Circulating miR-10b-5p, miR-193a-3p, and miR-1-3p Are Deregulated in Patients with Heart Failure and Correlate with Hormonal Deficiencies
Abstract
1. Introduction
2. Results
2.1. Circulating miRNA Expression in CHF Patients
2.2. miRNA Profiles and Clinical/Functional Indexes
2.2.1. NT-proBNP, Ejection Fraction, Atrial Fibrillation, and Body Mass Index
2.2.2. NYHA
2.3. miRNA Profiles and Hormonal Axis Deficits
2.4. miRNA and Gene Network Analysis
3. Discussion
4. Materials and Methods
4.1. Patients and Study Design
4.2. Plasma Collection, RNA Extraction, and Reverse Transcription
4.3. Quantitative Real-Time PCR (qRT-PCR)
4.4. Measurement of Blood Chemistry
4.5. miRNA-Gene Network Analysis
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosano, G.M.C.; Seferovic, P.; Savarese, G.; Spoletini, I.; Lopatin, Y.; Gustafsson, F.; Bayes-Genis, A.; Jaarsma, T.; Abdelhamid, M.; Miqueo, A.G.; et al. Impact analysis of heart failure across European countries: An ESC-HFA position paper. ESC Heart Fail. 2022, 9, 2767–2778. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2022, 24, 4–131. [Google Scholar] [CrossRef] [PubMed]
- Saccà, L. Heart failure as a multiple hormonal deficiency syndrome. Circ. Heart Fail. 2009, 2, 151–156. [Google Scholar] [CrossRef]
- Salzano, A.; Cittadini, A.; Bossone, E.; Suzuki, T.; Heaney, L.M. Multiple hormone deficiency syndrome: A novel topic in chronic heart failure. Future Sci. OA 2018, 4, FSO311. [Google Scholar] [CrossRef]
- Napoli, R.; D’Assante, R.; Miniero, M.; Salzano, A.; Cittadini, A. Anabolic Deficiencies in Heart Failure: Ready for Prime Time? Heart Fail. Clin. 2020, 16, 11–21. [Google Scholar] [CrossRef]
- Lisco, G.; Giagulli, V.A.; Iovino, M.; Zupo, R.; Guastamacchia, E.; De Pergola, G.; Iacoviello, M.; Triggiani, V. Endocrine system dysfunction and chronic heart failure: A clinical perspective. Endocrine 2022, 75, 360–376. [Google Scholar] [CrossRef]
- Cittadini, A.; Salzano, A.; Iacoviello, M.; Triggiani, V.; Rengo, G.; Cacciatore, F.; Maiello, C.; Limongelli, G.; Masarone, D.; Perticone, F.; et al. Multiple hormonal and metabolic deficiency syndrome predicts outcome in heart failure: The T.O.S.CA. Registry. Eur. J. Prev. Cardiol. 2021, 28, 1691–1700. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef]
- Saliminejad, K.; Khorram Khorshid, H.R.; Soleymani Fard, S.; Ghaffari, S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol. 2019, 234, 5451–5465. [Google Scholar] [CrossRef]
- Peterlin, A.; Počivavšek, K.; Petrovič, D.; Peterlin, B. The Role of microRNAs in Heart Failure: A Systematic Review. Front. Cardiovasc. Med. 2020, 7, 161. [Google Scholar] [CrossRef]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef] [PubMed]
