A Systematic Review of the Potential of Acmella Genus Plants for the Treatment of Musculoskeletal Disorders
Abstract
1. Introduction
Background on Acmella Genus Plants
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility of Research Articles
2.3. Data Extraction
2.4. Quality Assessment
2.5. Data Synthesis
- Summarizing preclinical findings related to mechanisms affecting inflammation, bone formation, and joint health.
- Assessing clinical evidence with a focus on key musculoskeletal outcomes, such as pain reduction, decreased joint inflammation, and functional improvement.
- Investigating shared mechanisms of action observed in both clinical and preclinical studies, particularly the effects of compounds like spilanthol on pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κ), Wnt/β-catenin, and others involved in bone metabolism.
2.6. Handling Missing Data
2.7. Ethical Considerations
3. Results
3.1. Overview of Evidence
3.1.1. Effects on Bone
3.1.2. Effects on Muscle
3.1.3. Effects on Joint
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MSD | Musculoskeletal disorders |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analysis |
WHO | World Health Organization |
PICOS | Population, Intervention, Comparison/Comparator, Outcomes, and Study |
NOS | Newcastle-Ottawa Scale |
SYRCLE | Systematic Review Centre for Laboratory Animal Experimentation |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
MC3T3-E1 cells | Murine calvarial pre-osteoblast cell line |
ALP | Alkaline phosphatase |
MUAC | Mid upper arm circumference |
CC | Chest circumference |
TC | Thigh circumference |
VSMC | Vascular smooth muscle cells |
CFA | Carrageenan and Freund’s Complete Adjuvant |
IL-1β | Interleukin-1 beta |
TNF-α | Tumor necrosis factor |
NO | Nitric oxide |
VAS | Visual analog scale |
WOMAC | Western Ontario and McMaster Universities Osteoarthritis |
SF-36 | 36-Item Short Form Health Survey |
DEXA | Dual-energy X-ray absorptiometry |
ESR | Erythrocyte sedimentation rate |
CRP | C-reactive protein |
Micro-CT | Micro-computed tomography |
IP | Intraperitoneally |
GCMS | Gas chromatography/mass spectrometry |
LCTOFMS | Liquid chromatography time-of-flight mass spectrometry |
DPPH | 2,2-ediphenyl-1-picrylhydrazyl |
ABTS | 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) |
FRAP | Ferric ion reducing antioxidant potential |
BW | Body weight |
SA3X | Spilanthes acmella |
ROS | Reactive oxygen species |
ELSA | Ethanolic extract of leaves of Spilanthes acmella |
MIO | Monosodium iodate |
GC/MS | Gas chromatography/mass spectrometry |
References
- Breitling, R.; Takano, E. Synthetic biology advances for pharmaceutical production. Curr. Opin. Biotechnol. 2015, 35, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Buenz, E.J.; Verpoorte, R.; Bauer, B.A. The Ethnopharmacologic Contribution to Bioprospecting Natural Products. Annu. Rev. Pharmacol. Toxicol. 2018, 58, 509–530. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Traditional Medicine Strategy: 2014–2023. Available online: https://iris.who.int/handle/10665/92455 (accessed on 2 March 2025).
