Advances in Research on the B-Lineage Transcription Factor EBF1 in Solid Tumors
Abstract
1. Introduction
2. The Function of EBF1 in Solid Tumors
2.1. Breast Cancer
2.2. Gastric Cancer
2.3. Colorectal Cancer
2.4. Bladder Cancer
2.5. Prostate Cancer
2.6. Others
3. Regulation of EBF1 Expression in Solid Tumors
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kee, B.L. It’s a Phase That EBF1 Is Going Through. Immunity 2020, 53, 1123–1125. [Google Scholar] [CrossRef] [PubMed]
- Siponen, M.I.; Wisniewska, M.; Lehtiö, L.; Johansson, I.; Svensson, L.; Raszewski, G.; Nilsson, L.; Sigvardsson, M.; Berglund, H. Structural determination of functional domains in early B-cell factor (EBF) family of transcription factors reveals similarities to Rel DNA-binding proteins and a novel dimerization motif. J. Biol. Chem. 2010, 285, 25875–25879. [Google Scholar] [CrossRef] [PubMed]
- Treiber, N.; Treiber, T.; Zocher, G.; Grosschedl, R. Structure of an Ebf1:DNA complex reveals unusual DNA recognition and structural homology with Rel proteins. Genes Dev. 2010, 24, 2270–2275. [Google Scholar] [CrossRef]
- Daburon, V.; Mella, S.; Plouhinec, J.-L.; Mazan, S.; Crozatier, M.; Vincent, A. The metazoan history of the COE transcription factors. Selection of a variant HLH motif by mandatory inclusion of a duplicated exon in vertebrates. BMC Evol. Biol. 2008, 8, 131. [Google Scholar] [CrossRef]
- Hagman, J.; Gutch, M.J.; Lin, H.; Grosschedl, R. EBF contains a novel zinc coordination motif and multiple dimerization and transcriptional activation domains. EMBO J. 1995, 14, 2907–2916. [Google Scholar] [CrossRef]
- Boller, S.; Ramamoorthy, S.; Akbas, D.; Nechanitzky, R.; Burger, L.; Murr, R.; Schübeler, D.; Grosschedl, R. Pioneering Activity of the C-Terminal Domain of EBF1 Shapes the Chromatin Landscape for B Cell Programming. Immunity 2016, 44, 527–541. [Google Scholar] [CrossRef]
- Wang, Y.; Zolotarev, N.; Yang, C.-Y.; Rambold, A.; Mittler, G.; Grosschedl, R. A Prion-like Domain in Transcription Factor EBF1 Promotes Phase Separation and Enables B Cell Programming of Progenitor Chromatin. Immunity 2020, 53, 1151–1167.e6. [Google Scholar] [CrossRef] [PubMed]
- Sen, R. A Pioneer’s Tail. Immunity 2016, 44, 516–518. [Google Scholar] [CrossRef]
- Györy, I.; Boller, S.; Nechanitzky, R.; Mandel, E.; Pott, S.; Liu, E.; Grosschedl, R. Transcription factor Ebf1 regulates differentiation stage-specific signaling, proliferation, and survival of B cells. Genes Dev. 2012, 26, 668–682. [Google Scholar] [CrossRef]
- Vilagos, B.; Hoffmann, M.; Souabni, A.; Sun, Q.; Werner, B.; Medvedovic, J.; Bilic, I.; Minnich, M.; Axelsson, E.; Jaritz, M.; et al. Essential role of EBF1 in the generation and function of distinct mature B cell types. J. Exp. Med. 2012, 209, 775–792. [Google Scholar] [CrossRef]
- Mansson, R.; Welinder, E.; Åhsberg, J.; Lin, Y.C.; Benner, C.; Glass, C.K.; Lucas, J.S.; Sigvardsson, M.; Murre, C. Positive intergenic feedback circuitry, involving EBF1 and FOXO1, orchestrates B-cell fate. Proc. Natl. Acad. Sci. USA 2012, 109, 21028–21033. [Google Scholar] [CrossRef] [PubMed]