- González, A.; Richards, A.M.; de Boer, R.A.; Thum, T.; Arfsten, H.; Hülsmann, M.; Falcao-Pires, I.; Díez, J.; Foo, R.S.Y.; Chan, M.Y.; et al. Cardiac remodelling—Part 1: From cells and tissues to circulating biomarkers. A review from the Study Group on Biomarkers of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2022, 24, 927–943. [Google Scholar] [CrossRef] [PubMed]
- Terrinoni, A.; Calabrese, C.; Basso, D.; Aita, A.; Caporali, S.; Plebani, M.; Bernardini, S. The circulating miRNAs as diagnostic and prognostic markers. Clin. Chem. Lab. Med. 2019, 57, 932–953. [Google Scholar] [CrossRef]
- Hill, M.; Tran, N. miRNA interplay: Mechanisms and consequences in cancer. Dis. Model. Mech. 2021, 14, dmm047662. [Google Scholar] [CrossRef]
- Mirzaei, R.; Zamani, F.; Hajibaba, M.; Rasouli-Saravani, A.; Noroozbeygi, M.; Gorgani, M.; Hosseini-Fard, S.R.; Jalalifar, S.; Ajdarkosh, H.; Abedi, S.H.; et al. The pathogenic, therapeutic and diagnostic role of exosomal microRNA in the autoimmune diseases. J. Neuroimmunol. 2021, 358, 577640. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, Y.; Gao, Q.; Ping, D.; Wang, Y.; Wu, W.; Lin, X.; Fang, Y.; Zhang, J.; Shao, A. The Role of Exosomal microRNAs and Oxidative Stress in Neurodegenerative Diseases. Oxid. Med. Cell. Longev. 2020, 2020, 3232869. [Google Scholar] [CrossRef]
- Wojciechowska, A.; Braniewska, A.; Kozar-Kamińska, K. MicroRNA in cardiovascular biology and disease. Adv. Clin. Exp. Med. 2017, 26, 865–874. [Google Scholar] [CrossRef]
- Vilella-Figuerola, A.; Gallinat, A.; Escate, R.; Mirabet, S.; Padró, T.; Badimon, L. Systems Biology in Chronic Heart Failure-Identification of Potential miRNA Regulators. Int. J. Mol. Sci. 2022, 23, 15226. [Google Scholar] [CrossRef]
- Fung, E.C.; Butt, A.N.; Eastwood, J.; Swaminathan, R.; Sodi, R. Circulating microRNA in cardiovascular disease. Adv. Clin. Chem. 2019, 91, 99–122. [Google Scholar] [CrossRef]
- Bär, C.; Chatterjee, S.; Falcão Pires, I.; Rodrigues, P.; Sluijter, J.P.G.; Boon, R.A.; Nevado, R.M.; Andrés, V.; Sansonetti, M.; de Windt, L.; et al. Non-coding RNAs: Update on mechanisms and therapeutic targets from the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovasc. Res. 2020, 116, 1805–1819. [Google Scholar] [CrossRef]
- Chen, C.; Ponnusamy, M.; Liu, C.; Gao, J.; Wang, K.; Li, P. MicroRNA as a Therapeutic Target in Cardiac Remodeling. Biomed. Res. Int. 2017, 2017, 1278436. [Google Scholar] [CrossRef] [PubMed]
- Wehbe, N.; Nasser, S.A.; Pintus, G.; Badran, A.; Eid, A.H.; Baydoun, E. MicroRNAs in Cardiac Hypertrophy. Int. J. Mol. Sci. 2019, 20, 4714. [Google Scholar] [CrossRef]
- Wang, J.; Liew, O.W.; Richards, A.M.; Chen, Y.T. Overview of MicroRNAs in Cardiac Hypertrophy, Fibrosis, and Apoptosis. Int. J. Mol. Sci. 2016, 17, 749. [Google Scholar] [CrossRef]
- Chouvarine, P.; Legchenko, E.; Geldner, J.; Riehle, C.; Hansmann, G. Hypoxia drives cardiac miRNAs and inflammation in the right and left ventricle. J. Mol. Med. 2019, 97, 1427–1438. [Google Scholar] [CrossRef]
