Hazardous Interactions Between Food, Herbs, and Drugs in the First Stage of Biotransformation: Case Reports of Adverse Drug Interactions in Humans
Abstract
:1. Introduction
2. The Fate of Xenobiotics in the Body
- I.
- At the stage of drug release, the active substance is released from the pharmaceutical form (e.g., tablets and capsules) and becomes available for absorption in the body. During this process, the drug can bind to food components, which may hinder its release or absorption; also, the stomach pH can influence its solubility and subsequent release. Other important factors include delayed gastric emptying and interactions with digestive enzymes [21].
- II.
- During the absorption stage, the bioactivity and bioavailability of the drug are altered, and its concentration changes depending on the type of food consumed. Absorption is influenced by changes in pH [22,23], drug adsorption, complexation, and precipitation. Furthermore, food can alter the rate of bile acid secretion, intestinal metabolism, transport kinetics, gastric emptying time, and drug properties (e.g., solubility, logP, and ionisation) [24].
- III.
- In the distribution stage, the mechanisms that govern the distribution of the substance are also disrupted. Once absorbed from the site of administration, the drug is distributed into extracellular fluids, where it can accumulate in substantial reserves by binding to plasma proteins; this reservoir can lead to prolonged effects by establishing a sustained release mechanism [25]. In addition to various food compounds, such as cholesterol, which affect inter alia transport proteins, drug distribution is also influenced by the action of drug transporters, particularly P-glycoprotein (Pgp); this plays a significant role in drug absorption in the intestine, its distribution to the brain, lymphocytes and placenta, as well as excretion in urine and bile. In the intestines, Pgp reduces the absorption of toxic compounds from food, while in the liver and kidneys, it mediates the excretion of toxins and metabolites into urine and bile. Therefore, the inhibition of Pgp by food and herbal compounds in the intestines can lead to increased drug bioavailability, while its induction reduces bioavailability [26,27].
- IV.
- During the metabolism (biotransformation) stage, the activity of enzymes involved in the metabolism of drugs or food and herbal components may be impaired or enhanced.
- V.
- In the excretion stage, both xenobiotics and food can hinder the elimination of specific compounds. For example, a diet that acidifies urine (e.g., meat, fish, eggs, and cheese) can reduce the excretion of salicylates, sulphonamides, and ampicillin, while one that alkalinises urine (e.g., milk, vegetables) can reduce the excretion of amphetamines, theophylline, and erythromycin [28].
Biotransformation of Xenobiotics
3. Dangerous Interactions with Food (FDIs) and Herbs (HDIs) During Stage I of Drug Biotransformation
4. Inhibition of CYP450 by Compounds Found in Grapefruit and Its Juices
4.1. Interactions of Compounds Present in Grapefruit and Its Juices with Statins
4.2. Interactions Between Compounds Found in Grapefruit and Grapefruit Juice with Antihypertensive Drugs
4.2.1. Interaction with Felodipine
4.2.2. Interaction with Nifedipine
4.2.3. Interaction with Verapamil
4.2.4. Interaction with Amiodarone
4.3. A Case of Purpura Associated with the Inhibition of Cilostazol Metabolism by Compounds Present in Grapefruit Juice
4.4. Effect of Grape Juice on Docetaxel Drug Metabolism in Oncology Patients
4.5. Effect of Grape Juice on Methadone Drug Metabolism in Patients with Chronic Pain
4.6. Effect of Masked Grapefruit in Orange Marmalade on Tacrolimus Metabolism in Post-Transplantation Patients
5. Inhibition of CYP450 by Compounds in Cranberry Juice, Goji Fruit Juice, and Pomegranate Juice
5.1. Description of Cases of Warfarin Interaction with Components of Cranberry Juice
5.2. Interaction Between Warfarin and Components of Lycium barbarum L. (Goji) Fruit
5.3. Interaction Between Sildenafil and Pomegranate Juice (Punica granatum)
6. Inhibition of CYP by Compounds in Selected Herbs
6.1. Interaction of Warfarin with Components of Chamomile (Matricaria chamomilla)
6.2. Interaction of Nifedipine with the Herbal Product SHENG Mai-San
6.3. Effect of Herbal Substances on Tacrolimus Levels
6.3.1. Case Report of an HDI Between Tacrolimus and Turmeric Resulting in Acute Nephrotoxicity
6.3.2. Case Report of No Interaction Between Tacrolimus and Turmeric, Curry, and Ginger
6.3.3. Case Report of the Interaction Between Tacrolimus and Radix Astragalus Membranous
6.3.4. Effect of Schisandra sphenanthera on Tacrolimus and Midazolam
7. Induction of CYP450 by Components of Herbs, Fruits, and PAHs
7.1. Cases’ Description of Interactions Between Hypericum perforatum and Cyclosporine
7.2. Case Report of the Interaction Between Acenocoumarol and Components of Liquorice (Glycyrrhiza)
7.3. Case of Induction of CYP2C9 by Compounds Present in Noni Juices and Reduction in Phenytoin Levels
7.4. Case Report of CYP Induction Between Efavirenz and Components of Ginkgo biloba L.
7.5. Induction of Monooxygenases by PAHs Present in Tobacco Smoke and Grilled Foods
Lack of Effect of Olanzapine Due to the Induction of CYP450 by Compounds Present in Tobacco Smoke
8. Increased Tyramine Levels Due to the Blockage of Monoamine Oxidases by MAO Inhibitors
8.1. Inhibition of Tyramine Metabolism Due to Phenelzine Intake, the So-Called “Cheese Effect”
8.2. Intracranial Haemorrhage Following the Use of Tranylcypromine and Beer
9. The Role of the Quantity of Drugs, Food Products, and Herbs Consumed in Adverse Drug Interactions
10. Concluding Remarks
- (1)
- The quantity of products consumed with the drug plays a key role in these interactions, and people should pay attention to the amount of health-promoting food and herbs consumed.
- (2)
- The limit the intake of fruits and fruit juices when taking drugs that require CYP activity.
- (3)
- Avoid consuming herbs such as H. perforatum (a CYP inducer) or A. membranous (a CYP inhibitor) during treatment with drugs metabolised by CYP.
- (4)
- Limit the consumption of foods when using MAO inhibitors.
- (5)
- Eat a varied diet with tyramine to avoid the accumulation of a single compound.
- (6)
- Always consult a doctor or pharmacist about potential interactions when starting a new medication.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jalilova, A. Strategy to Increase the Share of Sales in the Pharmaceutical Market. Econ. Dev. 2024, 23, 53–61. [Google Scholar] [CrossRef]
- Djaoudene, O.; Romano, A.; Bradai, Y.D.; Zebiri, F.; Ouchene, A.; Yousfi, Y.; Amrane-Abider, M.; Sahraoui-Remini, Y.; Madani, K. A Global Overview of Dietary Supplements: Regulation, Market Trends, Usage during the COVID-19 Pandemic, and Health Effects. Nutrients 2023, 15, 3320. [Google Scholar] [CrossRef] [PubMed]
- Genser, D. Food and Drug Interaction: Consequences for the Nutrition/Health Status. Ann. Nutr. Metab. 2008, 52, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Gouws, C.; Hamman, J.H. What Are the Dangers of Drug Interactions with Herbal Medicines? Expert Opin. Drug Metab. Toxicol. 2020, 16, 165–167. [Google Scholar] [CrossRef]
- Lacruz-Pleguezuelos, B.; Piette, O.; Garranzo, M.; Pérez-Serrano, D.; Milešević, J.; Espinosa-Salinas, I.; Ramírez De Molina, A.; Laguna, T.; Carrillo De Santa Pau, E. FooDrugs: A Comprehensive Food-Drug Interactions Database with Text Documents and Transcriptional Data. Database 2023, 2023, baad075. [Google Scholar] [CrossRef]