- Pongubala, J.M.R.; Northrup, D.L.; Lancki, D.W.; Medina, K.L.; Treiber, T.; Bertolino, E.; Thomas, M.; Grosschedl, R.; Allman, D.; Singh, H. Transcription factor EBF restricts alternative lineage options and promotes B cell fate commitment independently of Pax5. Nat. Immunol. 2008, 9, 203–215. [Google Scholar] [CrossRef]
- Zhang, Z.; Cotta, C.V.; Stephan, R.P.; de Guzman, C.G.; Klug, C.A. Enforced expression of EBF in hematopoietic stem cells restricts lymphopoiesis to the B cell lineage. EMBO J. 2003, 22, 4759–4769. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Grosschedl, R. Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 1995, 376, 263–267. [Google Scholar] [CrossRef]
- Zandi, S.; Mansson, R.; Tsapogas, P.; Zetterblad, J.; Bryder, D.; Sigvardsson, M. EBF1 is essential for B-lineage priming and establishment of a transcription factor network in common lymphoid progenitors. J. Immunol. 2008, 181, 3364–3372. [Google Scholar] [CrossRef]
- Åhsberg, J.; Ungerbäck, J.; Strid, T.; Welinder, E.; Stjernberg, J.; Larsson, M.; Qian, H.; Sigvardsson, M. Early B-cell factor 1 regulates the expansion of B-cell progenitors in a dose-dependent manner. J. Biol. Chem. 2013, 288, 33449–33461. [Google Scholar] [CrossRef]
- Yang, J.J.; Bhojwani, D.; Yang, W.; Cai, X.; Stocco, G.; Crews, K.; Wang, J.; Morrison, D.; Devidas, M.; Hunger, S.P.; et al. Genome-wide copy number profiling reveals molecular evolution from diagnosis to relapse in childhood acute lymphoblastic leukemia. Blood 2008, 112, 4178–4183. [Google Scholar] [CrossRef] [PubMed]
- Welsh, S.J.; Churchman, M.L.; Togni, M.; Mullighan, C.G.; Hagman, J. Deregulation of kinase signaling and lymphoid development in EBF1-PDGFRB ALL leukemogenesis. Leukemia 2018, 32, 38–48. [Google Scholar] [CrossRef]
- Zhou, Y.; Petrovic, J.; Zhao, J.; Zhang, W.; Bigdeli, A.; Zhang, Z.; Berger, S.L.; Pear, W.S.; Faryabi, R.B. EBF1 nuclear repositioning instructs chromatin refolding to promote therapy resistance in T leukemic cells. Mol. Cell 2022, 82, 1003–1020.e15. [Google Scholar] [CrossRef]
- Jimenez, M.A.; Akerblad, P.; Sigvardsson, M.; Rosen, E.D. Critical role for Ebf1 and Ebf2 in the adipogenic transcriptional cascade. Mol. Cell. Biol. 2007, 27, 743–757. [Google Scholar] [CrossRef]
- Nelson, T.A.; Tommasini, S.; Fretz, J.A. Deletion of the transcription factor EBF1 in perivascular stroma disrupts skeletal homeostasis and precipitates premature aging of the marrow microenvironment. Bone 2024, 187, 117198. [Google Scholar] [CrossRef] [PubMed]
- Nieminen-Pihala, V.; Tarkkonen, K.; Laine, J.; Rummukainen, P.; Saastamoinen, L.; Nagano, K.; Baron, R.; Kiviranta, R. Early B-cell Factor1 (Ebf1) promotes early osteoblast differentiation but suppresses osteoblast function. Bone 2021, 146, 115884. [Google Scholar] [CrossRef] [PubMed]
- Garel, S.; Marín, F.; Grosschedl, R.; Charnay, P. Ebf1 controls early cell differentiation in the embryonic striatum. Development 1999, 126, 5285–5294. [Google Scholar] [CrossRef] [PubMed]
- Liao, D. Emerging roles of the EBF family of transcription factors in tumor suppression. Mol. Cancer Res. 2009, 7, 1893–1901. [Google Scholar] [CrossRef]
- Jang, J.Y.; Hwang, I.; Pan, H.; Yao, J.; Alinari, L.; Imada, E.; Zanettini, C.; Kluk, M.J.; Wang, Y.; Lee, Y.; et al. A FOXO1-dependent transcription network is a targetable vulnerability of mantle cell lymphomas. J. Clin. Investig. 2022, 132. [Google Scholar] [CrossRef]
