The Development of a Sensitive and Selective Method for the Quantitative Detection of Ricin via ICP-MS Combined with Metal Element Chelated Tag and Modified Nanoparticles
Abstract
1. Introduction
2. Results and Discussion
2.1. The Design Principle and Characterization Analysis for Element Label Tags
2.2. Optimization of the Synthesis Scheme and Characterization of DOTA-NHS-ester
2.3. The Design Principle and Preparation Process for the Specifically Ricin-Enriched Magnetic Beads
2.4. The Verification of Specificity and Sensitivity for the Sample Preparation via Ricin-Enriched Magnetic Beads
2.5. Linear Range, Limit of Detection (LOD), and Limit of Quantitation (LOQ)
2.6. The Analysis Results for the Actual Environmental Samples
2.7. The Assessment of Matrix Effects
3. Materials and Methods
3.1. Safety Precaution
3.2. Chemicals and Instruments
- (1)
- The coating buffer was Tris-HCl buffer solution (100 mM, pH 7.4) containing 0.05% polysorbate 20.
- (2)
- The cleaning solutions were 1 mM HCl, 0.1 M acetic acid-sodium acetate, 0.5 M NaCl, pH 3.0, and 0.1 M Tris-HCl, 0.5 M NaCl, pH 8.0.
- (3)
- The protective solution was 1 × PBS containing 20% ethanol.
- (4)
- The immune reaction solution was 0.1 M Tris-HCl, 0.05% tween 20, pH 7.4.
- (5)
- The coupling solution was 0.2 M NaHCO3, 0.5 M NaCl, pH 8.0.
- (6)
- The blocking solution was 0.1 M Tris, pH 8.5.
3.3. Sample Preparation
3.3.1. Synthesis and Characterization of DOTA-NHS-Eu
3.3.2. Preparation of Specifically Ricin-Enriched Magnetic Beads
3.3.3. Preparation of Selective Adsorption via DOTA-NHS-Eu and Ricin-Enriched Magnetic Beads
3.3.4. ICP-MS Analysis
3.3.5. Method Verification and Calibration Curve
3.3.6. Actual Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, S.Z.; Qin, Z.H. Research progress of biotoxins. J. Toxicol. 2006, 20, 257–258. [Google Scholar]
- van Apeldoorn, M.E.; van Egmond, H.P.; Speijers Gerrit, J.A.; Bakker Guido, J.I. Toxins of cyanobacteria. Mol. Nutr. Food Res. 2007, 51, 7–60. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.X. Research progress of medical application of biotoxins. Biotechnology 2006, 16, 84–86, (In Chinese with English abstract). [Google Scholar]
- Barbieri, L.; Bolognesi, A.; Valbonesi, P.; Polito, L.; Olivieri, F.; Stirpe, F. Polynucleotide: Adenosine glycosidase activity of immunotoxins containing ribosome-inactivating proteins. J. Drug Target. 2000, 8, 281–288. [Google Scholar] [CrossRef]
- Bolognesi, A.; Bortolotti, M.; Maiello, S.; Battelli, M.G.; Polito, L. Ribosome-Inactivating Proteins from Plants: A Historical Overview. Molecules 2016, 21, 1627. [Google Scholar] [CrossRef]
- Polito, L.; Bortolotti, M.; Farini, V.; Battelli, M.G.; Barbieri, L.; Bolognesi, A. Saporin induces multiple death pathways in lymphoma cells with different intensity and timing as compared to ricin. Int. J. Biochem. Cell Biol. 2009, 41, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Ngo, T.N.; Nguyen, T.T.; Bui, D.T.-T.; Hoang, N.T.-M.; Nguyen, T.D. Effects of ricin extracted from seeds of the castor bean (Ricinus communis) on cytotoxicity and tumorigenesis of melanoma cells. Biomed. Res. Ther. 2016, 3, 633–644. [Google Scholar]
- Audi, J.; Belson, M.; Patel, M.; Schier, J.; Osterloh, J. Ricin poisoning-a comprehensive review. JAMA 2005, 294, 2342–2351. [Google Scholar] [CrossRef]
- Cook, D.L.; David, J.; Griffiths, G.D. Retrospective identification of ricin in animal tissues following administration by pulmonary and oral routes. Toxicology 2006, 223, 61–70. [Google Scholar] [CrossRef]
- Roy, C.J.; Song, K.; Sivasubramani, S.K.; Gardner, D.J.; Pincus, S.H. Animal models of ricin toxicosis. Curr. Top. Microbiol. Immunol. 2012, 357, 243–257. [Google Scholar]
- He, X.; Carter, J.M.; Brandon, D.L.; Cheng, L.W.; McKeon, T.A. Application of a real time polymerase chain reaction method to detect castor toxin contamination in fluid milk and eggs. J. Agric. Food Chem. 2007, 55, 6897–6902. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.J.; Stafford, R.G.; Millard, C.B. High-throughput assays for botulinum neurotoxin proteolytic activity: Serotypes A, B, D, and F. Anal. Biochem. 2001, 296, 130–137. [Google Scholar] [CrossRef] [PubMed]
- OPCW—Organisation for the Prohibition of Chemical Weapons. Ricin Fact Sheet. 2014. Available online: https://www.opcw.org/chemical-weapons-convention/annexes/annex-chemicals/schedule-1 (accessed on 14 February 2021).