- Osuala, E.C.; Tlou, B.; Ojewole, E.B. Knowledge, Attitudes, and Practices towards Drug-Food Interactions among Patients at Public Hospitals in eThekwini, KwaZulu-Natal, South Africa. Afr. Health Sci. 2022, 22, 681–690. [Google Scholar] [CrossRef]
- Khong, J.H.C.; Tuan Mahmood, T.M.; Tan, S.L.; Voo, J.Y.H.; Wong, S.W. Knowledge, Attitude and Practice (KAP) on Food-Drug Interaction (FDI) among Pharmacists Working in Government Health Facilities in Sabah, Malaysia. PLoS ONE 2024, 19, e0304974. [Google Scholar] [CrossRef]
- Jelińska, M.; Białek, A.; Czerwonka, M.; Skrajnowska, D.; Stawarska, A.; Bobrowska-Korczak, B. Knowledge of Food–Drug Interactions among Medical University Students. Nutrients 2024, 16, 2425. [Google Scholar] [CrossRef]
- Koziolek, M.; Alcaro, S.; Augustijns, P.; Basit, A.W.; Grimm, M.; Hens, B.; Hoad, C.L.; Jedamzik, P.; Madla, C.M.; Maliepaard, M.; et al. The Mechanisms of Pharmacokinetic Food-Drug Interactions—A Perspective from the UNGAP Group. Eur. J. Pharm. Sci. 2019, 134, 31–59. [Google Scholar] [CrossRef]
- Guengerich, F.P. Roles of Cytochrome P450 Enzymes in Pharmacology and Toxicology: Past, Present, and Future. In Advances in Pharmacology; Elsevier: Amsterdam, The Netherlands, 2022; Volume 95, pp. 1–47. ISBN 978-0-323-91109-2. [Google Scholar]
- Zhao, M.; Ma, J.; Li, M.; Zhang, Y.; Jiang, B.; Zhao, X.; Huai, C.; Shen, L.; Zhang, N.; He, L.; et al. Cytochrome P450 Enzymes and Drug Metabolism in Humans. Int. J. Mol. Sci. 2021, 22, 12808. [Google Scholar] [CrossRef]
- Ostadkarampour, M.; Putnins, E.E. Monoamine Oxidase Inhibitors: A Review of Their Anti-Inflammatory Therapeutic Potential and Mechanisms of Action. Front. Pharmacol. 2021, 12, 676239. [Google Scholar] [CrossRef]
- Edinoff, A.N.; Swinford, C.R.; Odisho, A.S.; Burroughs, C.R.; Stark, C.W.; Raslan, W.A.; Cornett, E.M.; Kaye, A.M.; Kaye, A.D. Clinically Relevant Drug Interactions with Monoamine Oxidase Inhibitors. Health Psychol. Res. 2022, 10, 39576. [Google Scholar] [CrossRef] [PubMed]
- Duda-Chodak, A.; Tarko, T. Possible Side Effects of Polyphenols and Their Interactions with Medicines. Molecules 2023, 28, 2536. [Google Scholar] [CrossRef] [PubMed]
- Poli, G.; Bologna, E.; Saguy, I.S. Possible Interactions between Selected Food Processing and Medications. Front. Nutr. 2024, 11, 1380010. [Google Scholar] [CrossRef]
- Baraka, M.A.; Elnaem, M.H.; Elkalmi, R.; Sadeq, A.; Elnour, A.A.; Joseph Chacko, R.; ALQarross, A.H.; Moustafa, M.M.A. Awareness of Statin-Food Interactions Using Grapefruit as an Example: A Cross-Sectional Study in Eastern Province of Saudi Arabia. J. Pharm. Health Serv. Res. 2021, 12, 545–551. [Google Scholar] [CrossRef]
- Chiu, C.C.; Lu, M.L.; Huang, M.C.; Chen, K.P. Heavy Smoking, Reduced Olanzapine Levels, and Treatment Effects: A Case Report. Ther. Drug Monit. 2004, 26, 579–581. [Google Scholar] [CrossRef]
- Ngo, A.S.Y.; Ho, R.Y.; Olson, K.R. Phenelzine-Induced Myocardial Injury: A Case Report. J. Med. Toxicol. 2010, 6, 431–434. [Google Scholar] [CrossRef]
- Ruiz-Garcia, A.; Bermejo, M.; Moss, A.; Casabo, V.G. Pharmacokinetics in Drug Discovery. J. Pharm. Sci. 2008, 97, 654–690. [Google Scholar] [CrossRef]
- Ziani, K. Drug-food interactions: The influence on the patient’s therapeutic plan. Farmacia 2022, 70, 785–797. [Google Scholar] [CrossRef]
- Kambayashi, A.; Shirasaka, Y. Food Effects on Gastrointestinal Physiology and Drug Absorption. Drug Metab. Pharmacokinet. 2023, 48, 100488. [Google Scholar] [CrossRef]
- Shirasaka, Y.; Kambayashi, A. Food Effects on Oral Drug Absorption: Recent Advances in Understanding Mechanisms and Quantitative Prediction. Drug Metab. Pharmacokinet. 2024, 54, 100533. [Google Scholar] [CrossRef] [PubMed]
- Tsume, Y. Evaluation and Prediction of Oral Drug Absorption and Bioequivalence with Food-Druginteraction. Drug Metab. Pharmacokinet. 2023, 50, 100502. [Google Scholar] [CrossRef]
- Sharma, S.; Kogan, C.; Varma, M.V.S.; Prasad, B. Analysis of the Interplay of Physiological Response to Food Intake and Drug Properties in Food-Drug Interactions. Drug Metab. Pharmacokinet. 2023, 53, 100518. [Google Scholar] [CrossRef]
- Currie, G.M. Pharmacology, Part 2: Introduction to Pharmacokinetics. J. Nucl. Med. Technol. 2018, 46, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.H.; Yamazaki, M. Role of P-Glycoprotein in Pharmacokinetics: Clinical Implications. Clin. Pharmacokinet. 2003, 42, 59–98. [Google Scholar] [CrossRef]
- Darusman, F.; Rusdiana, T.; Sopyan, I.; Rahma, H.; Hanifa, M. Recent Progress in Pharmaceutical Excipients as P-Glycoprotein Inhibitors for Potential Improvement of Oral Drug Bioavailability: A Comprehensive Overview. Pharmacia 2025, 72, 1–16. [Google Scholar] [CrossRef]
- Janssen, P.; Hollman, P.; Reichman, E.; Venema, D.; Van Staveren, W.; Katan, M. Urinary Salicylate Excretion in Subjects Eating a Variety of Diets Shows That Amounts of Bioavailable Salicylates in Foods Are Low. Am. J. Clin. Nutr. 1996, 64, 743–747. [Google Scholar] [CrossRef]
- Guengerich, F.P. Drug Metabolism: A Half-Century Plus of Progress, Continued Needs, and New Opportunities. Drug Metab. Dispos. Biol. Fate Chem. 2023, 51, 99–104. [Google Scholar] [CrossRef]
- Triggle, C.R.; Mohammed, I.; Bshesh, K.; Marei, I.; Ye, K.; Ding, H.; MacDonald, R.; Hollenberg, M.D.; Hill, M.A. Metformin: Is It a Drug for All Reasons and Diseases? Metabolism 2022, 133, 155223. [Google Scholar] [CrossRef]
- McLean, M.J. Clinical Pharmacokinetics of Gabapentin. Neurology 1994, 44, S17–S22; discussion S31–S32. [Google Scholar]
- Esteves, F.; Rueff, J.; Kranendonk, M. The Central Role of Cytochrome P450 in Xenobiotic Metabolism—A Brief Review on a Fascinating Enzyme Family. J. Xenobiotics 2021, 11, 94–114. [Google Scholar] [CrossRef]
- Rendic, S.; Guengerich, F.P. Survey of Human Oxidoreductases and Cytochrome P450 Enzymes Involved in the Metabolism of Xenobiotic and Natural Chemicals. Chem. Res. Toxicol. 2015, 28, 38–42. [Google Scholar] [CrossRef]
- Zanger, U.M.; Schwab, M. Cytochrome P450 Enzymes in Drug Metabolism: Regulation of Gene Expression, Enzyme Activities, and Impact of Genetic Variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef] [PubMed]
- Socha, J.; Kuczyńska, J.; Mierzejewski, P. Importance of Genotyping and Phenotyping of CYP450isoenzymes in the Treatment of Psychiatric Disorders. Pharmacother. Psychiatry Neurol. 2023, 39, 143–168. [Google Scholar] [CrossRef]
- Petric, Z.; Žuntar, I.; Putnik, P.; Bursać Kovačević, D. Food-Drug Interactions with Fruit Juices. Foods 2020, 10, 33. [Google Scholar] [CrossRef] [PubMed]
- Li, A.P.; Ho, M.D.; Alam, N.; Mitchell, W.; Wong, S.; Yan, Z.; Kenny, J.R.; ECA Hop, C. Inter-individual and Inter-regional Variations in Enteric Drug Metabolizing Enzyme Activities: Results with Cryopreserved Human Intestinal Mucosal Epithelia (CHIM) from the Small Intestines of 14 Donors. Pharmacol. Res. Perspect. 2020, 8, e00645. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Shen, A.L.; Duangkaew, P.; Kotewong, R.; Rongnoparut, P.; Feix, J.; Kim, J.J.P. Structural and Functional Studies of the Membrane-Binding Domain of NADPH-Cytochrome P450 Oxidoreductase. Biochemistry 2019, 58, 2408–2418. [Google Scholar] [CrossRef]
- Shumyantseva, V.V.; Koroleva, P.I.; Bulko, T.V.; Agafonova, L.E. Alternative Electron Sources for Cytochrome P450s Catalytic Cycle: Biosensing and Biosynthetic Application. Processes 2023, 11, 1801. [Google Scholar] [CrossRef]