- Liu, C.; Liu, G.; Zhou, F.; Chen, L.; Chang, B.; Tang, H.; Wang, H. EBF1-induced CSRP2 boosts the progression of B-cell acute lymphocytic leukemia by inhibiting ferroptosis. Cancer Lett. 2025, 614, 217556. [Google Scholar] [CrossRef]
- Qiu, Z.; Guo, W.; Dong, B.; Wang, Y.; Deng, P.; Wang, C.; Liu, J.; Zhang, Q.; Grosschedl, R.; Yu, Z.; et al. EBF1 promotes triple-negative breast cancer progression by surveillance of the HIF1α pathway. Proc. Natl. Acad. Sci. USA 2022, 119, e2119518119. [Google Scholar] [CrossRef]
- Dong, H.; Yang, C.; Chen, X.; Sun, H.; He, X.; Wang, W. Breast cancer-derived exosomal lncRNA SNHG14 induces normal fibroblast activation to cancer-associated fibroblasts via the EBF1/FAM171A1 axis. Breast Cancer 2023, 30, 1028–1040. [Google Scholar] [CrossRef]
- Cheng, Y.; Ni, Y.J.; Tang, L.M. ZNF521/EBF1 axis regulates AKR1B1 to promote the proliferation, migration, and invasion of gastric cancer cells. Kaohsiung J. Med. Sci. 2023, 39, 244–253. [Google Scholar] [CrossRef]
- Xing, M.; Ooi, W.F.; Tan, J.; Qamra, A.; Lee, P.H.; Li, Z.; Xu, C.; Padmanabhan, N.; Lim, J.Q.; Guo, Y.A.; et al. Genomic and epigenomic EBF1 alterations modulate TERT expression in gastric cancer. J. Clin. Investig. 2020, 130, 3005–3020. [Google Scholar] [CrossRef]
- Li, J.P.; Liu, Y.J.; Wang, S.S.; Lu, Z.H.; Ye, Q.W.; Zhou, J.Y.; Zou, X.; Chen, Y.G. EBF1-COX4I2 signaling axis promotes a myofibroblast-like phenotype in cancer-associated fibroblasts (CAFs) and is associated with an immunosuppressive microenvironment. Int. Immunopharmacol. 2024, 139, 112666. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xu, X.; Chen, D.; Zhang, L.; Pan, Y.; Liu, D.; Shen, M.; Chen, M. Circ_0022340 promotes colorectal cancer progression via HNRNPC/EBF1/SYT7 or miR-382-5p/ELK1 axis. Cell. Mol. Biol. 2022, 68, 107–116. [Google Scholar] [CrossRef]
- Xu, X.; Huang, A.; Cui, X.; Han, K.; Hou, X.; Wang, Q.; Cui, L.; Yang, Y. Ubiquitin specific peptidase 5 regulates colorectal cancer cell growth by stabilizing Tu translation elongation factor. Theranostics 2019, 9, 4208–4220. [Google Scholar] [CrossRef] [PubMed]
- Shen, A.; Chen, Y.; Liu, L.; Huang, Y.; Chen, H.; Qi, F.; Lin, J.; Shen, Z.; Wu, X.; Wu, M.; et al. EBF1-Mediated Upregulation of Ribosome Assembly Factor PNO1 Contributes to Cancer Progression by Negatively Regulating the p53 Signaling Pathway. Cancer Res. 2019, 79, 2257–2270. [Google Scholar] [CrossRef]
- Shen, Z.; Chen, Y.; Li, L.; Liu, L.; Peng, M.; Chen, X.; Wu, X.; Sferra, T.J.; Wu, M.; Lin, X.; et al. Transcription Factor EBF1 Over-Expression Suppresses Tumor Growth in vivo and in vitro via Modulation of the PNO1/p53 Pathway in Colorectal Cancer. Front. Oncol. 2020, 10, 1035. [Google Scholar] [CrossRef]
- Zhong, X.; Sun, L.; Liu, J.; Yang, X.; Hou, M.; Wang, X.; Diao, H. Silencing LINC00663 inhibits inflammation and angiogenesis through downregulation of NR2F1 via EBF1 in bladder cancer. RNA Biol. 2024, 21, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Yang, L.; Liu, C.; Wang, X.; Dong, Q.; Liu, L.; Wei, Q. TMPO-AS1/miR-98-5p/EBF1 feedback loop contributes to the progression of bladder cancer. Int. J. Biochem. Cell Biol. 2020, 122, 105702. [Google Scholar] [CrossRef]