- Long, H.; Liu, Q.; Yin, H.; Wang, K.; Diao, N.; Zhang, Y.; Lin, J.; Guo, A. Prevalence Trends of Site-Specific Osteoarthritis from 1990 to 2019: Findings from the Global Burden of Disease Study 2019. Arthritis Rheum. 2022, 74, 1172–1183. [Google Scholar] [CrossRef] [PubMed]
- Machrowska, A.; Karpiński, R.; Maciejewski, M.; Jonak, J.; Krakowski, P. Application of Eemd-Dfa Algorithms and Ann Classification for Detection of Knee Osteoarthritis Using Vibroarthrography. Appl. Comput. Sci. 2024, 20, 90–108. [Google Scholar] [CrossRef]
- Hunter, D.J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019, 393, 1745–1759. [Google Scholar] [CrossRef]
- Neogi, T. The epidemiology and impact of pain in osteoarthritis. Osteoarthr. Cartil. 2013, 21, 1145–1153. [Google Scholar] [CrossRef]
- Meyer, A.; Meyer, N.; Schaeffer, M.; Gottenberg, J.E.; Geny, B.; Sibilia, J. Incidence and prevalence of inflammatory myopathies: A systematic review. Rheumatology 2015, 54, 50–63. [Google Scholar] [CrossRef]
- Reyes, C.; Garcia-Gil, M.; Elorza, J.; Mendez-Boo, L.; Hermosilla, E.; Javaid, M.; Cooper, C.; Diez-Perez, A.; Arden, N.; Bolibar, B.; et al. Socio-Economic Status and the Risk of Developing Hand, Hip or Knee Osteoarthritis: A Region-Wide Ecological Study. Osteoarthr. Cartil. 2015, 23, 1323–1329. [Google Scholar] [CrossRef]
- Johnson, V.; Hunter, D. The Epidemiology of Osteoarhtritis. Best. Pract. Res. Clin. Rheumatol. 2014, 28, 5–15. [Google Scholar] [CrossRef]
- Van Buuren, M.M.A.; Arden, N.K.; Bierma-Zeinstra, S.M.A.; Bramer, W.M.; Casartelli, N.C.; Felson, D.T.; Jones, G.; Lane, N.E.; Lindner, C.; Maffiuletti, N.A.; et al. Statistical Shape Modeling of the Hip and the Association with Hip Osteoarthritis: A Systematic Review. Osteoarthr. Cartil. 2021, 29, 607–618. [Google Scholar] [CrossRef]
- Quicke, J.G.; Conaghan, P.G.; Corp, N.; Peat, G. Osteoarthritis Year in Review 2021: Epidemiology & Therapy. Osteoarthr. Cartil. 2022, 30, 196–206. [Google Scholar] [CrossRef]
- Krakowski, P.; Karpiński, R.; Maciejewski, R.; Jonak, J. Evaluation of the Diagnostic Accuracy of MRI in Detection of Knee Cartilage Lesions Using Receiver Operating Characteristic Curves. J. Phys. Conf. Ser. 2021, 1736, 012028. [Google Scholar] [CrossRef]
- Karpiński, R.; Krakowski, P.; Jonak, J.; Machrowska, A.; Maciejewski, M. Comparison of Selected Classification Methods Based on Machine Learning as a Diagnostic Tool for Knee Joint Cartilage Damage Based on Generated Vibroacoustic Processes. Appl. Comput. Sci. 2023, 19, 136–150. [Google Scholar] [CrossRef]
- Cross, M.; Smith, E.; Hoy, D.G.; Nolte, S.; Ackerman, I.; Fransen, M.; Bridgett, L.; Williams, S.; Guillemin, F.; Hill, C.L.; et al. The global burden of other musculoskeletal disorders: Estimates from the Global Burden of Disease 2010 study. Ann. Rheum. Dis. 2014, 73, 1462–1469. [Google Scholar] [CrossRef]
- Hoy, D.G.; Smith, E.; Cross, M.; Sanchez-Riera, L.; Blyth, F.M.; Buchbinder, R.; Woolf, A.D.; Driscoll, T.; Brooks, P.; March, L.M. Reflecting on the global burden of musculoskeletal conditions: Lessons learnt from the Global Burden of Disease 2010 study and the next steps forward. Ann. Rheum. Dis. 2015, 74, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Barham, L.; Hodkinson, B. Assessment of quality of life in musculo-skeletal health. J. Musculoskelet. Health 2017, 15, 123–135. [Google Scholar] [CrossRef]
- Borrelli, F.; Izzo, A.A. The plant kingdom as a source of anti-inflammatory and anti-cancer agents. Phytother. Res. 2000, 14, 581–591. [Google Scholar] [CrossRef]
- Uthpala, T.G.G.; Navaratne, S.B. Acmella oleracea plant; identification, applications and use as an emerging food source—Review. Food Rev. Int. 2020, 36, 795–818. [Google Scholar] [CrossRef]