- Wong, L.L.; Zou, R.; Zhou, L.; Lim, J.Y.; Phua, D.C.Y.; Liu, C.; Chong, J.P.C.; Ng, J.Y.X.; Liew, O.W.; Chan, S.P.; et al. Combining Circulating MicroRNA and NT-proBNP to Detect and Categorize Heart Failure Subtypes. J. Am. Coll. Cardiol. 2019, 73, 1300–1313. [Google Scholar] [CrossRef]
- Peng, C.; Wang, Y.L. Editorial: MicroRNAs as New Players in Endocrinology. Front. Endocrinol. 2018, 9, 459. [Google Scholar] [CrossRef]
- Soci, U.P.R.; Cavalcante, B.R.R.; Improta-Caria, A.C.; Roever, L. The Epigenetic Role of MiRNAs in Endocrine Crosstalk Between the Cardiovascular System and Adipose Tissue: A Bidirectional View. Front. Cell Dev. Biol. 2022, 10, 910884. [Google Scholar] [CrossRef]
- Santos, D.; Carvalho, E. Adipose-related microRNAs as modulators of the cardiovascular system: The role of epicardial adipose tissue. J. Physiol. 2022, 600, 1171–1187. [Google Scholar] [CrossRef]
- Ji, C.; Guo, X. The clinical potential of circulating microRNAs in obesity. Nat. Rev. Endocrinol. 2019, 15, 731–743. [Google Scholar] [CrossRef]
- Catellani, C.; Ravegnini, G.; Sartori, C.; Righi, B.; Lazzeroni, P.; Bonvicini, L.; Poluzzi, S.; Cirillo, F.; Predieri, B.; Iughetti, L.; et al. Specific miRNAs Change After 3 Months of GH treatment and Contribute to Explain the Growth Response After 12 Months. Front. Endocrinol. 2022, 13, 896640. [Google Scholar] [CrossRef]
- Wang, S.; Guo, X.; Long, C.-l.; Li, C.; Zhang, Y.-f.; Wang, J.; Wang, H. SUR2B/Kir6.1 channel openers correct endothelial dysfunction in chronic heart failure via the miR-1-3p/ET-1 pathway. Biomed. Pharmacother. 2019, 110, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Cui, S.; Chen, L.; Chen, X.-C.; Ma, L.-L.; Yang, H.-N.; Wen, F.-M. Circulating miRNA-1-3p as Biomarker of Accelerated Sarcopenia in Patients Diagnosed with Chronic Heart Failure. Rev. Investig. Clin.-Clin. Transl. Investig. 2022, 74, 276–283. [Google Scholar] [CrossRef]
- Sygitowicz, G.; Tomaniak, M.; Blaszczyk, O.; Koltowski, L.; Filipiak, K.J.; Sitkiewicz, D. Circulating microribonucleic acids miR-1, miR-21 and miR-208a in patients with symptomatic heart failure: Preliminary results. Arch. Cardiovasc. Dis. 2015, 108, 634–642. [Google Scholar] [CrossRef] [PubMed]
- Spinar, J.; Spinarova, L.; Malek, F.; Ludka, O.; Krejci, J.; Ostadal, P.; Vondrakova, D.; Labr, K.; Spinarova, M.; Goldbergova, M.P.; et al. Prognostic value of NT-proBNP added to clinical parameters to predict two-year prognosis of chronic heart failure patients with mid-range and reduced ejection fraction—A report from FAR NHL prospective registry. PLoS ONE 2019, 14, e0214363. [Google Scholar] [CrossRef]
- Singh, D.D.; Kim, Y.; Choi, S.A.; Han, I.; Yadav, D.K. Clinical Significance of MicroRNAs, Long Non-Coding RNAs, and CircRNAs in Cardiovascular Diseases. Cells 2023, 12, 1629. [Google Scholar] [CrossRef]