- Qiu, K.; Zheng, Z.; Huang, Y. Long intergenic non-coding RNA 00844 promotes apoptosis and represses proliferation of prostate cancer cells through upregulating GSTP1 by recruiting EBF1. J. Cell. Physiol. 2020, 235, 8472–8485. [Google Scholar] [CrossRef]
- Shao, Y.; Chan, Y.; Zhang, C.; Zhao, R.; Zu, Y. Dihydroartemisinin Modulates Prostate Cancer Progression by Regulating Multiple Genes via the Transcription Factor NR2F2. Curr. Pharm. Biotechnol. 2025, 26, 935–955. [Google Scholar] [CrossRef]
- Shuang, O.; Zhou, J.; Cai, Z.; Liao, L.; Wang, Y.; Wang, W.; Xu, M. EBF1-mediated up-regulation of lncRNA FGD5-AS1 facilitates osteosarcoma progression by regulating miR-124-3p/G3BP2 axis as a ceRNA. J. Orthop. Surg. Res. 2022, 17, 332. [Google Scholar] [CrossRef]
- Fu, X.D.; Liu, C.Y.; Liu, Y.L.; Su, D.W.; Chi, N.N.; Zhang, J.L.; Wei, W.W. LINC00261 regulates EBF1 to suppress malignant progression of thyroid cancer. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 7626–7634. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.M.; Lu, T.C.; Sun, M.L.; Ji, X.; Zhao, Y.A.; Jia, W.Y.; Luo, Y.G. RP11-874J12.4 promotes oral squamous cell carcinoma tumorigenesis via the miR-19a-5p/EBF1 axis. J. Oral Pathol. Med. 2020, 49, 645–654. [Google Scholar] [CrossRef]
- Armartmuntree, N.; Murata, M.; Techasen, A.; Yongvanit, P.; Loilome, W.; Namwat, N.; Pairojkul, C.; Sakonsinsiri, C.; Pinlaor, S.; Thanan, R. Prolonged oxidative stress down-regulates Early B cell factor 1 with inhibition of its tumor suppressive function against cholangiocarcinoma genesis. Redox Biol. 2018, 14, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Armartmuntree, N.; Jusakul, A.; Sakonsinsiri, C.; Loilome, W.; Pinlaor, S.; Ungarreevittaya, P.; Yong, C.H.; Techasen, A.; Imtawil, K.; Kraiklang, R.; et al. Promoter hypermethylation of early B cell factor 1 (EBF1) is associated with cholangiocarcinoma progression. J. Cancer 2021, 12, 2673–2686. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.N.; Lin, J.H.; Liu, P.P. EBF1 Promotes the Sensitivity of Cervical Cancer Cells to Cisplatin via Activating FBN1 Transcription. Mol. Biol. 2023, 57, 503–504. [Google Scholar] [CrossRef]
- Barone, C.; Buccarelli, M.; Alessandrini, F.; Pagin, M.; Rigoldi, L.; Sambruni, I.; Favaro, R.; Ottolenghi, S.; Pallini, R.; Ricci-Vitiani, L.; et al. Sox2-dependent maintenance of mouse oligodendroglioma involves the Sox2-mediated downregulation of Cdkn2b, Ebf1, Zfp423, and Hey2. Glia 2021, 69, 579–593. [Google Scholar] [CrossRef]
- Purrington, K.S.; Slager, S.; Eccles, D.; Yannoukakos, D.; Fasching, P.A.; Miron, P.; Carpenter, J.; Chang-Claude, J.; Martin, N.G.; Montgomery, G.W.; et al. Genome-wide association study identifies 25 known breast cancer susceptibility loci as risk factors for triple-negative breast cancer. Carcinogenesis 2014, 35, 1012–1019. [Google Scholar] [CrossRef]
- Stone, J.; Thompson, D.J.; Dos Santos Silva, I.; Scott, C.; Tamimi, R.M.; Lindstrom, S.; Kraft, P.; Hazra, A.; Li, J.; Eriksson, L.; et al. Novel Associations between Common Breast Cancer Susceptibility Variants and Risk-Predicting Mammographic Density Measures. Cancer Res. 2015, 75, 2457–2467. [Google Scholar] [CrossRef]
