Molecular Mechanisms of Tumor Progression and New Therapeutic Strategies for Urological Cancers, 2nd Edition
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Antar, R.M.; Fawaz, C.; Gonzalez, D.; Xu, V.E.; Drouaud, A.P.; Krastein, J.; Pio, F.; Murdock, A.; Youssef, K.; Sobol, S.; et al. The Evolving Molecular Landscape and Actionable Alterations in Urologic Cancers. Curr. Oncol. 2024, 31, 6909–6937. [Google Scholar] [CrossRef]
- Ma, L.; Guo, H.; Zhao, Y.; Liu, Z.; Wang, C.; Bu, J.; Sun, T.; Wei, J. Liquid biopsy in cancer current: Status, challenges and future prospects. Signal Transduct. Target. Ther. 2024, 9, 336. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, R.; Ingelmo-Torres, M.; Trullas, R.; Roldan, F.L.; Rodriguez-Carunchio, L.; Juez, L.; Sureda, J.; Alcaraz, A.; Mengual, L.; Izquierdo, L. Tumor-Agnostic Circulating Tumor DNA Testing for Monitoring Muscle-Invasive Bladder Cancer. Int. J. Mol. Sci. 2023, 24, 16578. [Google Scholar] [CrossRef]
- Christensen, E.; Birkenkamp-Demtroder, K.; Sethi, H.; Shchegrova, S.; Salari, R.; Nordentoft, I.; Wu, H.T.; Knudsen, M.; Lamy, P.; Lindskrog, S.V.; et al. Early Detection of Metastatic Relapse and Monitoring of Therapeutic Efficacy by Ultra-Deep Sequencing of Plasma Cell-Free DNA in Patients with Urothelial Bladder Carcinoma. J. Clin. Oncol. 2019, 37, 1547–1557. [Google Scholar] [CrossRef]
- Christensen, E.; Nordentoft, I.; Birkenkamp-Demtroder, K.; Elbaek, S.K.; Lindskrog, S.V.; Taber, A.; Andreasen, T.G.; Strandgaard, T.; Knudsen, M.; Lamy, P.; et al. Cell-Free Urine and Plasma DNA Mutational Analysis Predicts Neoadjuvant Chemotherapy Response and Outcome in Patients with Muscle-Invasive Bladder Cancer. Clin. Cancer Res. 2023, 29, 1582–1591. [Google Scholar] [CrossRef]
- Powles, T.; Assaf, Z.J.; Davarpanah, N.; Banchereau, R.; Szabados, B.E.; Yuen, K.C.; Grivas, P.; Hussain, M.; Oudard, S.; Gschwend, J.E.; et al. ctDNA guiding adjuvant immunotherapy in urothelial carcinoma. Nature 2021, 595, 432–437. [Google Scholar] [CrossRef]
- Corcoran, R.B.; Chabner, B.A. Application of Cell-free DNA Analysis to Cancer Treatment. N. Engl. J. Med. 2018, 379, 1754–1765. [Google Scholar] [CrossRef] [PubMed]
- Figols, M.; Chekhun, S.; Fernandez-Saorin, M.; Perez-Criado, I.; Bautista, A.; Font, A.; Ruiz de Porras, V. Tumor-Educated Platelets in Urological Tumors: A Novel Biosource in Liquid Biopsy. Int. J. Mol. Sci. 2025, 26, 3595. [Google Scholar] [CrossRef] [PubMed]
- Best, M.G.; Sol, N.; Kooi, I.; Tannous, J.; Westerman, B.A.; Rustenburg, F.; Schellen, P.; Verschueren, H.; Post, E.; Koster, J.; et al. RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics. Cancer Cell 2015, 28, 666–676. [Google Scholar] [CrossRef]
- Best, M.G.; Wesseling, P.; Wurdinger, T. Tumor-Educated Platelets as a Noninvasive Biomarker Source for Cancer Detection and Progression Monitoring. Cancer Res. 2018, 78, 3407–3412. [Google Scholar] [CrossRef]
- Nilsson, R.J.; Balaj, L.; Hulleman, E.; van Rijn, S.; Pegtel, D.M.; Walraven, M.; Widmark, A.; Gerritsen, W.R.; Verheul, H.M.; Vandertop, W.P.; et al. Blood platelets contain tumor-derived RNA biomarkers. Blood 2011, 118, 3680–3683. [Google Scholar] [CrossRef] [PubMed]
- Zaki-Dizaji, M.; Taheri, Z.; Heiat, M.; Hushmandi, K. Tumor-educated platelet, a potential liquid biopsy biosource in pancreatic cancer: A review. Pathol. Res. Pract. 2025, 270, 155986. [Google Scholar] [CrossRef] [PubMed]
- Ruiz de Porras, V.; Pardo, J.C.; Etxaniz, O.; Font, A. Neoadjuvant therapy for muscle-invasive bladder cancer: Current clinical scenario, future perspectives, and unsolved questions. Crit. Rev. Oncol. Hematol. 2022, 178, 103795. [Google Scholar] [CrossRef]
- Elahi Najafi, M.A.; Yasui, M.; Teramoto, Y.; Tatenuma, T.; Jiang, G.; Miyamoto, H. GABBR2 as a Downstream Effector of the Androgen Receptor Induces Cisplatin Resistance in Bladder Cancer. Int. J. Mol. Sci. 2023, 24, 13733. [Google Scholar] [CrossRef]
- Sundi, D.; Collier, K.A.; Yang, Y.; Diaz, D.A.; Pohar, K.S.; Singer, E.A.; Gupta, S.; Carson, W.E., 3rd; Clinton, S.K.; Li, Z.; et al. Roles of Androgen Receptor Signaling in Urothelial Carcinoma. Cancers 2024, 16, 746. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Chen, J.; Miyamoto, H. Androgen Receptor Signaling in Bladder Cancer. Cancers 2017, 9, 20. [Google Scholar] [CrossRef]