- Clerico, A.; Zaninotto, M.; Passino, C.; Plebani, M. New issues on measurement of B-type natriuretic peptides. Clin. Chem. Lab. Med. 2017, 56, 32–39. [Google Scholar] [CrossRef]
- Sessa, F.; Salerno, M.; Esposito, M.; Cocimano, G.; Pomara, C. miRNA Dysregulation in Cardiovascular Diseases: Current Opinion and Future Perspectives. Int. J. Mol. Sci. 2023, 24, 5192. [Google Scholar] [CrossRef]
- Morales-Sánchez, P.; Lambert, C.; Ares-Blanco, J.; Suárez-Gutiérrez, L.; Villa-Fernández, E.; Garcia, A.V.; García-Villarino, M.; Tejedor, J.R.; Fraga, M.F.; Torre, E.M.; et al. Circulating miRNA expression in long-standing type 1 diabetes mellitus. Sci. Rep. 2023, 13, 8611. [Google Scholar] [CrossRef]
- Badacz, R.; Kleczynski, P.; Legutko, J.; Zmudka, K.; Gacon, J.; Przewlocki, T.; Kablak-Ziembicka, A. Expression of miR-1-3p, miR-16-5p and miR-122-5p as Possible Risk Factors of Secondary Cardiovascular Events. Biomedicines 2021, 9, 1055. [Google Scholar] [CrossRef]
- Elia, L.; Contu, R.; Quintavalle, M.; Varrone, F.; Chimenti, C.; Russo, M.A.; Cimino, V.; De Marinis, L.; Frustaci, A.; Catalucci, D.; et al. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation 2009, 120, 2377–2385. [Google Scholar] [CrossRef]
- Wang, B.; Li, Y.; Hao, X.; Yang, J.; Han, X.; Li, H.; Li, T.; Wang, D.; Teng, Y.; Ma, L.; et al. Comparison of the Clinical Value of miRNAs and Conventional Biomarkers in AMI: A Systematic Review. Front. Genet. 2021, 12, 668324. [Google Scholar] [CrossRef] [PubMed]
- Galluzzo, A.; Gallo, S.; Pardini, B.; Birolo, G.; Fariselli, P.; Boretto, P.; Vitacolonna, A.; Peraldo-Neia, C.; Spilinga, M.; Volpe, A.; et al. Identification of novel circulating microRNAs in advanced heart failure by next-generation sequencing. ESC Heart Fail. 2021, 8, 2907–2919. [Google Scholar] [CrossRef]
- Wu, L.; Chen, Y.; Chen, Y.; Yang, W.; Han, Y.; Lu, L.; Yang, K.; Cao, J. Effect of HIF-1 alpha/miR-10b-5p/PTEN on Hypoxia-Induced Cardiomyocyte Apoptosis. J. Am. Heart Assoc. 2019, 8, e011948. [Google Scholar] [CrossRef]
- Cao, C.; Wang, B.; Tang, J.; Zhao, J.; Guo, J.; Guo, Q.; Yue, X.; Zhang, Z.; Liu, G.; Zhang, H.; et al. Circulating exosomes repair endothelial cell damage by delivering miR-193a-5p. J. Cell. Mol. Med. 2021, 25, 2176–2189. [Google Scholar] [CrossRef]
- Elmoselhi, A.; Seif Allah, M.; Bouzid, A.; Ibrahim, Z.; Venkatachalam, T.A.; Siddiqui, R.; Khan, N.A.; Hamoudi, R. Circulating microRNAs as potential biomarkers of early vascular damage in vitamin D deficiency, obese, and diabetic patients. PLoS ONE 2023, 18, e0283608. [Google Scholar] [CrossRef]