- Iswandana, R.; Irianti, M.I.; Oosterhuis, D.; Hofker, H.S.; Merema, M.T.; De Jager, M.H.; Mutsaers, H.A.M.; Olinga, P. Regional Differences in Human Intestinal Drug Metabolism. Drug Metab. Dispos. 2018, 46, 1879–1885. [Google Scholar] [CrossRef]
- Lee, J.; Beers, J.L.; Geffert, R.M.; Jackson, K.D. A Review of CYP-Mediated Drug Interactions: Mechanisms and In Vitro Drug-Drug Interaction Assessment. Biomolecules 2024, 14, 99. [Google Scholar] [CrossRef]
- Vaja, R.; Rana, M. Drugs and the Liver. Anaesth. Intensive Care Med. 2020, 21, 517–523. [Google Scholar] [CrossRef]
- Paine, M.F.; Hart, H.L.; Ludington, S.S.; Haining, R.L.; Rettie, A.E.; Zeldin, D.C. The human intestinal cytochrome P450 “pie”. Drug Metab. Dispos. 2006, 34, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, T. The ATP-Dependent Glutathione S-Conjugate Export Pump. Trends Biochem. Sci. 1992, 17, 463–468. [Google Scholar] [CrossRef]
- Lewis, J.R. Pharmacogenomics in Drug Metabolism Enzymes and Transporters. In Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays; Hock, F.J., Pugsley, M.K., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 1929–1975. ISBN 978-3-031-35528-8. [Google Scholar]
- Ingelman-Sundberg, M.; Mkrtchian, S.; Zhou, Y.; Lauschke, V.M. Integrating Rare Genetic Variants into Pharmacogenetic Drug Response Predictions. Hum. Genom. 2018, 12, 26. [Google Scholar] [CrossRef]
- Klein, K.; Tremmel, R.; Winter, S.; Fehr, S.; Battke, F.; Scheurenbrand, T.; Schaeffeler, E.; Biskup, S.; Schwab, M.; Zanger, U.M. A New Panel-Based Next-Generation Sequencing Method for ADME Genes Reveals Novel Associations of Common and Rare Variants with Expression in a Human Liver Cohort. Front. Genet. 2019, 10, 7. [Google Scholar] [CrossRef]
- Scandlyn, M.J.; Stuart, E.C.; Rosengren, R.J. Sex-Specific Differences in CYP450 Isoforms in Humans. Expert Opin. Drug Metab. Toxicol. 2008, 4, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Sznitowska, M.; Kaliszan, R. Biopharmacy; Edra Urban & Partner: Wroclaw, Poland, 2023; ISBN 9788376098388. (In Polish) [Google Scholar]
- Zaroug, E.E.H.; Albashir, T.O.A.; Arbab, A.H.; Mudawi, M.M.E. Updates on the Interactions of Herbs Constituents with Cytochrome P450 Drug Metabolizing Enzymes. Curr. Enzyme Inhib. 2023, 19, 167–178. [Google Scholar] [CrossRef]
- Bailey, D.G.; Dresser, G.; Arnold, J.M.O. Grapefruit-Medication Interactions: Forbidden Fruit or Avoidable Consequences? Can. Med. Assoc. J. 2013, 185, 309–316. [Google Scholar] [CrossRef]
- Dayyih, W.A.; Ani, I.A.; Hailat, M.; Alarman, S.M.; Zakaraya, Z.; Assab, M.A.; Alkhader, E. Review of Grapefruit Juice-Drugs Interactions Mediated by Intestinal CYP3A4 Inhibition. J. Appl. Pharm. Sci. 2014, 14, 059–068. [Google Scholar] [CrossRef]
- Kim, H.; Yoon, Y.J.; Shon, J.H.; Cha, I.J.; Shin, J.G.; Liu, K.H. Inhibitory effects of fruit juices on cyp3a activity. Drug Metab. Dispos. 2006, 34, 521–523. [Google Scholar] [CrossRef]
- Wang, Z.; Gorski, J.C.; Hamman, M.A.; Huang, S.M.; Lesko, L.J.; Hall, S.D. The Effects of St John’s Wort (Hypericum perforatum) on Human Cytochrome P450 Activity. Clin. Pharmacol. Ther. 2001, 70, 317–326. [Google Scholar] [CrossRef]
- Harish Chandra, R.; Veeresham, C. Herb—Drug Interaction of Noni Juice and Ginkgo Biloba with Phenytoin. Pharmacogn. J. 2011, 2, 33–41. [Google Scholar] [CrossRef]
- Maideen, N.M.P. Tobacco Smoking and Its Drug Interactions with Comedications Involving CYP and UGT Enzymes and Nicotine. World J. Pharmacol. 2019, 8, 14–25. [Google Scholar] [CrossRef]
- Wincent, E.; Le Bihanic, F.; Dreij, K. Induction and Inhibition of Human Cytochrome P4501 by Oxygenated Polycyclic Aromatic Hydrocarbons. Toxicol. Res. 2016, 5, 788–799. [Google Scholar] [CrossRef] [PubMed]
- Ateş, M.; ŞahiN, S. Interaction of Statins with Grapefruit Juice. Fabad J. Pharm. Sci. 2023, 48, 337–358. [Google Scholar] [CrossRef]
- Senthilkumaran, S.; Balamurugan, N.; Suresh, P.; Thirumalaikolundusubramanian, P. Priapism, Pomegranate Juice, and Sildenafil: Is There a Connection? Urol. Ann. 2012, 4, 108. [Google Scholar] [CrossRef]
- Rindone, J.P.; Murphy, T.W. Warfarin-Cranberry Juice Interaction Resulting in Profound Hypoprothrombinemia and Bleeding. Am. J. Ther. 2006, 13, 283–284. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; He, F.; Tan, M.; Zhong, F.; Liao, X.; Li, Y.; Deng, H.; Mo, X. Marked Decrease of Tacrolimus Blood Concentration Caused by Compound Chinese Herbal Granules in a Patient with Refractory Nephrotic Syndrome. J. Clin. Pharm. Ther. 2021, 46, 215–218. [Google Scholar] [CrossRef]
- Segal, R. Warfarin Interaction with Matricaria chamomilla. Can. Med. Assoc. J. 2006, 174, 1281–1282. [Google Scholar] [CrossRef]
- Nayeri, A.; Wu, S.; Adams, E.; Tanner, C.; Meshman, J.; Saini, I.; Reid, W. Acute Calcineurin Inhibitor Nephrotoxicity Secondary to Turmeric Intake: A Case Report. Transplant. Proc. 2017, 49, 198–200. [Google Scholar] [CrossRef]
- Boissiere, C.; Francois, E.; Vabret, E.; Le Daré, B.; Bacle, A. Spice-Drug Interactions: A Case Report on the Use of Turmeric, Curry and Ginger in a Renal Transplant Patient on Tacrolimus. Eur. J. Hosp. Pharm. 2024, 31, 68–69. [Google Scholar] [CrossRef] [PubMed]
- Mansoor, K.; Bardees, R.; Alkhawaja, B.; Mallah, E.; AbuQatouseh, L.; Schmidt, M.; Matalka, K. Impact of Pomegranate Juice on the Pharmacokinetics of CYP3A4- and CYP2C9-Mediated Drugs Metabolism: A Preclinical and Clinical Review. Molecules 2023, 28, 2117. [Google Scholar] [CrossRef]
- Lim, S.H.; Bae, S.; Lee, H.S.; Han, H.K.; Choi, C.I. Effect of Betanin, the Major Pigment of Red Beetroot (Beta vulgaris L.), on the Activity of Recombinant Human Cytochrome P450 Enzymes. Pharmaceuticals 2023, 16, 1224. [Google Scholar] [CrossRef] [PubMed]
- Hanley, M.J.; Cancalon, P.; Widmer, W.W.; Greenblatt, D.J. The Effect of Grapefruit Juice on Drug Disposition. Expert Opin. Drug Metab. Toxicol. 2011, 7, 267–286. [Google Scholar] [CrossRef]
- Lilja, J.J.; Neuvonen, M.; Neuvonen, P.J. Effects of Regular Consumption of Grapefruit Juice on the Pharmacokinetics of Simvastatin. Br. J. Clin. Pharmacol. 2004, 58, 56–60. [Google Scholar] [CrossRef]
- Park, S.J.; Yeo, C.W.; Shim, E.J.; Kim, H.; Liu, K.H.; Shin, J.G.; Shon, J.H. Pomegranate Juice Does Not Affect the Disposition of Simvastatin in Healthy Subjects. Eur. J. Drug Metab. Pharmacokinet. 2016, 41, 339–344. [Google Scholar] [CrossRef]
- Van Agtmael, M.A.; Gupta, V.; Van Der Wösten, T.H.; Rutten, J.P.B.; Van Boxtel, C.J. Grapefruit Juice Increases the Bioavailability of Artemether. Eur. J. Clin. Pharmacol. 1999, 55, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Shang, D.W.; Wang, Z.Z.; Hu, H.T.; Zhang, Y.F.; Ni, X.J.; Lu, H.Y.; Zhang, M.; Hu, J.Q.; Qiu, C.; Peng, H.; et al. Effects of Food and Grapefruit Juice on Single-Dose Pharmacokinetics of Blonanserin in Healthy Chinese Subjects. Eur. J. Clin. Pharmacol. 2018, 74, 61–67. [Google Scholar] [CrossRef]
- Abdlekawy, K.S.; Donia, A.M.; Elbarbry, F. Effects of Grapefruit and Pomegranate Juices on the Pharmacokinetic Properties of Dapoxetine and Midazolam in Healthy Subjects. Eur. J. Drug Metab. Pharmacokinet. 2017, 42, 397–405. [Google Scholar] [CrossRef]
- Abdelkawy, K.S.; Donia, A.M.; Turner, R.B.; Elbarbry, F. Effects of Lemon and Seville Orange Juices on the Pharmacokinetic Properties of Sildenafil in Healthy Subjects. Drugs RD 2016, 16, 271–278. [Google Scholar] [CrossRef]