- Panyadee, P.; Inta, A. Taxonomy and ethnobotany of Acmella (Asteraceae) in Thailand. Biodiversitas 2022, 23, 2177–2186. [Google Scholar] [CrossRef]
- Wagner, H.; Breu, W.; Willer, F.; Wierer, M.; Remiger, P.; Schwenker, G. In Vitro Inhibition of Arachidonate Metabolism by some Alkamides and Prenylated Phenols. Planta Med. 1989, 55, 566–567. [Google Scholar] [CrossRef]
- Wu, L.C.; Fan, N.C.; Lin, M.H.; Chu, I.R.; Huang, S.J.; Hu, C.Y.; Han, S.Y. Anti-inflammatory effect of spilanthol from Spilanthes acmella on murine macrophage by down-regulating LPS-induced inflammatory mediators. J. Agric. Food Chem. 2008, 56, 2341–2349. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, K.L.; Jadhav, S.K.; Joshi, V. An updated review on medicinal herb genus Spilanthes. Zhong Xi Yi Jie He Xue Bao J. Chin. Integr. Med. 2011, 9, 1170–1178. [Google Scholar] [CrossRef]
- Monroe, D.; Luo, R.; Tran, K.; Richards, K.M.; Barbosa, A.F.; de Carvalho, M.G.; Sabaa-Srur, A.U.O.; Smith, R.E. LC-HRMS and NMR Analysis of Lyophilized Acmella oleracea Capitula, Leaves and Stems. Nat. Prod. J. 2016, 6, 116–125. [Google Scholar] [CrossRef]
- Freitas-Blanco, V.S.; Michalak, B.; Zelioli, Í.A.M.; da Silva Santos de Oliveira, A.; Rodrigues, M.V.N.; Ferreira, A.G.; Garcia, V.L.; Cabral, F.A.; Kiss, A.K.; Rodrigues, R.A.F. Isolation of spilanthol from Acmella oleracea based on green chemistry and evaluation of its in vitro anti-inflammatory activity. J. Supercrit. Fluids 2018, 140, 372–379. [Google Scholar] [CrossRef]
- Heywood, V.H.; Ball, P. Flowering Plant Families of the World. In Firefly Books; Kew Publications: London, UK, 2007; ISBN 9781842461655. [Google Scholar]
- Dauncey, E.A.; Irving, J.; Allkin, R.; Robinson, N. Common mistakes when using plant names and how to avoid them. Eur. J. Integr. Med. 2016, 8, 597–601. [Google Scholar] [CrossRef] [PubMed]
- The International Plant Names Index and World Checklist of Vascular Plants. 2025. Available online: https://powo.science.kew.org/ (accessed on 24 June 2025).
- Methley, A.M.; Campbell, S.; Chew-Graham, C.; McNally, R.; Cheraghi-Sohi, S. PICO, PICOS and SPIDER: A comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv. Res. 2014, 14, 579. [Google Scholar] [CrossRef]
- Rondanelli, M.; Riva, A.; Allegrini, P.; Faliva, M.A.; Naso, M.; Peroni, G.; Nichetti, M.; Gasparri, C.; Spadaccini, D.; Iannello, G.; et al. The Use of a New Food-Grade Lecithin Formulation of Highly Standardized Ginger (Zingiber officinale) and Acmella oleracea Extracts for the Treatment of Pain and Inflammation in a Group of Subjects with Moderate Knee Osteoarthritis. J. Pain Res. 2020, 13, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, N.R.; Mishra, K.G.; Patnaik, N.; Nayak, R. Evaluation of effects of Spilanthes acmella extract on muscle mass and sexual potency in males: A population-based study. J. Fam. Med. Prim. Care 2021, 10, 4242–4246. [Google Scholar] [CrossRef]
- Widyowati, R. Alkaline Phosphatase Activity of Graptophylum pictum and Spilanthes acmella Fractions against MC3T3-E1 Cells as Marker of Osteoblast Differentiation Cells. Int. J. Pharm. Pharm. Sci. 2011, 3, 34–37. [Google Scholar]
- Abdul Rahim, R.; Jayusman, P.A.; Lim, V.; Ahmad, N.H.; Abdul Hamid, Z.A.; Mohamed, S.M.; Muhammad, N.; Ahmad, F.; Mokhtar, N.M.; Mohamed, N.; et al. Phytochemical Analysis, Antioxidant and Bone Anabolic Effects of Blainvillea acmella (L.) Philipson. Front. Pharmacol. 2022, 12, 796509. [Google Scholar] [CrossRef]
- Widyowati, R. New Methyl Threonolactones and Pyroglutamates of Spilanthes acmella (L.) L. and Their Bone Formation Activities. Molecules 2020, 25, 2500. [Google Scholar] [CrossRef] [PubMed]
