Jiang, B.; Wu, C.; Yu, H.; et al. Necrostatin-1 Alleviates Lung Ischemia-Reperfusion Injury via Inhibiting Necroptosis and Apoptosis of Lung Epithelial Cells. Cells 2022, 11, 3139. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xiang, Y.; Liu, S.; Li, C.; Dong, J.; Kong, X.; Ji, X.; Cheng, X.; Zhang, L. RIPK3 signaling and its role in regulated cell death and diseases. Cell Death Discov. 2024, 10, 200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Dowling, J.P.; Zhang, J. RIPK1 can mediate apoptosis in addition to necroptosis during embryonic development. Cell Death Dis. 2019, 10, 245. [Google Scholar] [CrossRef] [PubMed]
- Kanou, T.; Ohsumi, A.; Kim, H.; Chen, M.; Bai, X.; Guan, Z.; Hwang, D.; Cypel, M.; Keshavjee, S.; Liu, M. Inhibition of regulated necrosis attenuates receptor-interacting protein kinase 1–mediated ischemia-reperfusion injury after lung transplantation. J. Heart Lung Transplant. 2018, 37, 1261–1270. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Guo, H.; Li, Y.; Liu, Q.; Qiao, X.; Lu, Y.; Mei, P.; Zheng, Z.; Li, J. Monocytes promote pyroptosis of endothelial cells during lung ischemia-reperfusion via IL-1R/NF-κB/NLRP3 signaling. Life Sci. 2021, 276, 119402. [Google Scholar] [CrossRef] [PubMed]
- Gouchoe, D.A.; Zhang, Z.; Kim, J.L.; Lee, Y.G.; Whitson, B.A.; Zhu, H. Improving lung allograft function in the early post-operative period through the inhibition of pyroptosis. Med. Rev. 2024, 4, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Noda, K.; Tane, S.; Haam, S.J.; D’Cunha, J.; Hayanga, A.J.; Luketich, J.D.; Shigemura, N. Targeting Circulating Leukocytes and Pyroptosis during Ex Vivo Lung Perfusion Improves Lung Preservation. Transplantation 2017, 101, 2841–2849. [Google Scholar] [CrossRef] [PubMed]
- Ta, H.Q.; Kuppusamy, M.; Sonkusare, S.K.; Roeser, M.E.; Laubach, V.E. The endothelium: Gatekeeper to lung ischemia-reperfusion injury. Respir. Res. 2024, 25, 172. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Korfhagen, T.R.; Whitsett, J.A. Surfactant Protein D Regulates NF-κB and Matrix Metalloproteinase Production in Alveolar Macrophages via Oxidant-Sensitive Pathways1. J. Immunol. 2001, 166, 7514–7519. [Google Scholar] [CrossRef] [PubMed]
- Jacob-Ferreira, A.L.; Schulz, R. Activation of intracellular matrix metalloproteinase-2 by reactive oxygen–nitrogen species: Consequences and therapeutic strategies in the heart. Arch. Biochem. Biophys. 2013, 540, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Bassiouni, W.; Valencia, R.; Mahmud, Z.; Seubert, J.M.; Schulz, R. Matrix metalloproteinase-2 proteolyzes mitofusin-2 and impairs mitochondrial function during myocardial ischemia–reperfusion injury. Basic Res. Cardiol. 2023, 118, 29. [Google Scholar] [CrossRef] [PubMed]
- Pan, R.; Liu, W.; Liu, K.J. MMP-2/9-cleaved occludin promotes endothelia cell death in ischemic stroke. Brain Hemorrhages 2021, 2, 63–70. [Google Scholar] [CrossRef]
- Sreesada, P.; Vandana Krishnan, B.; Amrutha, R.; Chavan, Y.; Alfia, H.; Jyothis, A.; Venugopal, P.; Aradhya, R.; Suravajhala, P.; Nair, B.G.; et al. Matrix metalloproteinases: Master regulators of tissue morphogenesis. Gene 2025, 933, 148990. [Google Scholar] [CrossRef] [PubMed]