- Mirabelli, P.; Incoronato, M.; Coppola, L.; Infante, T.; Parente, C.A.; Nicolai, E.; Soricelli, A.; Salvatore, M. SDN biobank: Bioresource of human samples associated with functional and/or morphological bioimaging results for the study of oncological, cardiological, neurological, and metabolic diseases. Open J. Bioresour. 2017, 4, 2. [Google Scholar] [CrossRef]
- Faraldi, M.; Gomarasca, M.; Banfi, G.; Lombardi, G. Free Circulating miRNAs Measurement in Clinical Settings: The Still Unsolved Issue of the Normalization. Adv. Clin. Chem. 2018, 87, 113–139. [Google Scholar] [CrossRef]
- Incoronato, M.; Grimaldi, A.M.; Mirabelli, P.; Cavaliere, C.; Parente, C.A.; Franzese, M.; Staibano, S.; Ilardi, G.; Russo, D.; Soricelli, A.; et al. Circulating miRNAs in Untreated Breast Cancer: An Exploratory Multimodality Morpho-Functional Study. Cancers 2019, 11, 876. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020, 48, D127–D131. [Google Scholar] [CrossRef]
- Pathan, M.; Keerthikumar, S.; Ang, C.-S.; Gangoda, L.; Quek, C.Y.J.; Williamson, N.A.; Mouradov, D.; Sieber, O.M.; Simpson, R.J.; Salim, A.; et al. FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics 2015, 15, 2597–2601. [Google Scholar] [CrossRef]
miR-10b-5p | Test − | Test + | Total | Sensitivity % | Specificity % | Diagnostic Accuracy |
Disease − | 33 (TN) | 2 (FP) | 35 | 57.4 | 94.3 | 0.67 |
Disease + | 40 (FN) | 54 (TP) | 94 | |||
Total | 73 | 56 | 129 | |||
miR-193a-5p | Test − | Test + | Total | Sensitivity | Specificity | Diagnostic accuracy |
Disease − | 23 (TN) | 12 (FP) | 35 | 68.1 | 65.7 | 0.67 |
Disease + | 30 (FN) | 64 (TP) | 94 | |||
Total | 53 | 76 | 129 | |||
miR-1-3p | Test − | Test + | Total | Sensitivity | Specificity | Diagnostic accuracy |
Disease − | 34 (TN) | 1 (FP) | 35 | 36.2 | 97.1 | 0.53 |
Disease + | 60 (FN) | 34 (TP) | 94 | |||
Total | 94 | 35 | 129 | |||
miR-1-3p + miR-10b-5p | Test − | Test + | Total | Sensitivity | Specificity | Diagnostic accuracy |
Disease − | 32 (TN) | 3 (FP) | 35 | 62.8 | 91.4 | 0.7 |
Disease + | 35 (FN) | 59 (TP) | 94 | |||
Total | 67 | 62 | 129 | |||
miR-1-3p + miR-193a-5p | Test − | Test + | Total | Sensitivity | Specificity | Diagnostic accuracy |
Disease − | 22 (TN) | 13 (FP) | 35 | 72.3 | 62.9 | 0.7 |
Disease + | 26 (FN) | 68 (TP) | 94 | |||
Total | 48 | 81 | 129 | |||
miR-10b-3p + miR-193a-5p | Test − | Test + | Total | Sensitivity | Specificity | Diagnostic accuracy |
Disease − | 23 (TN) | 12 (FP) | 35 | 74.5 | 65.7 | 0.72 |
Disease + | 24 (FN) | 70 (TP) | 94 | |||
Total | 47 | 82 | 129 | |||
miR-1-3p + miR-10b-5p + miR-193a-5p | Test − | Test + | Total | Sensitivity | Specificity | Diagnostic accuracy |
Disease − | 22 (TN) | 13 (FP) | 35 | 75.5 | 62.9 | 0.72 |
Disease + | 23 (FN) | 71 (TP) | 94 | |||
Total | 45 | 84 | 129 |
Clinical Indexes | HF Patients (n = 94) |
---|---|
Age (years) | 64 ± 12 |
Gender (n; % Male) | 76; 81 |
NYHA I (n; %) | 10; 11 |
NYHA II (n; %) | 50; 53 |
NYHA III (n; %) | 30; 32 |