- Laswati, H.; Subadi, I.; Widyowati, R.; Agil, M.; Pangkahila, J. Spilanthes acmella and physical exercise increased testosterone levels and osteoblast cells in glucocorticoid-induced osteoporosis male mice. Bali Med. J. 2015, 4, 76. [Google Scholar] [CrossRef]
- Stein, R.; Berger, M.; Santana de Cecco, B.; Mallmann, L.P.; Terraciano, P.B.; Driemeier, D.; Rodrigues, E.; Beys-da-Silva, W.O.; Konrath, E.L. Chymase inhibition: A key factor in the anti-inflammatory activity of ethanolic extracts and spilanthol isolated from Acmella oleracea. J. Ethnopharmacol. 2021, 270, 113610. [Google Scholar] [CrossRef] [PubMed]
- Moro, S.D.; de Oliveira Fujii, L.; Teodoro, L.F.; Frauz, K.; Mazoni, A.F.; Esquisatto, M.A.; Rodrigues, R.A.; Pimentel, E.R.; de Aro, A.A. Acmella oleracea extract increases collagen content and organization in partially transected tendons. Microsc. Res. Tech. 2021, 84, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- Barman, S.; Sahu, N.; Deka, S.; Dutta, S.; Das, S. Anti-inflammatory and analgesic activity of leaves of Spilanthes acmella (ELSA) in experimental animal models. Pharmacologyonline 2009, 1, 1027–1034. [Google Scholar]
- Indrayani, I. Potential of Legetan Leaves (Acmella oleracea) as a Therapeutic Modality for Osteoarthritis: An In Vivo Study. Eureka Herba Indones. 2024, 5, 441–445. [Google Scholar] [CrossRef]
- Paul, S.; Sarkar, S.; Dutta, T.; Bhattacharjee, S. Assessment of anti-inflammatory and anti-arthritic properties of Acmella uliginosa (Sw.) Cass. based on experiments in arthritic rat models and qualitative gas chromatography-mass spectrometry analyses. J. Intercult. Ethnopharmacol. 2016, 5, 257–262. [Google Scholar] [CrossRef]
- Woolf, A.D.; Pfleger, B. Burden of major musculoskeletal conditions. World Health Organ. Bull. 2003, 81, 646–656. [Google Scholar]
- Van der Tempel, J.; Zambon, P. Musculoskeletal disorders: Pathophysiology and management. J. Musculoskelet. Res. 2016, 19, 113–126. [Google Scholar]
- Kaur, S.; Arora, D.S. Antibacterial activity of Spilanthes acmella and its bioactive constituents. Phytomedicine 2009, 16, 1115–1119. [Google Scholar]
- Ghosh, A.; Saha, S. Pharmacological potential of Acmella oleracea (L.) R.K. Jansen: A review. J. Ethnopharmacol. 2014, 154, 51–62. [Google Scholar] [CrossRef]
- Miller, P.D.; Hattersley, G.; Riis, B.J.; Williams, G.C.; Lau, E.; Russo, L.A.; Alexandersen, P.; Zerbini, C.A.F.; Hu, M.-Y.; Harris, A.G.; et al. Effect of Abaloparatide vs Placebo on New Vertebral Fractures in Postmenopausal Women with Osteoporosis: A Randomized Clinical Trial. JAMA 2016, 316, 722–733. [Google Scholar] [CrossRef] [PubMed]
- Cosman, F.; Crittenden, D.B.; Adachi, J.D.; Binkley, N.; Czerwinski, E.; Ferrari, S.; Hofbauer, L.C.; Lau, E.; Lewiecki, E.M.; Miyauchi, A.; et al. Romosozumab Treatment in Postmenopausal Women with Osteoporosis. N. Engl. J. Med. 2016, 375, 1532–1543. [Google Scholar] [CrossRef]
- Langdahl, B.L.; Libanati, C.; Crittenden, D.B.; Bolognese, M.A.; Brown, J.P.; Daizadeh, N.S.; Dokoupilova, E.; Engelke, K.; Finkelstein, J.S.; Genant, H.K.; et al. Romosozumab (a sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from bisphosphonate therapy: A randomised, open-label, phase 3 trial. Lancet 2017, 390, 1585–1594. [Google Scholar] [CrossRef]
- Sims, N.A.; Gooi, J.H. Bone remodeling: Multiple cellular interactions required for coupling of bone formation and resorption. Semin. Cell Dev. Biol. 2008, 19, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Raggatt, L.J.; Partridge, N.C. Cellular and molecular mechanisms of bone remodeling. J. Biol. Chem. 2010, 285, 25103–25108. [Google Scholar] [CrossRef]