- Soccala, P.M.; Gasche, Y.; Miniati, D.N.; Hoyt, G.; Berry, G.J.; Doyle, R.L.; Theodore, J.; Robbins, R.C. Matrix Metalloproteinase Inhibition Decreases Ischemia-Reperfusion Injury after Lung Transplantation. Am. J. Transplant. 2004, 4, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.C.; Jiao, Y.; Jiang, Z.J.; Song, Z.P.; Peng, Q.H. Acidic Preconditioning Protects Against Ischemia-Reperfusion Lung Injury Via Inhibiting the Expression of Matrix Metalloproteinase 9. J. Surg. Res. 2019, 235, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Tissot, A.; Durand, E.; Goronflot, T.; Coiffard, B.; Renaud-Picard, B.; Roux, A.; Demant, X.; Mornex, J.; Falque, L.; Salpin, M.; et al. Blood MMP-9 measured at 2 years after lung transplantation as a prognostic biomarker of chronic lung allograft dysfunction. Respir Res. 2024, 25, 88. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.N.; Mickler, E.A.; Payne, K.K.; Lee, J.; Duncan, M.; Reynolds, J.; Foresman, B.; Wilkes, D.S. Lung transplant metalloproteinase levels are elevated prior to bronchiolitis obliterans syndrome. Am. J. Transplant. 2007, 7, 1856–1861. [Google Scholar] [CrossRef] [PubMed]
- Kunugi, S.; Shimizu, A.; Kuwahara, N.; Du, X.; Takahashi, M.; Terasaki, Y.; Fujita, E.; Mii, A.; Nagasaka, S.; Akimoto, T.; et al. Inhibition of matrix metalloproteinases reduces ischemia-reperfusion acute kidney injury. Lab. Investig. 2011, 91, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Cannistrà, M.; Ruggiero, M.; Zullo, A.; Gallelli, G.; Serafini, S.; Maria, M.; Naso, A.; Grande, R.; Serra, R.; Nardo, B. Hepatic ischemia reperfusion injury: A systematic review of literature and the role of current drugs and biomarkers. Int. J. Surg. 2016, 33, S57–S70. [Google Scholar] [CrossRef] [PubMed]
- Mathis, S.; Putzer, G.; Schneeberger, S.; Martini, J. The endothelial glycocalyx and organ preservation—From physiology to possible clinical implications for solid organ transplantation. Int. J. Mol. Sci. 2021, 22, 4019. [Google Scholar] [CrossRef] [PubMed]
- Dull, R.O.; Hahn, R.G. The glycocalyx as a permeability barrier: Basic science and clinical evidence. Crit Care 2022, 26, 273. [Google Scholar] [CrossRef] [PubMed]
- Ćurko-Cofek, B.; Jenko, M.; Taleska Stupica, G.; Batičić, L.; Krsek, A.; Batinac, T.; Ljubacev, A.; Zdravkovic, M.; Knezevic, D.; Sostaric, M.; et al. The Crucial Triad: Endothelial Glycocalyx, Oxidative Stress, and Inflammation in Cardiac Surgery—Exploring the Molecular Connections. Int. J. Mol. Sci. 2024, 25, 10891. [Google Scholar] [CrossRef] [PubMed]
- Abassi, Z.; Armaly, Z.; Heyman, S.N. Glycocalyx Degradation in Ischemia-Reperfusion Injury. Am. J. Pathol. 2020, 190, 752–767. [Google Scholar] [CrossRef] [PubMed]
- Rehm, M.; Bruegger, D.; Christ, F.; Conzen, P.; Thiel, M.; Jacob, M.; Chappell, D.; Stoeckelhuber, M.; Welsch, U.; Reichart, B.; et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation 2007, 116, 1896–1906. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, E.P.; Li, G.; Li, L.; Fu, L.; Yang, Y.; Overdier, K.H.; Douglas, I.S.; Linhardt, R.J. The circulating glycosaminoglycan signature of respiratory failure in critically ill adults. J. Biol. Chem. 2014, 289, 8194–8202. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, E.P.; Yang, Y.; Janssen, W.J.; Gandjeva, A.; Perez, M.J.; Barthel, L.; Zemans, R.L.; Bowman, J.C.; Koyanagi, D.E.; Yunt, Z.X.; et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat. Med. 2012, 18, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
- Sladden, T.M.; Yerkovich, S.; Grant, M.; Zhang, F.; Liu, X.; Trotter, M.; Hopkins, P.; Linhardt, R.J.; Chambers, D.C. Endothelial glycocalyx shedding predicts donor organ acceptability and is associated with primary graft dysfunction in lung transplant recipients. Transplantation 2019, 103, 1277–1285. [Google Scholar] [CrossRef] [PubMed]