- Malhotra, S. Seville Orange Juice-Felodipine Interaction: Comparison with Dilute Grapefruit Juice and Involvement of Furocoumarins. Clin. Pharmacol. Ther. 2001, 69, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Žuntar, I.; Krivohlavek, A.; Kosić-Vukšić, J.; Granato, D.; Bursać Kovačević, D.; Putnik, P. Pharmacological and Toxicological Health Risk of Food (Herbal) Supplements Adulterated with Erectile Dysfunction Medications. Curr. Opin. Food Sci. 2018, 24, 9–15. [Google Scholar] [CrossRef]
- Grenier, J.; Fradette, C.; Morelli, G.; Merritt, G.; Vranderick, M.; Ducharme, M. Pomelo Juice, but Not Cranberry Juice, Affects the Pharmacokinetics of Cyclosporine in Humans. Clin. Pharmacol. Ther. 2006, 79, 255–262. [Google Scholar] [CrossRef]
- Kang, Y.C.; Chen, M.H.; Lai, S.L. Potentially Unsafe Herb-Drug Interactions Between a Commercial Product of Noni Juice and Phenytoin—A Case Report. Acta Neurol. Taiwanica 2015, 24, 43–46. [Google Scholar]
- Oliveira-Freitas, V.L.; Costa, T.D.; Manfro, R.C.; Cruz, L.B.; Schwartsmann, G. Influence of Purple Grape Juice in Cyclosporine Bioavailability. J. Ren. Nutr. 2010, 20, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Ping, Z.; Xiao, Z.; Shu, C.; Fattore; Gatti, G.; D’urso, S.; Perucca, E. Possible Enhancement of the First-pass Metabolism of Phenacetin by Ingestion of Grape Juice in Chinese Subjects. Br. J. Clin. Pharmacol. 1999, 48, 638–640. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, S.; Fabriaga, E.; Zhang, P.; Zhou, Q. Food-Drug Interactions Precipitated by Fruit Juices Other than Grapefruit Juice: An Update Review. J. Food Drug Anal. 2018, 26, S61–S71. [Google Scholar] [CrossRef]
- D’Alessandro, C.; Benedetti, A.; Di Paolo, A.; Giannese, D.; Cupisti, A. Interactions between Food and Drugs, and Nutritional Status in Renal Patients: A Narrative Review. Nutrients 2022, 14, 212. [Google Scholar] [CrossRef]
- Methaneethorn, J.; Dilokthornsakul, P.; Siritientong, T.; Jiao, Z.; Chareonchokthavee, W.; Leelakanok, N. Pharmacokinetic Interactions of Fruit Juices with Antihypertensive Drugs in Humans: A Systematic Review and Meta-Analysis. Complement. Ther. Med. 2025, 90, 103165. [Google Scholar] [CrossRef]
- Bailey, D.G.; Dresser, G.K. Interactions Between Grapefruit Juice and Cardiovascular Drugs. Am. J. Cardiovasc. Drugs 2004, 4, 281–297. [Google Scholar] [CrossRef]
- Kupferschmidt, H.H.T.; Fattinger, K.E.; Ha, H.R.; Follath, F.; Krähenbühl, S. Grapefruit Juice Enhances the Bioavailability of the HIV Protease Inhibitor Saquinavir in Man. Br. J. Clin. Pharmacol. 1998, 45, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Vandel, P.; Regina, W.; Reix, I.; Vandel, S.; Sechter, D.; Bizouard, P. Grapefruit juice as a contraindication? An approach in psychiatry. L’Encephale 1999, 25, 67–71. [Google Scholar] [PubMed]
- Hermann, M.; Åsberg, A.; Reubsaet, J.L.E.; Sæther, S.; Berg, K.J.; Christensen, H. Intake of Grapefruit Juice Alters the Metabolic Pattern of Cyclosporin A in Renal Transplant Recipients. Int. J. Clin. Pharmacol. Ther. 2002, 40, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Christensen, H.; ÅSberg, A.; Holmboe, A.B.; Berg, K. Coadministration of Grapefruit Juice Increases Systemic Exposure of Diltiazem in Healthy Volunteers. Eur. J. Clin. Pharmacol. 2002, 58, 515–520. [Google Scholar] [CrossRef]
- Lim, G.E.; Li, T.; Buttar, H.S. Interactions of Grapefruit Juice and Cardiovascular Medications: A Potential Risk of Toxicity. Exp. Clin. Cardiol. 2003, 8, 99–107. [Google Scholar]
- Yin, O.Q.P.; Gallagher, N.; Li, A.; Zhou, W.; Harrell, R.; Schran, H. Effect of Grapefruit Juice on the Pharmacokinetics of Nilotinib in Healthy Participants. J. Clin. Pharmacol. 2010, 50, 188–194. [Google Scholar] [CrossRef]
- Amer, A. A Narrative Review on Clinical Trials Showing Contraindicated Drugs with Grapefruit Juice. Sci. Phytochem. 2023, 2, 48–69. [Google Scholar] [CrossRef]
- Arning, A.; Seifert, R. Insufficient Correctness of Package Inserts for Psychotropic Drugs in Germany. Naunyn. Schmiedebergs Arch. Pharmacol. 2024, 398, 2879–2895. [Google Scholar] [CrossRef]
- Guttman, Y.; Yedidia, I.; Nudel, A.; Zhmykhova, Y.; Kerem, Z.; Carmi, N. New Grapefruit Cultivars Exhibit Low Cytochrome P4503A4-Inhibition Activity. Food Chem. Toxicol. 2020, 137, 111135. [Google Scholar] [CrossRef]
- Dreier, J.P.; Endres, M. Statin-Associated Rhabdomyolysis Triggered by Grapefruit Consumption. Neurology 2004, 62, 670. [Google Scholar] [CrossRef]
- Mazokopakis, E.E. Unusual Causes of Rhabdomyolysis. Intern. Med. J. 2008, 38, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Morris, J.K.; Wald, N.J. Grapefruit Juice and Statins. Am. J. Med. 2016, 129, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Bailey, D.; Spence, J.; Edgar, B.; Bayliff, C.; Arnold, J. Ethanol Enhances the Hemodynamic Effects of Felodipine. Clin. Investig. Med. 1989, 12, 357–362. [Google Scholar]
- Lown, K.S.; Bailey, D.G.; Fontana, R.J.; Janardan, S.K.; Adair, C.H.; Fortlage, L.A.; Brown, M.B.; Guo, W.; Watkins, P.B. Grapefruit Juice Increases Felodipine Oral Availability in Humans by Decreasing Intestinal CYP3A Protein Expression. J. Clin. Investig. 1997, 99, 2545–2553. [Google Scholar] [CrossRef]
- Adigun, A.Q.; Mudasiru, Z. Clinical effects of grapefruit juice-nifedipine interaction in a 54-year old nigerlan: A case report. J. Natl. Med. Assoc. 2002, 94, 276. [Google Scholar]
- DrugBankonline Nifedipine. 2024. Available online: https://go.drugbank.com/drugs/DB01115 (accessed on 1 April 2025).
- Pillai, U.; Muzaffar, J.; Sen, S.; Yancey, A. Grapefruit Juice and Verapamil: A Toxic Cocktail. South. Med. J. 2009, 102, 308–309. [Google Scholar] [CrossRef]
- Tracy, T.S.; Korzekwa, K.R.; Gonzalez, F.J.; Wainer, I.W. Cytochrome P450 Isoforms Involved in Metabolism of the Enantiomers of Verapamil and Norverapamil. Br. J. Clin. Pharmacol. 1999, 47, 545–552. [Google Scholar] [CrossRef]
- Zaidenstein, R.; Dishi, V.; Gips, M.; Soback, S.; Cohen, N.; Weissgarten, J.; Blatt, A.; Golik, A. The Effect of Grapefruit Juice on the Pharmacokinetics of Orally Administered Verapamil. Eur. J. Clin. Pharmacol. 1998, 54, 337–340. [Google Scholar] [CrossRef]
- Agosti, S.; Casalino, L.; Bertero, G.; Barsotti, A.; Brunelli, C.; Morelloni, S. A Dangerous Fruit Juice. Am. J. Emerg. Med. 2012, 30, 248.e5–248.e8. [Google Scholar] [CrossRef]
- Zahno, A.; Brecht, K.; Morand, R.; Maseneni, S.; Török, M.; Lindinger, P.W.; Krähenbühl, S. The Role of CYP3A4 in Amiodarone-Associated Toxicity on HepG2 Cells. Biochem. Pharmacol. 2011, 81, 432–441. [Google Scholar] [CrossRef]
- Taniguchi, K.; Ohtani, H.; Ikemoto, T.; Miki, A.; Hori, S.; Sawada, Y. Possible Case of Potentiation of the Antiplatelet Effect of Cilostazol by Grapefruit Juice: Cilostazol-Grapefruit Juice Interaction. J. Clin. Pharm. Ther. 2007, 32, 457–459. [Google Scholar] [CrossRef] [PubMed]
- Abbas, R.; Chow, C.P.; Browder, N.J.; Thacker, D.; Bramer, S.L.; Fu, C.J.; Forbes, W.; Odomi, M.; Flockhart, D.A. In Vitro Metabolism and Interaction of Cilostazol with Human Hepatic Cytochrome P450 Isoforms. Hum. Exp. Toxicol. 2000, 19, 178–184. [Google Scholar] [CrossRef]
- Engels, F. Effect of Cytochrome P450 3A4 Inhibition on the Pharmacokinetics of Docetaxel. Clin. Pharmacol. Ther. 2004, 75, 448–454. [Google Scholar] [CrossRef]
- Valenzuela, B.; Rebollo, J.; Pérez, T.; Brugarolas, A.; Pérez-Ruixo, J.J. Effect of Grapefruit Juice on the Pharmacokinetics of Docetaxel in Cancer Patients: A Case Report. Br. J. Clin. Pharmacol. 2011, 72, 978–981. [Google Scholar] [CrossRef] [PubMed]
- Ershad, M.; Cruz, M.D.; Mostafa, A.; Mckeever, R.; Vearrier, D.; Greenberg, M.I. Opioid Toxidrome Following Grapefruit Juice Consumption in the Setting of Methadone Maintenance. J. Addict. Med. 2020, 14, 172–174. [Google Scholar] [CrossRef]