- Chiou, J.-C.; Li, X.-P.; Remacha, M.; Ballesta, J.P.; Tumer, N.E. The ribosomal stalk is required for ribosome binding, depurination of the rRNA and cytotoxicity of ricin A chain in Saccharomyces cerevisiae. Mol. Microbiol. 2008, 70, 1441–1452. [Google Scholar] [CrossRef] [PubMed]
- Shyu, H.F.; Chaio, D.J.; Liu, H.W.; Tang, S.S. Monoclonal antibody-based enzyme immunoassay for detection ricin. Hybrid. Hybridomics. 2002, 21, 69–73. [Google Scholar] [CrossRef]
- Lang, L.W.; Wang, C.Y.; Wang, Y.X. Stability of ricin in serum and liver homogenate of normal mice by Western blotting. J. Yantai Univ. (Nat. Sci. Eng. Ed.) 2010, 23, 243–246, (In Chinese with English abstract). [Google Scholar]
- Delehanty, J.B.; Ligler, F.S. A microarray immunoassay for simultaneous detection of proteins and bacteria. Anal. Chem. 2002, 74, 5681–5687. [Google Scholar] [CrossRef]
- Tang, J.; Tao, Y.; Lei, G. In vitro selection of DNA aptamer against abrin toxin and aptamer-based abrin direct detection. Biosens. Bioelectron. 2007, 22, 2456–2463. [Google Scholar] [CrossRef]
- Tang, J.; Xie, J.; Shao, N.; Tang, J.; Xie, J.; Shao, N.; Yan, Y. The DNA aptamers that specifically recognize ricin toxin are selected by two in vitro selection methods. Electrophoresis 2006, 27, 1303–1311. [Google Scholar] [CrossRef]
- Joshi, S.G. Detection of biologically active botulinum neurotoxin-A in serum using high-throughput FRET-assay. J. Pharmacol. Toxicol. Methods 2012, 65, 8–12. [Google Scholar] [CrossRef]
- Ruge, D.R.; Dunning, F.M.; Piazza, T.M.; Molles, B.E.; Adler, M.; Zeytin, F.N.; Tucker, W.C. Detection of six serotypes of botulinum neurotoxin using fluorogenic reporters. Anal. Biochem. 2011, 411, 200–209. [Google Scholar] [CrossRef]
- Bagramyan, K.; Barash, J.R.; Arnon, S.S.; Kalkum, M. Attomolar detection of botulinum toxin type A in complex biological matrices. PLoS ONE 2008, 3, e2041. [Google Scholar] [CrossRef] [PubMed]
- Schieltz, D.M.; McWilliams, L.G.; Kuklenyik, Z.; Prezioso, S.M.; Carter, A.J.; Williamson, Y.M.; McGrath, S.C.; Morse, S.A.; Barr, J.R. Quantification of ricin, rca and comparison of enzymatic activity in 18 ricinus communis cultivars by isotope dilution mass spectrometry. Toxicon 2015, 95, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Becher, F.; Duriez, E.; Volland, H.; Tabet, J.C.; Ezan, E. Detection of functional ricin by immunoaffinity and liquid chromatography-tandem mass spectrometry. Anal. Chem. 2007, 79, 659–665. [Google Scholar] [CrossRef]
- Brinkworth, C.S.; Pigott, E.J.; Bourne, D.J. Detection of intact ricin in crude and purified extracts from castor beans using matrix-assisted laser desorption ionization mass spectrometry. Anal. Chem. 2009, 81, 1529–1535. [Google Scholar] [CrossRef]
- Despeyroux, D.; Walker, N.; Pearce, M. Characterization of ricin heterogeneity by electrospray mass spectrometry, capillary electrophoresis, and resonant mirror. Anal. Biochem. 2000, 279, 23–36. [Google Scholar] [CrossRef]
- Kalb, S.R.; Schieltz, D.M.; Becher, F.; Astot, C.; Fredriksson, S.Å.; Barr, J.R. Recommended Mass Spectrometry-Based Strategies to Identify Ricin-Containing Samples. Toxins 2015, 7, 4881–4894. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Wang, J. Method for quantitative proteomics research by using metal element chelated tags coupled with mass spectrometry. Anal. Chem. 2006, 78, 6614–6621. [Google Scholar] [CrossRef] [PubMed]
- Sheng, F.; He, W.W. Preparation of (177) Lu-DOTA/DTPA-Bz-Cys-RGD Dimer and Biodistribution Evaluation in Normal Mice. J. Nucl. Chem. Radioanal. 2008, 30, 70–74. [Google Scholar]
- Zhang, C.; Wu, F.B.; Zhang, Y.Y.; Wang, X.; Zhang, X.R. A novel combination of immunoreaction and ICP-MS as a hyphenated technique for the determination of thyroid-stimulating hormone (TSH) in human serum. J. Anal. At. Spectrom. 2001, 16, 1393–1396. [Google Scholar] [CrossRef]