- Vukovic, M.; Chamlati, J.M.; Hennenlotter, J.; Todenhofer, T.; Lutfrenk, T.; Jersinovic, S.; Tsaur, I.; Stenzl, A.; Rausch, S. Interleukin-1beta/Interleukin (IL)-1-Receptor-Antagonist (IL1-RA) Axis in Invasive Bladder Cancer-An Exploratory Analysis of Clinical and Tumor Biological Significance. Int. J. Mol. Sci. 2024, 25, 2447. [Google Scholar] [CrossRef]
- Greten, F.R.; Grivennikov, S.I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 2019, 51, 27–41. [Google Scholar] [CrossRef]
- Oxburgh, L. The Extracellular Matrix Environment of Clear Cell Renal Cell Carcinoma. Cancers 2022, 14, 4072. [Google Scholar] [CrossRef]
- Mlynarczyk, G.; Tokarzewicz, A.; Gudowska-Sawczuk, M.; Mroczko, B.; Novak, V.; Novak, A.; Mitura, P.; Romanowicz, L. MMP-14 Exhibits Greater Expression, Content and Activity Compared to MMP-15 in Human Renal Carcinoma. Int. J. Mol. Sci. 2024, 25, 8107. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.W.; Ma, W.; Jiang, F.; Xie, Y.; Tang, L. Upregulation of matrix metalloproteinase 14 (MMP14) is associated with poor prognosis in renal clear cell carcinoma-a bioinformatics analysis. Transl. Androl. Urol. 2022, 11, 1523–1534. [Google Scholar] [CrossRef]
- Wang, J.F.; Gong, Y.Q.; He, Y.H.; Ying, W.W.; Li, X.S.; Zhou, X.F.; Zhou, L.Q. High expression of MMP14 is associated with progression and poor short-term prognosis in muscle-invasive bladder cancer. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 6605–6615. [Google Scholar]
- Fahey, C.C.; Nebhan, C.A.; York, S.; Davis, N.B.; Hurley, P.J.; Gordetsky, J.B.; Schaffer, K.R. Metastatic Penile Squamous Cell Carcinoma Responsive to Enfortumab Vedotin. Int. J. Mol. Sci. 2023, 24, 16109. [Google Scholar] [CrossRef]
- Heath, E.I.; Rosenberg, J.E. The biology and rationale of targeting nectin-4 in urothelial carcinoma. Nat. Rev. Urol. 2021, 18, 93–103. [Google Scholar] [CrossRef]
- Powles, T.; Rosenberg, J.E.; Sonpavde, G.P.; Loriot, Y.; Duran, I.; Lee, J.L.; Matsubara, N.; Vulsteke, C.; Castellano, D.; Wu, C.; et al. Enfortumab Vedotin in Previously Treated Advanced Urothelial Carcinoma. N. Engl. J. Med. 2021, 384, 1125–1135. [Google Scholar] [CrossRef] [PubMed]
- Klumper, N.; Tran, N.K.; Zschabitz, S.; Hahn, O.; Buttner, T.; Roghmann, F.; Bolenz, C.; Zengerling, F.; Schwab, C.; Nagy, D.; et al. NECTIN4 Amplification Is Frequent in Solid Tumors and Predicts Enfortumab Vedotin Response in Metastatic Urothelial Cancer. J. Clin. Oncol. 2024, 42, 2446–2455. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Beltran, H. The treatment landscape of metastatic prostate cancer. Cancer Lett. 2021, 519, 20–29. [Google Scholar] [CrossRef]
- Dhas, Y.; Biswas, N.; M, R.D.; Jones, L.D.; Ashili, S. Repurposing metabolic regulators: Antidiabetic drugs as anticancer agents. Mol. Biomed. 2024, 5, 40. [Google Scholar] [CrossRef]
- Luconi, M.; Cantini, G.; Crescioli, C. Repurposing glucose-lowering drugs for cancer therapy. Trends Cancer 2025. [Google Scholar] [CrossRef]
- Maurya, S.K.; Chaudhri, S.; Kumar, S.; Gupta, S. Repurposing of Metabolic Drugs Metformin and Simvastatin as an Emerging Class of Cancer Therapeutics. Pharm. Res. 2025, 42, 49–67. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz de Porras, V. Molecular Mechanisms of Tumor Progression and New Therapeutic Strategies for Urological Cancers, 2nd Edition. Int. J. Mol. Sci. 2025, 26, 6496. https://doi.org/10.3390/ijms26136496
Ruiz de Porras V. Molecular Mechanisms of Tumor Progression and New Therapeutic Strategies for Urological Cancers, 2nd Edition. International Journal of Molecular Sciences. 2025; 26(13):6496. https://doi.org/10.3390/ijms26136496
Chicago/Turabian StyleRuiz de Porras, Vicenç. 2025. "Molecular Mechanisms of Tumor Progression and New Therapeutic Strategies for Urological Cancers, 2nd Edition" International Journal of Molecular Sciences 26, no. 13: 6496. https://doi.org/10.3390/ijms26136496
APA StyleRuiz de Porras, V. (2025). Molecular Mechanisms of Tumor Progression and New Therapeutic Strategies for Urological Cancers, 2nd Edition. International Journal of Molecular Sciences, 26(13), 6496. https://doi.org/10.3390/ijms26136496