- Khosla, S.; Hofbauer, L.C. Osteoporosis treatment: Recent developments and ongoing challenges. Lancet Diabetes Endocrinol. 2017, 5, 898–907. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, L.; Miron, R.J.; Shi, B.; Bian, Z. Anabolic bone formation via a site-specific bone-targeting delivery system by interfering with semaphorin 4D expression. J. Bone Miner. Res. 2020, 35, 1147–1160. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Han, Y.; Guan, Y.; Zhang, L.; Bai, C. Icariin promotes bone formation via the ERα-Wnt/β-catenin signaling pathway in the osteoprotegerin-deficient OVX mice. J. Cell. Physiol. 2021, 236, 180–191. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, F.; He, Q.; Wang, J.; Shiu, H.T. Effects of treadmill exercise on bone mass, microarchitecture, and turnover in ovariectomized rats: A systematic review and meta-analysis. Osteoporos. Int. 2022, 33, 327–342. [Google Scholar]
- Dubey, S.; Maity, S.; Singh, M.; Saraf, S.A.; Saha, S. Phytochemistry, Pharmacology and Toxicology of Spilanthes acmella: A Review. Adv. Pharmacol. Sci. 2013, 2013, 423750. [Google Scholar] [CrossRef] [PubMed]
- Al Shoyaib, A.; Archie, S.R.; Karamyan, V.T. Intraperitoneal Route of Drug Administration: Should it Be Used in Experimental Animal Studies? Pharm. Res. 2019, 37, 12. [Google Scholar] [CrossRef] [PubMed]
- Nudo, S.; Jimenez-Garcia, J.A.; Dover, G. Efficacy of topical versus oral analgesic medication compared to a placebo in injured athletes: A systematic review with meta-analysis. Scand. J. Med. Sci. Sports 2023, 33, 1884–1900. [Google Scholar] [CrossRef] [PubMed]
Accepted Name | Synonyms |
---|---|
Acmella oleracea (L.) R. K. Jansen | Spilanthes oleracea L., Spilanthes acmella (L.) Murray (sensu L.C. Clarke) (powo.science.kew.org, accessed on 24 June 2025) Pyrethrum spilanthus Medik. (en.wikipedia.org, accessed on 24 June 2025) Cotula pyrethraria L. (en.wikipedia.org) Bidens fixa Hook.f. (en.wikipedia.org) Bidens fervida Lam. (en.wikipedia.org) |
Blainvillea acmella (L.) Philipson | Spilanthes acmella (L.) L. (powo.science.kew.org) Acmella linnaei Cass. (powo.science.kew.org) Acmella mauritiana Pers. (powo.science.kew.org) Bidens acmella (L.) Lam. (powo.science.kew.org) Ceratocephalus acmella (L.) Kuntze (powo.science.kew.org) Coreopsis acmella (L.) K.Krause (powo.science.kew.org) Pyrethrum acmella (L.) Medik. (powo.science.kew.org) Verbesina acmella L. (powo.science.kew.org) |
Inclusion | Exclusion | |
---|---|---|
Population | Cell line Animal model Patients | - |
Intervention | Acmella genus plant extracts | - |
Comparison | Cells not receiving Acmella plant extracts Positive and negative control groups | - |
Outcome | Bone cell parameters Arthritis scoring Muscle circumferences | - |
Study Type | In vitro and in vivo studies, randomized controlled studies, case–control studies, cohort studies | Case reports, editorials, communications, reviews, meta-analysis |
Source | Search Term | Filters | Number of Results |
---|---|---|---|
Scopus | TITLE-ABS-KEY [(“Acmella” OR “spilanthol”) AND (musc* OR arth* OR tendon* OR osteo* OR bone)] | English language Publication years: 2004–2024 | 49 |
Google Scholar | (“Acmella” OR “spilanthol”) AND (musc* OR arth* OR tendon* OR osteo* OR bone) | English language Publication years: 2004–2024 | 258 |
PubMed | [(“Acmella” [All Fields] OR “spilanthol” [All Fields]) AND (“musc*” [All Fields] OR “arth*” [All Fields] OR “tendon*” [All Fields] OR “osteo*” [All Fields] OR (“bone and bones” [MeSH Terms] OR (“bone” [All Fields] AND “bones” [All Fields]) OR “bone and bones” [All Fields] OR “bone” [All Fields]) | English language Publication years: 2004–2024 | 15 |
Inclusion Criteria | Exclusion Criteria |
---|---|
English language | Non-English language articles |