- Beveridge, J.S.; Stephens, J.R.; Williams, M.E. The Use of Magnetic Nanoparticles in Analytical Chemistry. Annu. Rev. Anal. Chem. 2011, 4, 251. [Google Scholar] [CrossRef]
- Chikkaveeraiah, B.V.; Bhirde, A.A.; Morgan, N.Y. Electrochemical Immunosensors for Detection of Cancer Protein Biomarkers. Acs Nano 2012, 6, 6546–6561. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.Q.; Yuan, X. Aptamer-linked assay for thrombin using gold nanoparticle amplification and inductively coupled plasma-mass spectrometry detection. Anal. Chem. 2009, 81, 7484–7489. [Google Scholar] [CrossRef] [PubMed]
- Konz, T.; Anon, A.E.; Montes-Bayon, M. Antibody labeling and elemental mass spectrometry (inductively coupled plasma-mass spectrometry) using isotope dilution for highly sensitive ferritin determination and iron-ferritin ratio measurements. Anal. Chem. 2013, 85, 8334–8340. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, C.; Xing, Z.; Zhang, X. Simultaneous determination of alpha-fetoprotein and free beta-human chorionic gonadotropin by element-tagged immunoassay with detection by inductively coupled plasma mass spectrometry. Clin. Chem. 2004, 50, 1214–1221. [Google Scholar]
- Patra, C.R.; Moneim, S.S.A.; Wang, E.; Dutta, S.; Patra, S.; Eshed, M.; Mukherjee, P.; Gedanken, A.; Shah, V.H.; Mukhopadhyay, D. In vivo toxicity studies of europium hydroxide nanorods in mice. Toxicol. Appl. Pharmacol. 2009, 240, 88–98. [Google Scholar] [CrossRef]
- Toth, E.; Brucher, E. Stability constants of the lanthanide(III)-1,4,7,10-tetraazacyclododecane-N,N′,N″,N‴-tetraacetate complexes. J. Inorganica Chim. Acta 1994, 221, 165–167. [Google Scholar] [CrossRef]
- Mädler, S.; Bich, C.; Touboul, D.; Zenobi, R. Chemical cross-linking with NHS esters. J. Mass Spectrom. 2009, 44, 694–706. [Google Scholar] [CrossRef]
- Matic, I.; Grujic, S.; Jaukovic, Z.; Lausevic, M. Trace analysis of selected hormones and sterols in river sediments by liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. J. Chromatogr. A 2014, 1364, 117–127. [Google Scholar] [CrossRef]
Analytes | Linear Range (μg/mL) | Linear Equation | R2 | ||||
---|---|---|---|---|---|---|---|
Ricin | 0.1–100 | y = 81.543x + 674.02 | 0.9989 | ||||
Sample ID | theoretical concentration (μg/mL) | intraday (n = 6) | interday (n = 6) | ||||
calculated concentration (μg/mL) | Accuracy (%) | RSD (%) | calculated concentration (μg/mL) | Accuracy (%) | RSD (%) | ||
QCL | 1.0 | 1.06 ± 0.01 | 106.2 | 4.93 | 0.98 ± 0.01 | 98.2 | 4.88 |
QCM | 50.0 | 53.1 ± 1.1 | 106.1 | 3.66 | 48.57 ± 1.02 | 97.1 | 3.82 |
QCH | 80.0 | 77.9 ± 1.2 | 97.5 | 2.89 | 77.4 ± 1.13 | 96.7 | 3.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, L.; Li, K.; Wu, J.; Xing, Z.; Li, X.; Liu, S. The Development of a Sensitive and Selective Method for the Quantitative Detection of Ricin via ICP-MS Combined with Metal Element Chelated Tag and Modified Nanoparticles. Int. J. Mol. Sci. 2025, 26, 5641. https://doi.org/10.3390/ijms26125641
Yan L, Li K, Wu J, Xing Z, Li X, Liu S. The Development of a Sensitive and Selective Method for the Quantitative Detection of Ricin via ICP-MS Combined with Metal Element Chelated Tag and Modified Nanoparticles. International Journal of Molecular Sciences. 2025; 26(12):5641. https://doi.org/10.3390/ijms26125641
Chicago/Turabian StyleYan, Long, Kexuan Li, Jina Wu, Zhongfang Xing, Xiaosen Li, and Shilei Liu. 2025. "The Development of a Sensitive and Selective Method for the Quantitative Detection of Ricin via ICP-MS Combined with Metal Element Chelated Tag and Modified Nanoparticles" International Journal of Molecular Sciences 26, no. 12: 5641. https://doi.org/10.3390/ijms26125641
APA StyleYan, L., Li, K., Wu, J., Xing, Z., Li, X., & Liu, S. (2025). The Development of a Sensitive and Selective Method for the Quantitative Detection of Ricin via ICP-MS Combined with Metal Element Chelated Tag and Modified Nanoparticles. International Journal of Molecular Sciences, 26(12), 5641. https://doi.org/10.3390/ijms26125641