- Ahmad, T.; Valentovic, M.A.; Rankin, G.O. Effects of Cytochrome P450 Single Nucleotide Polymorphisms on Methadone Metabolism and Pharmacodynamics. Biochem. Pharmacol. 2018, 153, 196–204. [Google Scholar] [CrossRef]
- Peynaud, D.; Charpiat, B.; Vial, T.; Gallavardin, M.; Ducerf, C. Tacrolimus Severe Overdosage after Intake of Masked Grapefruit in Orange Marmalade. Eur. J. Clin. Pharmacol. 2007, 63, 721–722. [Google Scholar] [CrossRef] [PubMed]
- De Jonge, H.; De Loor, H.; Verbeke, K.; Vanrenterghem, Y.; Kuypers, D.R. In Vivo CYP3A4 Activity, CYP3A5 Genotype, and Hematocrit Predict Tacrolimus Dose Requirements and Clearance in Renal Transplant Patients. Clin. Pharmacol. Ther. 2012, 92, 366–375. [Google Scholar] [CrossRef]
- Kaminsky, L.S.; Zhang, Z.Y. Human P450 Metabolism of Warfarin. Pharmacol. Ther. 1997, 73, 67–74. [Google Scholar] [CrossRef]
- Hodek, P.; Trefil, P.; Stiborová, M. Flavonoids-Potent and Versatile Biologically Active Compounds Interacting with Cytochromes P450. Chem. Biol. Interact. 2002, 139, 1–21. [Google Scholar] [CrossRef]
- Yu, C.P.; Yang, M.S.; Hsu, P.W.; Lin, S.P.; Hou, Y.C. Bidirectional Influences of Cranberry on the Pharmacokinetics and Pharmacodynamics of Warfarin with Mechanism Elucidation. Nutrients 2021, 13, 3219. [Google Scholar] [CrossRef] [PubMed]
- Suvarna, R. Possible Interaction between Warfarin and Cranberry Juice. BMJ 2003, 327, 1454. [Google Scholar] [CrossRef] [PubMed]
- Skenderidis, P.; Leontopoulos, S.; Lampakis, D. Goji Berry: Health Promoting Properties. Nutraceuticals 2022, 2, 32–48. [Google Scholar] [CrossRef]
- Vidović, B.B.; Milinčić, D.D.; Marčetić, M.D.; Djuriš, J.D.; Ilić, T.D.; Kostić, A.Ž.; Pešić, M.B. Health Benefits and Applications of Goji Berries in Functional Food Products Development: A Review. Antioxidants 2022, 11, 248. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, K.; Radeva-Ilieva, M. In Vitro Inhibitions of CYP2C9 and CYP3A4 by Fractions Isolated from Goji Berry (Lycium barbarum) Fruits. Scr. Sci. Pharm. 2019, 6, 26. [Google Scholar] [CrossRef]
- Liu, R.; Tam, T.W.; Mao, J.; Salem, A.; Arnason, J.T.; Krantis, A.; Foster, B.C. In Vitro Activity of Lycium barbarum (Goji) against Major Human Phase I Metabolism Enzymes. J. Complement. Integr. Med. 2016, 13, 257–265. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, L.; Xie, B. Bleeding Due to a Probable Interaction between Warfarin and Gouqizi (Lycium barbarum L.). Toxicol. Rep. 2015, 2, 1209–1212. [Google Scholar] [CrossRef]
- Lam, A.Y.; Elmer, G.W.; Mohutsky, M.A. Possible Interaction between Warfarin and Lycium barbarum L. Ann. Pharmacother. 2001, 35, 1199–1201. [Google Scholar] [CrossRef]
- Hyland, R.; Roe, E.G.H.; Jones, B.C.; Smith, D.A. Identification of the Cytochrome P450 Enzymes Involved in the N-demethylation of Sildenafil. Br. J. Clin. Pharmacol. 2001, 51, 239–248. [Google Scholar] [CrossRef]
- Boyce, E. Sildenafil Citrate: A Therapeutic Update. Clin. Ther. 2001, 23, 2–23. [Google Scholar] [CrossRef]
- Tamboli, F.A.; Jogi, P.R.; Waghmare, R.; Bhosale, V.; Jogi, P.; Gavhane, D.; Rathod, M. Herbal Medicines and Drug Interactions: A Growing Concern in Healthcare. Int. J. Pharm. Chem. Anal. 2025, 12, 8–15. [Google Scholar] [CrossRef]
- Awortwe, C.; Makiwane, M.; Reuter, H.; Muller, C.; Louw, J.; Rosenkranz, B. Critical Evaluation of Causality Assessment of Herb-Drug Interactions in Patients. Br. J. Clin. Pharmacol. 2018, 84, 679–693. [Google Scholar] [CrossRef]
- Pan, H.Y.; Wu, L.W.; Wang, P.C.; Chiu, P.H.; Wang, M.T. Real-World Evidence of the Herb-Drug Interactions. J. Food Drug Anal. 2022, 30, 316–330. [Google Scholar] [CrossRef]
- Agbabiaka, T.B.; Spencer, N.H.; Khanom, S.; Goodman, C. Prevalence of Drug-Herb and Drug-Supplement Interactions in Older Adults: A Cross-Sectional Survey. Br. J. Gen. Pract. 2018, 68, e711–e717. [Google Scholar] [CrossRef] [PubMed]
- Babos, M.; Heinan, M.; Redmond, L.; Moiz, F.; Souza-Peres, J.; Samuels, V.; Masimukku, T.; Hamilton, D.; Khalid, M.; Herscu, P. Herb-Drug Interactions: Worlds Intersect with the Patient at the Center. Medicines 2021, 8, 44. [Google Scholar] [CrossRef]
- Ge, B.; Zhang, Z.; Zuo, Z. Updates on the Clinical Evidenced Herb-Warfarin Interactions. Evid. Based Complement. Alternat. Med. 2014, 2014, 957362. [Google Scholar] [CrossRef] [PubMed]
- Hazra, S.; Singh, P.A. Safety Aspects of Herb Interactions: Current Understanding and FutureProspects. Curr. Drug Metab. 2024, 25, 28–53. [Google Scholar] [CrossRef]
- Liang, R.J.; Hsu, S.H.; Chang, T.Y.; Chiang, T.Y.; Wang, H.J.; Ueng, Y.F. Metabolism-Involved Drug Interactions with Traditional Chinese Medicines in Cardiovascular Diseases. J. Food Drug Anal. 2022, 30, 331–356. [Google Scholar] [CrossRef]
- Lippert, A.; Renner, B. Herb-Drug Interaction in Inflammatory Diseases: Review of Phytomedicine and Herbal Supplements. J. Clin. Med. 2022, 11, 1567. [Google Scholar] [CrossRef]
- Zhang, T.; Rao, J.; Li, W.; Wang, K.; Qiu, F. Mechanism-Based Inactivation of Cytochrome P450 Enzymes by Natural Products Based on Metabolic Activation. Drug Metab. Rev. 2020, 52, 501–530. [Google Scholar] [CrossRef]
- Sharma, A.K.; Kapoor, V.K.; Kaur, G. Herb-Drug Interactions: A Mechanistic Approach. Drug Chem. Toxicol. 2022, 45, 594–603. [Google Scholar] [CrossRef]
- Amaeze, O.; Eng, H.; Horlbogen, L.; Varma, M.V.S.; Slitt, A. Cytochrome P450 Enzyme Inhibition and Herb-Drug Interaction Potential of Medicinal Plant Extracts Used for Management of Diabetes in Nigeria. Eur. J. Drug Metab. Pharmacokinet. 2021, 46, 437–450. [Google Scholar] [CrossRef]
- Nowack, R.; Nowak, B. Herbal Teas Interfere with Cyclosporin Levels in Renal Transplant Patients. Nephrol. Dial. Transplant. 2005, 20, 2554–2556. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Li, Y. Interaction between Warfarin and the Herbal Product Shengmai-Yin: A Case Report of Intracerebral Hematoma. Yonsei Med. J. 2010, 51, 793. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.; Wu, X.; Li, Q.; Yu, A.; Zhu, M.; Shen, Y.; Su, D.; Xiong, L. Effects of Schisandra sphenanthera Extract on the Pharmacokinetics of Tacrolimus in Healthy Volunteers. Br. J. Clin. Pharmacol. 2007, 64, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.; Wu, X.; Li, Q.; Yu, A.; Xiong, L. Effects of Schisandra sphenanthera Extract on the Pharmacokinetics of Midazolam in Healthy Volunteers. Br. J. Clin. Pharmacol. 2009, 67, 541–546. [Google Scholar] [CrossRef]
- Nieminen, T.H.; Hagelberg, N.M.; Saari, T.I.; Neuvonen, M.; Laine, K.; Neuvonen, P.J.; Olkkola, K.T. St John’s Wort Greatly Reduces the Concentrations of Oral Oxycodone. Eur. J. Pain 2010, 14, 854–859. [Google Scholar] [CrossRef]
- Yuca, H.; Karakaya, S. Matricaria chamomilla L. In Novel Drug Targets with Traditional Herbal Medicines; Gürağaç Dereli, F.T., Ilhan, M., Belwal, T., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 387–400. ISBN 978-3-031-07752-4. [Google Scholar]
- Dai, Y.; Hebert, M.F.; Isoherranen, N.; Davis, C.L.; Marsh, C.; Shen, D.D.; Thummel, K.E. Effect of cyp3a5 polymorphism on tacrolimus metabolic clearance in vitro. Drug Metab. Dispos. 2006, 34, 836–847. [Google Scholar] [CrossRef]
- Chatterjee, S.; Jain, S.; Jangid, R.; Sharma, M.K. Cytochrome P450 and P-Gp Mediated Herb-Drug Interactions of Some Common Indian Herbs. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2022; Volume 72, pp. 225–258. ISBN 978-0-12-823944-5. [Google Scholar]