Articles published within the past 20 years (2004–2024) | Articles published earlier than 2004 |
Articles with abstracts | Reviews or meta-analyses |
Research articles | Letters, editorials, or case studies |
Author and Year | Study Design | Type of Plant Extract and Its Dosage | Sample Size | Musculoskeletal Related Objective | Parameters | Musculoskeletal Findings | Outcomes |
---|---|---|---|---|---|---|---|
Widyowati et al., 2011 [32] | In vitro study | Ethanol extract of the leaves of Spilanthes acmella Dose: 50 μg/mL | MC3T3-E1 osteoblast cells | To discover the ideal anabolic agent by measuring on alkaline phosphatase (ALP) activity as a marker of osteoblast differentiation |
| The Spilanthes acmella had a dose-dependent stimulatory activity on ALP up to 25 g/mL | Spilanthes acmella has bone anabolic activities |
Abdul Rahim et al., 2022 [33] | In vitro study | Ethanol extract of Blainvillea acmella leaves Dose: 2.93 µg/mL to 1500 µg/mL | MC3T3-E1 osteoblast cells | To determine the relationship between phytochemical compounds, antioxidants and bone anabolic activities of Blainvillea acmella |
| Positive correlations were observed between phenolic content to antioxidant and bone anabolic activities | Blainvillea acmella may be a valuable antioxidant and anti-osteoporosis agent |
Widyowati et al., 2020 [34] | In vitro study | Isolated compounds of methanol extract of Spilanthes acmella leaves Dose: 12.5 and 25 μM | MC3T3-E1 osteoblast cells | To test the isolated compounds of Spilanthes acmella for bone formation activities |
| These compounds stimulated both ALP and mineralization activities. | Six active compounds in Spilanthes acmella were identified to promote bone formation and mineralisation |
Laswati et al., 2015 [35] | In vivo study | Ethanol extract of the leaves of Spilanthes acmella Dose: 4.14 mg/20 g BW/day | Glucocorticoid-induced osteoporosis mice | To analyze the effect of Spilanthes acmella and physical exercise in increasing testosterone and osteoblast cells of femoral’s trabecular glucocorticoid-induced osteoporosis male mice |
| Combination of Spilanthes acmella and exercise increased testosterone level and osteoblast cells compared to osteoporosis group | Spilanthes acmella has an additive effect of exercise in protection against glucocorticoid-induced osteoporosis |
Pradhan et al., 2021 [31] | Clinical study | SA3X capsules (containing 500 mg of Spilanthes acmella extract, standardized to 3.5% spilanthol delivering 17.5 mg spilanthol) | Population-based study: 240 male subjects | To determine the effects of Spilanthes acmella on muscle mass |
| A significant increase in the MUAC | Spilanthes acmella may be a potent muscle gainer |
Stein et al., 2021 [36] | In vitro and in vivo study | Acmella oleracea leaves and flowers extracts; spilanthol Dose: 50–200 μM (in vitro) and 6.2 mg/kg IP (in vivo) | Vascular smooth muscle cells (VSMC) in hyperglycemic media and formalin induced paw edema in rats | To characterize the anti-inflammatory effects of Acmella oleracea and spilanthol | In vitro:
| Reduced chymase activity and expression and reduced ROS production Reduced paw edema, NO production, and cell tissue infiltration | Acmella oleracea and spilanthol possess significant anti-inflammatory activity |
Moro et al., 2021 [37] | In vivo study | Topical application of 20% Acmella oleracea leaves and flowers ointment | Rats with partial transection of calcaneal tendon | To analyze the effects of topical application of Acmella oleracea ointment (20%) on the repair process of the calcaneal tendon in rats |
| Topical Acmella oleracea promoted healing of calcaneal tendon Higher birefringence values and hydroxyproline concentration of collagen in the tendon | Topical Acmella oleracea ointment increased the molecular organization and content of collagen, thus presenting a potential application in tendon repair |