- Hu, S.-H.; Gao, B.; Li, Z.-J.; Yuan, Y.-C. Whole-exome sequencing insights into synchronous bilateral breast cancer with discordant molecular subtypes. Oncol. Lett. 2024, 28, 595. [Google Scholar] [CrossRef]
- Guilhamon, P.; Eskandarpour, M.; Halai, D.; Wilson, G.A.; Feber, A.; Teschendorff, A.E.; Gomez, V.; Hergovich, A.; Tirabosco, R.; Fernanda Amary, M.; et al. Meta-analysis of IDH-mutant cancers identifies EBF1 as an interaction partner for TET2. Nat. Commun. 2013, 4, 2166. [Google Scholar] [CrossRef]
- Fernandez-Jimenez, N.; Sklias, A.; Ecsedi, S.; Cahais, V.; Degli-Esposti, D.; Jay, A.; Ancey, P.B.; Woo, H.D.; Hernandez-Vargas, H.; Herceg, Z. Lowly methylated region analysis identifies EBF1 as a potential epigenetic modifier in breast cancer. Epigenetics 2017, 12, 964–972. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.L.; Xue, M.J.; Dai, Z.X.; Zhang, R.Y.; Chen, F. Gene-age interaction study of breast cancer prognosis based on epigenomic data. Zhonghua Liu Xing Bing Xue Za Zhi 2024, 45, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ge, D.; Lu, C. The SMART App: An interactive web application for comprehensive DNA methylation analysis and visualization. Epigenetics Chromatin 2019, 12, 71. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fan, M.; Xian, S.; Hu, P.; Zhang, M.; Zhang, X.; Zhang, H.; Zhang, J.; Dai, L.; Lin, M.; et al. RBP7 Regulated by EBF1 Affects Th2 Cells and the Oocyte Meiosis Pathway in Bone Metastases of Bladder Urothelial Carcinoma. Front. Biosci. 2023, 28, 189. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, H.; Ma, T.; He, Y.; Shen, M.; Song, W.; Wang, J.-J.; Shi, J.-P.; Wu, M.-Y.; Liu, C.; et al. Identification of immune-related genes as prognostic factors in bladder cancer. Sci. Rep. 2020, 10, 19695. [Google Scholar] [CrossRef]
- Su, Q.; Sun, Y.; Zhang, Z.; Yang, Z.; Qiu, Y.; Li, X.; Mo, W. Identification of Prognostic Immune Genes in Bladder Urothelial Carcinoma. BioMed Res. Int. 2020, 2020, 7510120. [Google Scholar] [CrossRef]
- Gao, L.; Guo, Y.N.; Zeng, J.H.; Ma, F.C.; Luo, J.; Zhu, H.W.; Xia, S.; Wei, K.L.; Chen, G. The expression, significance and function of cancer susceptibility candidate 9 in lung squamous cell carcinoma: A bioinformatics and in vitro investigation. Int. J. Oncol. 2019, 54, 1651–1664. [Google Scholar] [CrossRef]
Cancer | Expression in Solid Tumor | Tumor-Related | Regulatory Pathway | Main Biological Function | Refs. |
---|---|---|---|---|---|
Breast cancer | ↑ | pro-tumor | EBF1/p300/HIF1α | Maintain mitochondrial homeostasis to prevent cell death and promote proliferation and invasion in TNBC cells. | [27] |
↑ | pro-tumor | LncRNA SNHG14/EBF1/FAM171A1 | Drive the transdifferentiation of NFs into CAFs. | [28] | |
Gastric cancer | Not applicable | anti-tumor | ZNF521/EBF1/AKR1B1 | Loss of ZNF521 upregulates EBF1 to suppress AKR1B1 and attenuate the proliferation, migration, and invasion of gastric cancer cells. | [29] |
↓ | anti-tumor | EBF1/TERT | Inactivation of EBF1 leads to the reactivation of the carcinogenic factor TERT. | [30] | |