- Wang, K.; Gao, Q.; Zhang, T.; Rao, J.; Ding, L.; Qiu, F. Inhibition of CYP2C9 by Natural Products: Insight into the Potential Risk of Herb-Drug Interactions. Drug Metab. Rev. 2020, 52, 235–257. [Google Scholar] [CrossRef]
- Ganzera, M.; Schneider, P.; Stuppner, H. Inhibitory Effects of the Essential Oil of Chamomile (Matricaria recutita L.) and Its Major Constituents on Human Cytochrome P450 Enzymes. Life Sci. 2006, 78, 856–861. [Google Scholar] [CrossRef]
- Tan, C.S.S.; Lee, S.W.H. Warfarin and Food, Herbal or Dietary Supplement Interactions: A Systematic Review. Br. J. Clin. Pharmacol. 2021, 87, 352–374. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.A.; Romeiser, J.L.; Kimura, R.; Senzel, L.; Galanakis, D.; Halper, D.; Mena, S.; Bennett-Guerrero, E. Effect of Chamomile Intake on Blood Coagulation Tests in Healthy Volunteers: A Randomized, Placebo-Controlled, Crossover Trial. Perioper. Med. 2023, 12, 51. [Google Scholar] [CrossRef] [PubMed]
- Haas, D.; Quinney, S.; Clay, J.; Renbarger, J.; Hebert, M.; Clark, S.; Umans, J.; Caritis, S. For the Obstetric-Fetal Pharmacology Research Units Network Nifedipine Pharmacokinetics Are Influenced by CYP3A5 Genotype When Used as a Preterm Labor Tocolytic. Am. J. Perinatol. 2012, 30, 275–282. [Google Scholar] [CrossRef]
- Chiang, T.Y.; Wang, H.J.; Wang, Y.C.; Chia-Hui Tan, E.; Lee, I.J.; Yun, C.H.; Ueng, Y.F. Effects of Shengmai San on Key Enzymes Involved in Hepatic and Intestinal Drug Metabolism in Rats. J. Ethnopharmacol. 2021, 271, 113914. [Google Scholar] [CrossRef]
- Wang, H.J.; Chia-Hui Tan, E.; Chiang, T.Y.; Chen, W.C.; Shen, C.C.; Ueng, Y.F. Effect of Repeated Shengmai-San Administration on Nifedipine Pharmacokinetics and the Risk/Benefit under Co-Treatment. J. Food Drug Anal. 2022, 30, 112–128. [Google Scholar] [CrossRef]
- Abushammala, I. Tacrolimus and Herbs Interactions: A Review. Pharmazie 2021, 76, 468–472. [Google Scholar] [CrossRef]
- Hsieh, Y.W.; Huang, C.Y.; Yang, S.Y.; Peng, Y.H.; Yu, C.P.; Chao, P.D.L.; Hou, Y.C. Oral Intake of Curcumin Markedly Activated CYP 3A4: In Vivo and Ex-Vivo Studies. Sci. Rep. 2014, 4, 6587. [Google Scholar] [CrossRef] [PubMed]
- Volak, L.P.; Ghirmai, S.; Cashman, J.R.; Court, M.H. Curcuminoids Inhibit Multiple Human Cytochromes P450, UDP-Glucuronosyltransferase, and Sulfotransferase Enzymes, Whereas Piperine Is a Relatively Selective CYP3A4 Inhibitor. Drug Metab. Dispos. 2008, 36, 1594–1605. [Google Scholar] [CrossRef]
- Woon, T.H.; Tan, M.J.H.; Kwan, Y.H.; Fong, W. Evidence of the Interactions between Immunosuppressive Drugs Used in Autoimmune Rheumatic Diseases and Chinese Herbal Medicine: A Scoping Review. Complement. Ther. Med. 2024, 80, 103017. [Google Scholar] [CrossRef]
- Miedziaszczyk, M.; Bajon, A.; Jakielska, E.; Primke, M.; Sikora, J.; Skowrońska, D.; Idasiak-Piechocka, I. Controversial Interactions of Tacrolimus with Dietary Supplements, Herbs and Food. Pharmaceutics 2022, 14, 2154. [Google Scholar] [CrossRef]
- Egashira, K.; Sasaki, H.; Higuchi, S.; Ieiri, I. Food-Drug Interaction of Tacrolimus with Pomelo, Ginger, and Turmeric Juice in Rats. Drug Metab. Pharmacokinet. 2012, 27, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Ou, R.; Li, F.; Wu, J.; Zheng, L.; Tong, Y.; Liu, Y.; Liu, Z.; Lu, L. Regulation of Drug-Metabolizing Enzymes and Efflux Transporters by Astragali Radix Decoction and Its Main Bioactive Compounds: Implication for Clinical Drug-Drug Interactions. J. Ethnopharmacol. 2016, 180, 104–113. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, L.; Bi, H.; Cui, Y.; Li, J.; Wang, X.; Qin, X.; Chen, J.; Huang, M. Study of the Upregulation of the Activity of Cytochrome P450 3A Isoforms by Astragalus Injection and Astragalus Granules in Rats and in Cells. Eur. J. Drug Metab. Pharmacokinet. 2013, 38, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Iwata, H.; Tezuka, Y.; Kadota, S.; Hiratsuka, A.; Watabe, T. Identification and characterization of potent cyp3a4 inhibitors in schisandra fruit extract. Drug Metab. Dispos. 2004, 32, 1351–1358. [Google Scholar] [CrossRef]
- Qiangrong, P.; Wang, T.; Lu, Q.; Hu, X. Schisandrin B—A Novel Inhibitor of P-Glycoprotein. Biochem. Biophys. Res. Commun. 2005, 335, 406–411. [Google Scholar] [CrossRef]
- Barone, G.W.; Gurley, B.J.; Ketel, B.L.; Lightfoot, M.L.; Abul-Ezz, S.R. Drug Interaction between St. John’s Wort and Cyclosporine. Ann. Pharmacother. 2000, 34, 1013–1016. [Google Scholar] [CrossRef] [PubMed]
- Ruschitzka, F.; Meier, P.J.; Turina, M.; Lüscher, T.F.; Noll, G. Acute Heart Transplant Rejection Due to Saint John’s Wort. The Lancet 2000, 355, 548–549. [Google Scholar] [CrossRef]
- Roemer, H.C.; Kunz, L.; Botzenhardt, S. The Influence of Excessive Consumption of Liquorice on Phenprocoumon (Marcumar®): A Case Report. J. Int. Med. Res. 2021, 49, 03000605211049649. [Google Scholar] [CrossRef]
- Naccarato, M.; Yoong, D.; Gough, K. A Potential Drug-Herbal Interaction between Ginkgo Biloba and Efavirenz. J. Int. Assoc. Physicians AIDS Care 2012, 11, 98–100. [Google Scholar] [CrossRef]
- Spinella, M.; Eaton, L.A. Hypomania Induced by Herbal and Pharmaceutical Psychotropic Medicines Following Mild Traumatic Brain Injury. Brain Inj. 2002, 16, 359–367. [Google Scholar] [CrossRef]
- Breidenbach, T.; Kliem, V.; Burg, M.; Radermacher, J.; Hoffmann, M.W.; Klempnauer, J. Profound drop of cyclosporin a whole blood trough levels caused by st. john’s wort (Hypericum perforatum). Transplantation 2000, 69, 2229–2230. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Zhang, X.; Su, J.; Nan, Z.; Cui, Y.; Liu, J.; Guan, Z.; Zhang, P.; Shen, Y. The Effects of Classic Antipsychotic Haloperidol plus the Extract of Ginkgo Biloba on Superoxide Dismutase in Patients with Chronic Refractory Schizophrenia. Chin. Med. J. 1999, 112, 1093–1096. [Google Scholar] [PubMed]
- Zhang, X.Y.; Zhou, D.F.; Su, J.M.; Zhang, P.Y. The Effect of Extract of Ginkgo Biloba Added to Haloperidol on Superoxide Dismutase in Inpatients with Chronic Schizophrenia. J. Clin. Psychopharmacol. 2001, 21, 85–88. [Google Scholar] [CrossRef]
- Markowitz, J.S. Effect of St John’s Wort on Drug Metabolism by Induction of Cytochrome P450 3A4 Enzyme. JAMA 2003, 290, 1500. [Google Scholar] [CrossRef] [PubMed]
- Eich-Höchli, D.; Oppliger, R.; Golay, K.P.; Baumann, P.; Eap, C.B. Methadone Maintenance Treatment and St. John’s Wort: A Case Report. Pharmacopsychiatry 2003, 36, 35–37. [Google Scholar] [CrossRef]
- Ng, Q.X.; Venkatanarayanan, N.; Ho, C.Y.X. Clinical Use of Hypericum perforatum (St John’s Wort) in Depression: A Meta-Analysis. J. Affect. Disord. 2017, 210, 211–221. [Google Scholar] [CrossRef]
- Nobakht, S.Z.; Akaberi, M.; Mohammadpour, A.; Tafazoli Moghadam, A.; Emami, A. Hypericum perforatum: Traditional Uses, Clinical Trials, and Drug Interactions. Iran. J. Basic Med. Sci. 2022, 25, 1045. [Google Scholar] [CrossRef]
- Singh, Y.N. Potential for Interaction of Kava and St. John’s Wort with Drugs. J. Ethnopharmacol. 2005, 100, 108–113. [Google Scholar] [CrossRef]
- Moore, L.B.; Goodwin, B.; Jones, S.A.; Wisely, G.B.; Serabjit-Singh, C.J.; Willson, T.M.; Collins, J.L.; Kliewer, S.A. St. John’s Wort Induces Hepatic Drug Metabolism through Activation of the Pregnane X Receptor. Proc. Natl. Acad. Sci. USA 2000, 97, 7500–7502. [Google Scholar] [CrossRef]
- Barbarino, J.M.; Staatz, C.E.; Venkataramanan, R.; Klein, T.E.; Altman, R.B. PharmGKB Summary: Cyclosporine and Tacrolimus Pathways. Pharmacogenet. Genom. 2013, 23, 563–585. [Google Scholar] [CrossRef]