- Noda, K.; Philips, B.J.; Atale, N.; Sanchez, P.G. Endothelial protection in lung grafts through heparanase inhibition during ex vivo lung perfusion in rats. J. Heart Lung Transplant. 2023, 42, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Noda, K.; Philips, B.J.; Snyder, M.E.; Phillippi, J.A.; Sullivan, M.; Stolz, D.B.; Ren, X.; Luketich, J.D.; Sanchez, P.G. Heparanase inhibition preserves the endothelial glycocalyx in lung grafts and improves lung preservation and transplant outcomes. Sci. Rep. 2021, 11, 12265. [Google Scholar] [CrossRef] [PubMed]
- Kevil, C.G.; Oshima, T.; Alexander, B.; Coe, L.L.; Alexander, J.S. H2O2-mediated permeability: Role of MAPK and occluding. Am. J. Physiol.-Cell Physiol. 2000, 279, C21–C30. [Google Scholar] [CrossRef] [PubMed]
- Rao, R. Oxidative Stress-Induced Disruption of Epithelial and Endothelial Tight Junctions. Front. Biosci. 2008, 13, 7210–7226. [Google Scholar] [CrossRef] [PubMed]
- Clark, P.R.; Kim, R.K.; Pober, J.S.; Kluger, M.S. Tumor necrosis factor disrupts claudin-5 endothelial tight junction barriers in two distinct NF-κB-dependent phases. PLoS ONE 2015, 10, e0120075. [Google Scholar] [CrossRef] [PubMed]
- Weissmann, N.; Sydykov, A.; Kalwa, H.; Storch, U.; Fuchs, B.; Mederos Y Schnitzler, M.; Brandes, R.P.; Grimminger, F.; Meissner, M.; Freichel, M.; et al. Activation of TRPC6 channels is essential for lung ischaemia-reperfusion induced oedema in mice. Nat Commun. 2012, 3, 649. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.J.; Jiang, H.R.; Sun, J.W.; Wang, Z.A.; Hu, B.; Zhu, C.R.; Yin, X.; Chen, M.; Ma, X.; Zhao, W.; et al. Roles of RAGE/ROCK1 Pathway in HMGB1-Induced Early Changes in Barrier Permeability of Human Pulmonary Microvascular Endothelial Cell. Front Immunol. 2021, 12, 697071. [Google Scholar] [CrossRef] [PubMed]
- Ohata, K.; Chen-Yoshikawa, T.; Menju, T.; Saito, M.; Takahagi, A.; Miyamoto, E.; Tanaka, S.; Takahashi, M.; Kondo, T.; Motoyama, H.; et al. Involvement of Rho-Kinase in Lung Ischemia-Reperfusion Injury Pathogenesis: Molecular Analysis in an Isolated Rat Lung Perfusion Model. J. Heart Lung Transplant. 2016, 35, S315–S316. [Google Scholar] [CrossRef]
- Kohno, M.; Watanabe, M.; Goto, T.; Kamiyama, I.; Ohtsuka, T.; Tasaka, S.; Sawafuji, M. Attenuation of lung ischemia-reperfusion injury by Rho-associated kinase inhibition in a rat model of lung transplantation. Ann. Thorac. Cardiovasc. Surg. 2014, 20, 359–364. [Google Scholar] [CrossRef] [PubMed]
Grade | Pulmonary Edema on Chest X-Ray | PaO2/FiO2 Ratio (mmHg) |
---|---|---|
PGD grade 0 | No | >300 |
PGD grade 1 | Yes | >300 |
PGD grade 2 | Yes | 200–300 |
PGD grade 3 | Yes | <200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jennekens, J.; Braithwaite, S.A.; Luijk, B.; van der Kaaij, N.P.; Vrisekoop, N.; de Jager, S.C.A.; de Heer, L.M. Primary Graft Dysfunction in Lung Transplantation: An Overview of the Molecular Mechanisms. Int. J. Mol. Sci. 2025, 26, 6776. https://doi.org/10.3390/ijms26146776
Jennekens J, Braithwaite SA, Luijk B, van der Kaaij NP, Vrisekoop N, de Jager SCA, de Heer LM. Primary Graft Dysfunction in Lung Transplantation: An Overview of the Molecular Mechanisms. International Journal of Molecular Sciences. 2025; 26(14):6776. https://doi.org/10.3390/ijms26146776
Chicago/Turabian StyleJennekens, Jitte, Sue A. Braithwaite, Bart Luijk, Niels P. van der Kaaij, Nienke Vrisekoop, Saskia C. A. de Jager, and Linda M. de Heer. 2025. "Primary Graft Dysfunction in Lung Transplantation: An Overview of the Molecular Mechanisms" International Journal of Molecular Sciences 26, no. 14: 6776. https://doi.org/10.3390/ijms26146776
APA StyleJennekens, J., Braithwaite, S. A., Luijk, B., van der Kaaij, N. P., Vrisekoop, N., de Jager, S. C. A., & de Heer, L. M. (2025). Primary Graft Dysfunction in Lung Transplantation: An Overview of the Molecular Mechanisms. International Journal of Molecular Sciences, 26(14), 6776. https://doi.org/10.3390/ijms26146776