Colorectal cancer | ↑ | pro-tumor | EBF1/COX4I2 | EBF1 promotes the progression of CRC by upregulating COX412 expression, inducing immunosuppression within the tumor microenvironment. | [31] |
Not applicable | pro-tumor | circ_0022340/HNRNPC/EBF1/SYT7 | Overexpression of EBF1 enhances CRC migration and invasion. | [32] | |
Not applicable | pro-tumor | EBF1/USP5/TUFM | Enhance the expression of USP5 and promote the growth and chemotherapy resistance of CRC. | [33] | |
↓ | anti-tumor | EBF1/PNO1/p53 | Overexpression of EBF1 led to growth inhibition, cell cycle arrest, and increased apoptosis in CRC cells. | [34,35] | |
Bladder cancer | Not applicable | pro-tumor | Lnc RNA LINC00663/EBF1/NR2F1 | Promote malignant biological behaviors such as inflammatory response and angiogenesis. | [36] |
↑ | pro-tumor | LncRNA TMPO-AS1/miR-98-5p/EBF1 | Promote proliferation, migration, and invasion. | [37] | |
Prostate cancer | Not applicable | anti-tumor | Lnc RNA LINC00844/EBF1/GSTP1 | EBF1 recruited by LINC00844 inhibits prostate cancer progression by binding and activating GSTP1 gene expression. | [38] |
Not applicable | anti-tumor | NR2F2/EBF1 | Inhibit epithelial/mesenchymal transition, reduce inflammation, and promote apoptosis. | [39] | |
Osteosarcoma | ↑ | pro-tumor | EBF1/FGD5-AS1/miR-124-3p/ G3BP2 | EBF1 promotes the proliferation and invasion of osteosarcoma cells by directly binding and activating FGD5-AS1. | [40] |
Thyroid cancer | ↑ | pro-tumor | LncRNA LINC00261/EBF1 | Overexpression of EBF1 reversed the inhibitory effect of silencing LINC00261 on the proliferation and migration of TC cells. | [41] |
Oral squamous cell carcinoma | ↑ | pro-tumor | RP11-874J12.4/miR-19a-5p/EBF1 | Upregulation of EBF1 expression promotes OSCC proliferation, migration, and tumor growth in vivo. | [42] |
Cholangiocarcinoma | ↓ | anti-tumor | IL-6 related pathways | The low expression of EBF1 enhances the tumorigenic potential and is related to the poor prognosis of patients. | [43,44] |
Cervical Cancer | ↓ | anti-tumor | EBF1/FBN1 | EBF1 inhibits cervical cancer progression and cisplatin resistance by transcriptionally activating FBN1. | [45] |
Glioma | Not applicable | anti-tumor | Sox2/EBF1 | Overexpression of EBF1 inhibits cell proliferation, promotes differentiation, and inhibits tumor growth. | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Zhang, Y.; Xie, G.; Cui, J.; Leng, P. Advances in Research on the B-Lineage Transcription Factor EBF1 in Solid Tumors. Int. J. Mol. Sci. 2025, 26, 5203. https://doi.org/10.3390/ijms26115203
Li Q, Zhang Y, Xie G, Cui J, Leng P. Advances in Research on the B-Lineage Transcription Factor EBF1 in Solid Tumors. International Journal of Molecular Sciences. 2025; 26(11):5203. https://doi.org/10.3390/ijms26115203
Chicago/Turabian StyleLi, Qinghua, Yanchuan Zhang, Guojing Xie, Junhao Cui, and Ping Leng. 2025. "Advances in Research on the B-Lineage Transcription Factor EBF1 in Solid Tumors" International Journal of Molecular Sciences 26, no. 11: 5203. https://doi.org/10.3390/ijms26115203
APA StyleLi, Q., Zhang, Y., Xie, G., Cui, J., & Leng, P. (2025). Advances in Research on the B-Lineage Transcription Factor EBF1 in Solid Tumors. International Journal of Molecular Sciences, 26(11), 5203. https://doi.org/10.3390/ijms26115203