- Lown, K.S.; Mayo, R.R.; Leichtman, A.B.; Hsiao, H.; Turgeon, D.K.; Schmiedlin-Ren, P.; Brown, M.B.; Guo, W.; Rossi, S.J.; Benet, L.Z.; et al. Role of Intestinal P-Glycoprotein (Mdr1) in Interpatient Variation in the Oral Bioavailability of Cyclosporine. Clin. Pharmacol. Ther. 1997, 62, 248–260. [Google Scholar] [CrossRef]
- Li, G.; Simmler, C.; Chen, L.; Nikolic, D.; Chen, S.N.; Pauli, G.F.; Van Breemen, R.B. Cytochrome P450 Inhibition by Three Licorice Species and Fourteen Licorice Constituents. Eur. J. Pharm. Sci. 2017, 109, 182–190. [Google Scholar] [CrossRef]
- Hou, Y.C.; Lin, S.P.; Chao, P.D.L. Liquorice Reduced Cyclosporine Bioavailability by Activating P-Glycoprotein and CYP 3A. Food Chem. 2012, 135, 2307–2312. [Google Scholar] [CrossRef]
- Botton, M.R.; Viola, P.P.; Bandinelli, E.; Leiria, T.L.L.; Rohde, L.E.P.; Hutz, M.H. A New Algorithm for Weekly Phenprocoumon Dose Variation in a Southern Brazilian Population: Role for CYP 2C9, CYP 3A4/5 and VKORC 1 Genes Polymorphisms. Basic Clin. Pharmacol. Toxicol. 2014, 114, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Quiroga, I.Q.; Scior, T.S. Structure—Function Analysis of the Cytochromes P450, Responsible for Phenprocoumon Metabolism. J. Mex. Chem. 2017, 61, 349–360. [Google Scholar] [CrossRef]
- Twardowschy, C.A.; Werneck, L.C.; Scola, R.H.; Borgio, J.G.; De Paola, L.; Silvado, C. The Role of CYP2C9 Polymorphisms in Phenytoin-Related Cerebellar Atrophy. Seizure 2013, 22, 194–197. [Google Scholar] [CrossRef]
- Gatanaga, H.; Hayashida, T.; Tsuchiya, K.; Yoshino, M.; Kuwahara, T.; Tsukada, H.; Fujimoto, K.; Sato, I.; Ueda, M.; Horiba, M.; et al. Successful Efavirenz Dose Reduction in HIV Type 1-Infected Individuals with Cytochrome P450 2B6 *6 and *26. Clin. Infect. Dis. 2007, 45, 1230–1237. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.F.; Deng, Y.; Bi, H.; Zhao, L.; Wang, X.; Chen, J.; Ou, Z.; Ding, L.; Xu, L.; Guan, S.; et al. Induction of Cytochrome P450 3A by the Ginkgo Biloba Extract and Bilobalides in Human and Rat Primary Hepatocytes. Drug Metab. Lett. 2008, 2, 60–66. [Google Scholar] [CrossRef]
- Sampaio, G.R.; Guizellini, G.M.; Da Silva, S.A.; De Almeida, A.P.; Pinaffi-Langley, A.C.C.; Rogero, M.M.; De Camargo, A.C.; Torres, E.A.F.S. Polycyclic Aromatic Hydrocarbons in Foods: Biological Effects, Legislation, Occurrence, Analytical Methods, and Strategies to Reduce Their Formation. Int. J. Mol. Sci. 2021, 22, 6010. [Google Scholar] [CrossRef]
- Bukowska, B.; Mokra, K.; Michałowicz, J. Benzo[a]Pyrene—Environmental Occurrence, Human Exposure, and Mechanisms of Toxicity. Int. J. Mol. Sci. 2022, 23, 6348. [Google Scholar] [CrossRef]
- Bukowska, B.; Duchnowicz, P.; Tumer, T.B.; Michałowicz, J.; Krokosz, A. Precarcinogens in Food—Mechanism of Action, Formation of DNA Adducts and Preventive Measures. Food Control 2023, 152, 109884. [Google Scholar] [CrossRef]
- Das, A.K.; Bhattacharya, D.; Das, A.; Nath, S.; Bandyopadhyay, S.; Nanda, P.K.; Gagaoua, M. Current Innovative Approaches in Reducing Polycyclic Aromatic Hydrocarbons (PAHs) in Processed Meat and Meat Products. Chem. Biol. Technol. Agric. 2023, 10, 109. [Google Scholar] [CrossRef]
- Ryu, C.S.; Choi, Y.J.; Nam, H.S.; Jeon, J.S.; Jung, T.; Park, J.E.; Choi, S.J.; Lee, K.; Lee, M.Y.; Kim, S.K. Short-Term Regulation of the Hepatic Activities of Cytochrome P450 and Glutathione S-Transferase by Nose-Only Cigarette Smoke Exposure in Mice. Food Chem. Toxicol. 2019, 125, 182–189. [Google Scholar] [CrossRef]
- Sherson, D.; Sigsgaard, T.; Overgaard, E.; Loft, S.; Poulsen, H.E.; Jongeneelen, F.J. Interaction of Smoking, Uptake of Polycyclic Aromatic Hydrocarbons, and Cytochrome P450IA2 Activity among Foundry Workers. Occup. Environ. Med. 1992, 49, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Kroon, L.A. Drug Interactions with Smoking. Am. J. Health. Syst. Pharm. 2007, 64, 1917–1921. [Google Scholar] [CrossRef]
- Zevin, S.; Benowitz, N.L. Drug Interactions with Tobacco Smoking: An Update. Clin. Pharmacokinet. 1999, 36, 425–438. [Google Scholar] [CrossRef]
- Ministry of Health Quitting Smoking Can Affect the Medicines You Are Taking. 2016. Available online: https://www.medsafe.govt.nz/consumers/educational-material/QuittingSmokingCanAffectYourMedicines.pdf (accessed on 1 April 2025).
- Hu, G.; Cai, K.; Li, Y.; Hui, T.; Wang, Z.; Chen, C.; Xu, B.; Zhang, D. Significant Inhibition of Garlic Essential Oil on Benzo[a]Pyrene Formation in Charcoal-Grilled Pork Sausages Relates to Sulfide Compounds. Food Res. Int. 2021, 141, 110127. [Google Scholar] [CrossRef] [PubMed]
- Prior, T.I.; Baker, G.B. Interactions between the Cytochrome P450 System and the Second-Generation Antipsychotics. J. Psychiatry Neurosci. 2003, 28, 99–112. [Google Scholar] [PubMed]
- McCabe-Sellers, B.J.; Staggs, C.G.; Bogle, M.L. Tyramine in Foods and Monoamine Oxidase Inhibitor Drugs: A Crossroad Where Medicine, Nutrition, Pharmacy, and Food Industry Converge. J. Food Compos. Anal. 2006, 19, S58–S65. [Google Scholar] [CrossRef]
- Sadighara, P.; Bekheir, S.A.; Shafaroodi, H.; Basaran, B.; Sadighara, M. Tyramine, a Biogenic Agent in Cheese: Amount and Factors Affecting Its Formation, a Systematic Review. Food Prod. Process. Nutr. 2024, 6, 30. [Google Scholar] [CrossRef]
- Rendić, S.P.; Crouch, R.D.; Guengerich, F.P. Roles of Selected Non-P450 Human Oxidoreductase Enzymes in Protective and Toxic Effects of Chemicals: Review and Compilation of Reactions. Arch. Toxicol. 2022, 96, 2145–2246. [Google Scholar] [CrossRef]
- Finberg, J.P.M.; Gillman, K. Selective Inhibitors of Monoamine Oxidase Type B and the “Cheese Effect”. In International Review of Neurobiology; Elsevier: Amsterdam, The Netherlands, 2011; Volume 100, pp. 169–190. ISBN 978-0-12-386467-3. [Google Scholar]
- Shih, J.C. Monoamine Oxidase Isoenzymes: Genes, Functions and Targets for Behavior and Cancer Therapy. J. Neural Transm. 2018, 125, 1553–1566. [Google Scholar] [CrossRef]
- Cho, H.U.; Kim, S.; Sim, J.; Yang, S.; An, H.; Nam, M.H.; Jang, D.P.; Lee, C.J. Redefining Differential Roles of MAO-A in Dopamine Degradation and MAO-B in Tonic GABA Synthesis. Exp. Mol. Med. 2021, 53, 1148–1158. [Google Scholar] [CrossRef]
- Birkenhager, T.K.; Heijnen, W.T. Monoamine Oxidase Inhibitors: Seriously Underused in the Treatment of Major Depression. Acta Psychiatr. Scand. 2024, 150, 497–499. [Google Scholar] [CrossRef]
- Shi, Q.; Malik, H.; Crawford, R.M.; Streeter, J.; Wang, J.; Huo, R.; Shih, J.C.; Chen, B.; Hall, D.; Abel, E.D.; et al. Cardiac Monoamine Oxidase-A Inhibition Protects against Catecholamine-Induced Ventricular Arrhythmias via Enhanced Diastolic Calcium Control. Cardiovasc. Res. 2024, 120, 596–611. [Google Scholar] [CrossRef]
- Corbineau, S.; Breton, M.; Mialet-Perez, J.; Costemale-Lacoste, J.F. Major Depression and Heart Failure: Interest of Monoamine Oxidase Inhibitors. Int. J. Cardiol. 2017, 247, 1–6. [Google Scholar] [CrossRef]
- Van Hoogdalem, E.; Smith, K.L.; Hartstra, J.; Constant, J. Rethinking, Reducing, and Refining the Classical Oral Tyramine Challenge Test of Monoamine Oxidase (MAO) Inhibitors. Clin. Transl. Sci. 2023, 16, 2058–2069. [Google Scholar] [CrossRef]
- Blackwell, B.; Mabbitt, L.A. Tyramine in cheese related to hypertensive crises after monoamine-oxidase inhibition. Lancet 1965, 285, 938–940. [Google Scholar] [CrossRef]
- Van Den Eynde, V.; Abdelmoemin, W.R.; Abraham, M.M.; Amsterdam, J.D.; Anderson, I.M.; Andrade, C.; Baker, G.B.; Beekman, A.T.F.; Berk, M.; Birkenhäger, T.K.; et al. The Prescriber’s Guide to Classic MAO Inhibitors (Phenelzine, Tranylcypromine, Isocarboxazid) for Treatment-Resistant Depression. CNS Spectr. 2023, 28, 427–440. [Google Scholar] [CrossRef]