NYHA IV (n; %) | 4; 4 |
Etiology (n; % ischemics) | 55; 59 |
Systolic blood pressure (mm/Hg) | 123 ± 15 |
Diastolic blood pressure (mm/Hg) | 75 ± 12 |
Type II diabetes mellitus, (n; %) | 18; 19 |
BMI (Kg/m2) | 28 ± 5 |
eGFR (mL/min per 1.73 m2) | 70 ± 20 |
NT-proBNP (pg/mL) | 1695 ± 3249 |
Left ventricular ejection fraction | 38 ± 7 |
Atrial fibrillation (n; %) | 17; 18 |
ICD (n; %) | 27; 29 |
CRT (n; %) | 17; 18 |
Drugs | |
β-blockers (n; %) | 51; 54 |
ACE-I/ARBs (n; %) | 40; 43 |
MRA (n; %) | 25; 27 |
Diuretics (n; %) | 38; 40 |
Amiodarone (n; %) | 12; 13 |
Digoxin (n; %) | 3; 3 |
Antiplatelet drugs and/or anticoagulants (n; %) | 50; 53 |
Statins (n; %) | 44; 47 |
Ivabradine (n; %) | 4; 4 |
Antidiabetics (n; %) | 16; 17 |
Hormone Deficiency | Value for Diagnosis |
---|---|
Insulin-like growth factor 1 (IGF-1) | age < 55 years: <122 ng/mL 55 years < age < 64.9 years: <109 ng/mL 65 years < age < 74.9 years: <102 ng/dL age > 75 years: <99 ng/dL |
Testosterone | Men: <300 ng/dL Women: <25 ng/dL |
Dehydroepiandrosterone sulfate (DHEA-S) | <80 µg/dL |
Free triiodothyronine (fT3) | <2 pg/mL (3.1 mmol/L) with TSH in the normal range (0.55–4.78 µUI/mL) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grimaldi, A.M.; D’Assante, R.; Fiore, F.; Marcella, S.; Paolillo, S.; Cacciatore, F.; Mercurio, V.; Bossone, E.; Cittadini, A.; Tocchetti, C.G.; et al. Circulating miR-10b-5p, miR-193a-3p, and miR-1-3p Are Deregulated in Patients with Heart Failure and Correlate with Hormonal Deficiencies. Int. J. Mol. Sci. 2025, 26, 5225. https://doi.org/10.3390/ijms26115225
Grimaldi AM, D’Assante R, Fiore F, Marcella S, Paolillo S, Cacciatore F, Mercurio V, Bossone E, Cittadini A, Tocchetti CG, et al. Circulating miR-10b-5p, miR-193a-3p, and miR-1-3p Are Deregulated in Patients with Heart Failure and Correlate with Hormonal Deficiencies. International Journal of Molecular Sciences. 2025; 26(11):5225. https://doi.org/10.3390/ijms26115225
Chicago/Turabian StyleGrimaldi, Anna Maria, Roberta D’Assante, Francesco Fiore, Simone Marcella, Stefania Paolillo, Francesco Cacciatore, Valentina Mercurio, Eduardo Bossone, Antonio Cittadini, Carlo Gabriele Tocchetti, and et al. 2025. "Circulating miR-10b-5p, miR-193a-3p, and miR-1-3p Are Deregulated in Patients with Heart Failure and Correlate with Hormonal Deficiencies" International Journal of Molecular Sciences 26, no. 11: 5225. https://doi.org/10.3390/ijms26115225
APA StyleGrimaldi, A. M., D’Assante, R., Fiore, F., Marcella, S., Paolillo, S., Cacciatore, F., Mercurio, V., Bossone, E., Cittadini, A., Tocchetti, C. G., & Incoronato, M. (2025). Circulating miR-10b-5p, miR-193a-3p, and miR-1-3p Are Deregulated in Patients with Heart Failure and Correlate with Hormonal Deficiencies. International Journal of Molecular Sciences, 26(11), 5225. https://doi.org/10.3390/ijms26115225