Barman et al., 2009 [38] | In vivo study | Ethanolic extract of leaves of Spilanthes acmella Dose: 500 mg/kg | Carrageenan and Freund’s Complete Adjuvant induced rat paw edema | To evaluate the anti-inflammatory and analgesic activities of Spilanthes acmella |
| ELSA (500 mg/kg, p.o) showed significant reduction in paw volume and arthritis score compared to the control group | Spilanthes acmella possesses significant anti-inflammatory activity |
Indrayani et al., 2024 [39] | In vivo study | Acmella oleracea leaves ethanol extract Dose: 200 and 400 mg/kg BW | Monosodium iodate (MIO) induced knee osteoarthritis in rats | To evaluate the potential of Acmella oleracea leaves for treatment of osteoarthritis in a rat model |
| Reduced pain scores. Lowered IL-1β levels (200 and 400 mg/kg BW). Lowered TNF-α levels (400 mg/kg BW) | Acmella oleracea leaf extract can reduce pain and inflammation of osteoarthritis-induced rat joint homogenates |
Paul et al., 2016 [40] | In vivo study | Acmella uliginosa (AU) (Sw.) Cass. Flower Dose: 417 mg/kg and 833 mg/kg | Rats with model of arthritic paw swelling, Freund’s Complete Adjuvant | To explore the anti-arthritic properties of Acmella uliginosa |
| Reduced paw swelling. Increased hemoglobin, serum protein, and albumin levels. Normal creatinine level. GC/MS analyses revealed five anti-inflammatory compounds | Crude flower homogenate of AU contains potential anti-inflammatory compounds, which could be used as an anti-inflammatory/anti-arthritic medication |
Rondanelli et al., 2020 [30] | Clinical study | Food-grade lecithin formulation of standardized extracts of Zingiber officinale and Acmella oleracea Dose: 2 tablets/day for 4 weeks | 50 patients with knee osteoarthritis | To evaluate the efficacy of lecithin formulation of standardized extracts of Zingiber officinale and Acmella oleracea in reducing the pain and inflammation of osteoarthritis |
| A significant decrease in VAS. Significant improvements in WOMAC, Lysholm, and SF-36 scores. Significant decrease in CRP and ESR, and increase in fat-free mass | The tested formulation seems to be effective in reducing pain and inflammation of osteoarthritis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdul Malik, M.M.; Shuid, A.N.; Ridzuan, N.R.A.; Naina Mohamed, I.; Mohd Ramli, E.S.; Shuid, A.N.; Abdul Rahim, R. A Systematic Review of the Potential of Acmella Genus Plants for the Treatment of Musculoskeletal Disorders. Int. J. Mol. Sci. 2025, 26, 6493. https://doi.org/10.3390/ijms26136493
Abdul Malik MM, Shuid AN, Ridzuan NRA, Naina Mohamed I, Mohd Ramli ES, Shuid AN, Abdul Rahim R. A Systematic Review of the Potential of Acmella Genus Plants for the Treatment of Musculoskeletal Disorders. International Journal of Molecular Sciences. 2025; 26(13):6493. https://doi.org/10.3390/ijms26136493
Chicago/Turabian StyleAbdul Malik, Mohd Maaruf, Ahmad Nazrun Shuid, Nurul Raudzah Adib Ridzuan, Isa Naina Mohamed, Elvy Suhana Mohd Ramli, Ahmad Naqib Shuid, and Rohanizah Abdul Rahim. 2025. "A Systematic Review of the Potential of Acmella Genus Plants for the Treatment of Musculoskeletal Disorders" International Journal of Molecular Sciences 26, no. 13: 6493. https://doi.org/10.3390/ijms26136493
APA StyleAbdul Malik, M. M., Shuid, A. N., Ridzuan, N. R. A., Naina Mohamed, I., Mohd Ramli, E. S., Shuid, A. N., & Abdul Rahim, R. (2025). A Systematic Review of the Potential of Acmella Genus Plants for the Treatment of Musculoskeletal Disorders. International Journal of Molecular Sciences, 26(13), 6493. https://doi.org/10.3390/ijms26136493