- Chamberlain, S.R.; Baldwin, D.S. Monoamine Oxidase Inhibitors (MAOIs) in Psychiatric Practice: How to Use Them Safely and Effectively. CNS Drugs 2021, 35, 703–716. [Google Scholar] [CrossRef]
- Fiedorowicz, J.G.; Swartz, K.L. The Role of Monoamine Oxidase Inhibitors in Current Psychiatric Practice. J. Psychiatr. Pract. 2004, 10, 239–248. [Google Scholar] [CrossRef]
- Alkhouli, M.; Mathur, M.; Patil, P. Revisiting the “Cheese Reaction”: More Than Just a Hypertensive Crisis? J. Clin. Psychopharmacol. 2014, 34, 665–667. [Google Scholar] [CrossRef]
- Ottervanger, J.P.; Klaver, M.M.; Kölling, P.; Stricker, B.H. Intracranial hemorrhage following use of MAO inhibitor tranylcypromine and beer. Ned. Tijdschr. Geneeskd. 1993, 137, 921–922. [Google Scholar]
- Sadeghi, N.; Oveisi, M.R.; Jannat, B.; Behzad, M.; Hajimahmoodi, M.; Zareakram, E. Tyramine in Malt Beverages Interfering with Monoamine Oxidase Inhibitor Drugs. J. Biosci. Med. 2016, 04, 10–16. [Google Scholar] [CrossRef]
- Karch, A.M. The Grapefruit Challenge: The Juice Inhibits a Crucial Enzyme, with Possibly Fatal Consequences. AJN Am. J. Nurs. 2004, 104, 33–35. [Google Scholar] [CrossRef]
- Amsterdam, J.D. A Double-Blind, Placebo-Controlled Trial of the Safety and Efficacy of Selegiline Transdermal System Without Dietary Restrictions in Patients with Major Depressive Disorder. J. Clin. Psychiatry 2003, 64, 208–214. [Google Scholar] [CrossRef]
- Prasad, A.; Glover, V.; Goodwin, B.L.; Sandler, M.; Signy, M.; Smith, S.E. Enhanced Pressor Sensitivity to Oral Tyramine Challenge Following High Dose Selegiline Treatment. Psychopharmacology 1988, 95, 540–543. [Google Scholar] [CrossRef]
- Shahifar, A.; Bagheri, H.; Namnabat, S. Synthesis and Evaluation of a Polycaprolactone-Methoxy-Polyethyleneglycol Copolymer Nano-System for Curcumin and Tacrolimus Release. Iran. J. Pharm. Sci. 2023, 19, 304–313. [Google Scholar] [CrossRef]
- Long, Z.; Ruan, M.; Wu, W.; Zeng, Q.; Li, Q.; Huang, Z. The Successful Combination of Grapefruit Juice and Venetoclax in an Unfit Acute Myeloid Leukemia Patient with Adverse Risk: A Case Report. Front. Oncol. 2022, 12, 912696. [Google Scholar] [CrossRef]
Mechanism of Interaction | Fruit Juice Type | Examples of Drugs | References |
---|---|---|---|
CYP3A4 inhibition | Grapefruit juice | Simvastatin | [58,67,68] |
Grapefruit juice | Simvastatin | [69] | |
Grapefruit juice | Artemether | [70] | |
Grapefruit juice | Blonanserin | [71] | |
Grapefruit juice | Dapoxetine | [72] | |
Seville orange juice | Sildenafil | [73] | |
Seville orange juice | Felodipine | [74] | |
Pomegranate juice | Sildenafil | [59,75] | |
Punica granatum juice | Sildenafil | [59] | |
Pomelo juice | Cyclosporine | [76] | |
CYP2C9 inhibition | Cranberry juice | Warfarin | [60] |
CYP2C9 induction | Noni juice | Phenytoin | [77] |
CYP3A activation | Grape juice | Cyclosporine | [78] |
CYP1A2 activation | Grape juice | Phenacetin | [79] |
Classes of Drugs with Established Interactions with Grapefruit | Examples of Drugs |
---|---|
Cardiovascular Drugs | |
Calcium channel blockers | Felodipine, nimodipine, nitrendipine, verapamil, diltiazem, nifedipine, verapamil |
Antiarrhythmic drugs | Dronedarone, amiodarone |
Anticoagulants | Rivaroxaban, apixaban, edoxaban |
Antiplatelet drugs | Ticagrelor |
Hypolipidemic drugs | Statins: atorvastatin, simvastatin |
Immunosuppressants | Cyclosporine, everolimus, tacrolimus |
Antibiotics | |
Macrolides | Clarithromycin, erythromycin |
Antimalarial | Primaquine, halofantrine, maraviroc |
Anti-parasitic | Praziquantel |
Antiretrovirals—HIV therapy | Saquinivir, etravirin |
Antidepressants | Clomipramine, sertraline, fluoxetine, agomelatine |
Other psychiatric drugs | S-carbamazepine, buspirone,, diazepam |
Drugs used in the treatment of functional disorders of the upper gastrointestinal tract | Cisapride, domperidone |
Oestrogens | Oestradiol, ethinyloestradiol |
Drugs used in bladder diseases | Darifenacin solifenacin fesoterodine |
Drugs used in prostatic hyperplasia | Tamsulosin, doxazosin |
Cytotoxic agents | Nilotinib |
CYP450 Isoforms | Name of the Herb | Examples of Drug Substrate | References |
---|---|---|---|
Cases of increased plasma drug concentration resulting from HDI | |||
CYP3A4 | Herbal teas | Cyclosporin | [137] |
CYP3A4 | Herbal Product Sheng Mai-San | Nifedipine | [138] |
CYP3A4 | Herbaceous astragalus (Astragalus membranous) | Tacrolimus | [61] |
CYP3A4 | Schisandra sphenanthera | Tacrolimus | [139] |
CYP3A4 | Schisandra sphenanthera | Midazolam | [140] |
Cases of elevated plasma drug concentrations or unchanged levels resulting from HDI | |||
CYP2C9 inhibition | Chamomile (Matricaria chamomilla) | Warfarin | [62] |
CYP2C9 no effect | Chamomile (Matricaria chamomilla) | Warfarin | [141] |
CYP3A4 inhibition | Turmeric (Curcuma longa L.) | Tacrolimus | [63] |
CYP3A4 no effect | Turmeric, curry powder, and ginger | Tacrolimus | [64] |
Induction of a Specific CYP Isoform | Name of the Herb/Herbal Preparation | Examples of Drugs | References |
---|---|---|---|
Cases of decreased plasma drug concentration resulting from HDI | |||
CYP3A4 | Hypericum perforatum | Cyclosporine | [162] |
CYP3A4 | Hypericum perforatum | Cyclosporine | [163] |
CYP2C8, CYP2C9 and CYP2C19 | Glycyrrhiza | Acenocoumarol | [164] |
CYP2C9 | Noni juice | Phenytoin | [77] |
CYP3A4 | Ginkgo biloba L. | Efavirenz | [165] |
CYP3A4 | Hypericum perforatum and Ginkgo biloba | Fluoxetine and buspirone | [166] |
CYP1A1 | Polycyclic aromatic hydrocarbons | Olanzapine | [17] |
Studies on herb–drug interactions in volunteers | |||
CYP3A4 | Hypericum perforatum | Cyclosporine | [167] |
CYP3A4 | Ginkgo biloba L. | Haloperidol | [168,169] |
CYP3A4 | Hypericum perforatum | Alprazolam | [170] |
CYP3A4 | Hypericum perforatum | Midazolam | [54] |
CYP3A4 | Hypericum perforatum | Methadone | [171] |
CYP3A4 | Hypericum perforatum | Oxycodone | [141] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bukowska, B.; Grzegorowska, A.; Szczerkowska-Majchrzak, E.; Bukowski, K.; Kadac-Czapska, K.; Grembecka, M.; Broncel, M. Hazardous Interactions Between Food, Herbs, and Drugs in the First Stage of Biotransformation: Case Reports of Adverse Drug Interactions in Humans. Int. J. Mol. Sci. 2025, 26, 5188. https://doi.org/10.3390/ijms26115188
Bukowska B, Grzegorowska A, Szczerkowska-Majchrzak E, Bukowski K, Kadac-Czapska K, Grembecka M, Broncel M. Hazardous Interactions Between Food, Herbs, and Drugs in the First Stage of Biotransformation: Case Reports of Adverse Drug Interactions in Humans. International Journal of Molecular Sciences. 2025; 26(11):5188. https://doi.org/10.3390/ijms26115188
Chicago/Turabian StyleBukowska, Bożena, Anna Grzegorowska, Eliza Szczerkowska-Majchrzak, Karol Bukowski, Kornelia Kadac-Czapska, Małgorzata Grembecka, and Marlena Broncel. 2025. "Hazardous Interactions Between Food, Herbs, and Drugs in the First Stage of Biotransformation: Case Reports of Adverse Drug Interactions in Humans" International Journal of Molecular Sciences 26, no. 11: 5188. https://doi.org/10.3390/ijms26115188
APA StyleBukowska, B., Grzegorowska, A., Szczerkowska-Majchrzak, E., Bukowski, K., Kadac-Czapska, K., Grembecka, M., & Broncel, M. (2025). Hazardous Interactions Between Food, Herbs, and Drugs in the First Stage of Biotransformation: Case Reports of Adverse Drug Interactions in Humans. International Journal of Molecular Sciences, 26(11), 5188. https://doi.org/10.3390/ijms26115188